人教版数学七年级上册第4章【几何图形初步】同步提升训练
人教版七年级上册数学第四章 几何图形初步含答案(基础+提升)

人教版七年级上册数学第四章几何图形初步含答案一、单选题(共15题,共计45分)1、下列说法错误的是()A.两点之间线段最短B.对顶角相等C.同角的补角相等D.过一点有且只有一条直线与已知直线平行2、已知∠α和∠β互为余角.若∠α=40°,则∠β等于()A.40°B.50°C.60°D.140°3、正在发展中的西安地铁给百姓的出行带来了极大的便利,它也逐渐成为低碳环保的最佳出行选择,如图,在正方体展开图的六个面上分别写了“市”“内”“请”“乘”“地”“铁”六个字,然后将其围成一个正方体,使得从前面看到“地”,从右边看到“乘”,则从上面看到是应该是()A.“铁”B.“请”C.“内”D.“市”4、下面四个图形是多面体的展开图,其中哪一个是四棱锥的展开图()A. B. C. D.5、若∠A=34°,则∠A的余角的度数为()A.146°B.54°C.56°D.66°6、如图,点A位于点O的( )方向上A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°7、如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面和右面所标数字相等,则x的值是()A.6B.1C.D.08、如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形9、用平面去截一个三棱柱不能得到()A.三角形B.四边形C.五边形D.六边形10、如图所示,将平面图形绕轴旋转一周,得到的几何体是()A. B. C. D.11、下列物体的形状类似于球的是()A.乒乓球B.羽毛球C.茶杯D.白织灯泡12、已知,AB为直线,OE平分∠AOC,OD平分∠BOC,则图中互补的角有()对.A.3B.4C.5D.613、下面图形中,不能折成无盖的正方体盒子的是()A. B. C. D.14、下列说法中,正确的是()A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数 C.若线段AC=BC,则点C是线段AB的中点 D.角的大小与角两边的长度有关,边越长角越大15、如图所示的表面展开图所对应的几何体是( )A.长方体B.球C.圆柱D.圆锥二、填空题(共10题,共计30分)16、一个角等于它的余角的,则这个角的补角的度数是________.17、扬州前一段时间天气变化无常,很多同学感冒生病。
人教版数学七年级上册第4章【几何图形初步】专项提升训练

【几何图形初步】专项提升训练一.选择题1.下列图形中为正方体展开图的是()A.B.C.D.2.如图,轮船航行到C处时,观测到小岛B的方向是北偏西35°,那么同时从B观测轮船的方向是()A.南偏西35°B.东偏西35°C.南偏东55°D.南偏东35°3.已知点A在点B的北偏东30°方向,点C在点B的南偏东30°方向,点A在点C的正北方向,则()A.AB=AC B.AB=BC C.AC=BC D.AB=AC=BC4.如图,在△ABC中,∠ACB=110°,∠A=25°,用直尺和圆规过点C作射线CD⊥AB,交边AB于点D,则下列作法中错误的是()A.B.C.D.5.若∠A与∠B互为余角,∠A=40°,则∠B=()A.140°B.40°C.50°D.60°6.如图,分别以线段AB的两端点A,B为圆心,大于AB长为半径画弧,在线段AB的两侧分别交于点E,F,作直线EF交AB于点O.在直线EF上任取一点P(不与O重合),连接PA,PB,则下列结论不一定成立的是()A.OP=OF B.PA=PB C.OA=OB D.PO⊥AB7.小圆的半径是4cm,大圆的半径是8cm,小圆面积是大圆面积的()A.B.C.D.8.某个几何体的展开图如图所示,该几何体是()A.平行四边形B.三角形C.三棱柱D.三棱锥9.如图,已知∠AOB=26°,∠AOE=120°,OB平分∠AOC,OD平分∠AOE,则∠COD的度数为()A.8°B.10°C.12°D.18°10.如图,已知线段AB=6cm,在线段AB的延长线上有一点C,且BC=4cm,若点M为AB中点,那么MC的长度为()A.5cm B.6cm C.7cm D.无法确定二.填空题11.一个长方形的长AB为4cm,宽BC为3cm,则将其绕AB边旋转一周,得到一个圆柱体,则该圆柱体的体积是cm3(保留π).12.已知∠α=24°37′,那么∠α的补角等于.13.同一直线上有两条等长的线段AB,CD(A在B左边,C在D左边),点M,N分别是线段AB,CD的中点,若BC=6cm,MN=4AB,则AB=cm.14.某正方体的平面展开图如图所示,a与其对面的数字互为相反数,则a的值为.15.如图,点A在点O的东北方向,点B在点O的南偏西25°方向,射线OC平分∠AOB,则∠AOC的度数为度.三.解答题16.图1所示的三棱柱,高为7cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有条棱,有个面.(2)图2方框中的图形是该三棱柱的表面展开图的一部分,请将它补全.17.如图是某长方体的展开图,它的棱长如图所示,请计算原长方体的表面积和体积.(结果用含a的式子表示)18.如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.19.如图所示,∠AOC和∠BOD都是直角.(1)填空:图中与∠BOC互余的角有和;(2)∠AOD与∠BOC互补吗?为什么?(3)若∠AOB:∠AOD=3:13,求∠BOC与∠AOD的度数20.如图是一个正方体盒子的表面展开图,该正方体六个面上分别标有不同的数字,且相对两个面上的数字互为相反数.(1)把﹣10,8,10,﹣8,﹣3,3分别填入图中的六个小正方形中;(2)若某两个相对面上的数字分别为和﹣11,求x的值.。
初中七年级上册数学第四章《几何图形初步》同步练习+单元测试题(含答案)

七年级上册数学同步练习+单元测试题第四章《几何图形初步》4.1几何图形基础巩固1. (题型一)图4-1-1是一座房子的平面图,组成这幅图的几何图形有()图4-1-1A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形2. (知识点4)汽车上的雨刷把玻璃上的雨水刷干净,属于()的实际应用.A.点动成线B.线动成面C.面动成体D.以上答案都不对3. (题型三)把如图4-1-2的图标折成一个正方体的盒子,折好后与“中”相对的字是()图4-1-2A.祝B.你C.顺D.利4. (题型三)在下列四个展开图中,不能折叠成无盖的长方体盒子的是()5. (题型一)在图4-1-3的图形中,是柱体的是.(填序号)___________.图4-1-36. (题型二)在一张桌子上放着几叠碗,图4-1-4的三幅图是李明分别从上面、前面、右面看所得到的图形,那么桌子上一共放着____个碗.图4-1-4能力提升7. (题型三)图4-1-5是一张硬纸片,结合所给数据,你能判断出它能否折叠成一个长方体盒子吗?若能,画出它的几何图形,并计算它的体积;若不能,请说明理由.图4-1-5答案基础巩固1. C 解析:题图中的几何图形有三角形、正方形、长方形及梯形.故选C.2. B 解析:汽车的雨刷可以看成是一条线段,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故选B.3. C 解析:题图是一个正方体的展开图,共有六个面,其中“祝”与“利”相对,“你”与“考”相对,“中”与“顺”相对.故选C.4. A 解析:选项B,C,D都能折叠成无盖的长方体盒子,选项A不能折叠成无盖的长方体盒子.故选A.5. ②③⑥解析:①是圆锥,②是正方体,属于棱柱,③是圆柱,属于柱体,④是棱锥,⑤是球,⑥是三棱柱,属于柱体.6. 10 解析:首先由上面看到的图形可知一共有3叠碗,然后由前面、右面看到的图形可知第一排有2叠碗,每叠4个,第二排靠左面的一叠有2个碗,一共有4+4+2=10(个)碗.能力提升7. 解:能.如图D4-1-1,该长方体盒子的长为5 m,宽为1 m,高为3 m,故其体积为5×1×3=15(m3).图D4-1-14.2直线、射线、线段基础巩固1. (题型一)如图4-2-1,下列说法正确的是()图4-2-1A.图中共有5条线段B.直线AB与直线AC是同一条直线C.射线AB与射线BA是同一条射线D.点O在直线AC上2. (知识点1)木工师傅用刨子可将木板刨平,如图4-2-2,经过刨平的木板上的两个点,就能弹出一条笔直的墨线,而且只能弹出一条墨线,用数学知识解释其道理正确的是()图4-2-2A.两点确定一条直线B.两点之间,线段最短C.两条直线相交,只有一个交点D.不在同一条直线上的三点,确定一个平面3. (知识点6)已知C是线段AB上的一点,不能确定C是AB的中点的条件是()A. AC=CBB. AC=1AB C. AB=2BC D. AC+CB=AB24. (题型三)已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC等于_______.5. (题型四)经过任意三点中的两点可以画出的直线共有_____条.6. (题型六)如图4-2-3,由泰山到青岛的某一次单程列车,运行途中停靠的车站依次是泰山、济南、淄博、潍坊、青岛,那么需要为这次列车制作的火车票有_____种.图4-2-37. (题型三)如图4-2-4,线段AC=6cm,线段BC=15 cm,M是AC 的中点,在CB上取一点N,使得CN∶NB=1∶2,求MN的长.图4-2-48. (题型六)如图4-2-5,设A,B,C,D为四个居民小区,现要在四边形ABCD内建一个购物中心,试问应把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请用一句话说明理由.图4-2-59. (题型二)如图4-2-6,已知线段a,b,利用直尺和圆规画一条线段c,使它的长度等于3a-b.图4-2-6能力提升10. (题型三)如图4-2-7,在线段AF中,AB=a,BC=b,CD=c,DE=d,EF=e,则分别以A,B,C,D,E,F为端点的所有线段长度之和为()图4-2-7A.5a+8b+9c+8d+5eB.5a+8b+10c+8d+5eC.5a+9b+9c+9d+5eD.10a+16b+18c+16d+10e11. (题型五)如图4-2-8,试确定各图中分别有几条线段、几条射线. (1)如图4-2-8(1),直线l上有1个点P1;(2)如图4-2-8(2),直线l上有2个点P1,P2;(3)如图4-2-8(3),直线l上有3个点P1,P2,P3;(4)如图4-2-8(4),直线l上有4个点P1,P2,P3,P4;(5)如图4-2-8(5),直线l上有n个点P1,P2,P3,…,P n.图4-2-812. (题型三)如图4-2-9,线段AB=12,动点P从点A出发,以每秒2个单位长度的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)若点P在线段AB上运动时,试说明2BM-PB的值为定值.(3)当点P在AB的延长线上运动时,N为PB的中点,其他条件不变,下列两个结论:①MN的长度不变;②AM+NP的值不变.请选择正确的结论,并说明理由.图4-2-9答案基础巩固1. B 解析:A.图中共有6条线段,故A错误;B.直线AB与直线AC 是同一条直线,故B正确;C.射线AB与射线BA不是同一条射线,故C错误;D.点O在直线AC外,故D错误.故选B.2. A 解析:经过刨平的木板上的两个点,就能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选A.3. D 解析:A.若AC=CB,则C是线段AB的中点;B.若AC=1/2AB,则C是线段AB的中点;C.若AB=2BC,则C是线段AB的中点;D.若AC+BC=AB,则C是线段AB上任意一点,故不能确定C是AB的中点.故选D.4. 11 cm或5 cm解析:根据题意可知,AB=8 cm,BC=3 cm.因为点C 的位置不确定,所以要分两种情况分别进行讨论:如图D4-2-1(1),当点C在点B的右侧时,AC=AB+BC=8+3=11(cm);如图D4-2-1(2),当点C在点B的左侧时,AC=AB-BC=8-3=5(cm).综上所述,线段AC 等于11cm或5 cm.图D4-2-15. 1或3 解析:如图D4-2-2,可以画出1条或3条直线.图D4-2-26. 10 解析:如图D4-2-3,将泰山、济南、淄博、潍坊、青岛这五站分别用A,B,C,D,E表示,则有线段AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共10条,所以需要为这次列车制作的火车票有10种.图D4-2-37. 解:因为M是AC的中点,线段AC=6 cm,所以MC=AM=12AC=12×6=3(cm).又因为CN∶NB=1∶2,线段BC=15 cm,所以CN=13BC=13×15=5(cm).所以MN=MC+NC=3+5=8(cm).8. 解:应建在AC,BD连线的交点处.理由:两点之间,线段最短.将A,B,C,D用线段连起来,在路程最短的两条线段的交点处建超市,则使4个居民小区到购物中心的距离之和最小.9. 解:(1)画射线AP,在射线AP上顺次截取AB=BC=CD=a;(2)以D为端点,在线段AD上截取DE=b.如图D4-2-4,线段AE的长度就是3a-b,设AE的长度为c,则c=3a-b.图D4-2-4能力提升10. A 解析:以A为端点的线段有AB,AC,AD,AE,AF,这些线段的长度之和为5a+4b+3c+2d+e;以B为端点的线段有BC,BD,BE,BF,这些线段的长度之和为4b+3c+2d+e;以C为端点的线段有CD,CE,CF,这些线段的长度之和为3c+2d+e;以D为端点的线段有DE,DF,这些线段长度之和为2d+e;以E为端点的线段有EF,线段的长度为e.所以分别以A,B,C,D,E,F为端点的所有线段的长度之和为5a+8b+9c+8d+5e.故选A.11. 解:(1)题图(1)中有0条线段,2条射线.(2)题图(2)中有1条线段,4条射线.(3)题图(3)中有1+2=3(条)线段,6条射线.(4)题图(4)中有1+2+3=6(条)线段,8条射线.(5)题图(5)中有1+2+3+…+(n-1)=()12n n-(条)线段,2n条射线.12. 解:(1)设出发t(t>0)秒后,PB=2AM.如图D4-2-5(1),由题意,得AP=2t,则PB=12-2t.因为M为AP的中点,所以AM=t.由PB=2AM,得12-2t=2t,解得t=3.故出发3秒后,PB=2AM.(2)设点P在AB上运动的时间为t(t >0)秒.如图D4-2-5(1),可得AP=2t,AM=t,所以BM=12-t.所以2BM-PB=2×(12-t)-(12-2t)=24-2t-12+2t=12.所以当点P在线段AB上运动时,2BM-BP的值为定值12.(3)结论①是正确的.理由如下:如图D4-2-5(2),设点P在AB的延长线上运动的时间为t(t>0)秒,则AP=2t,则AM=t,PB=2 t-12.因为N为PB的中点,所以NP=12PB=12×(2t-12)=t-6.①MN=AP-AM-NP=2t-t-(t-6)=6.所以当点P在AB的延长线上运动时,MN的长度不变.所以结论①正确.②A M+NP=t+(t-6)=2t-6,所以当点P在AB的延长线上运动时,AM+PN的值会改变.所以结论②不正确.(1)(2)图D4-2-54.3角4.3.1角基础巩固1. (知识点1)下列说法正确的是()A.周角是一条射线B.角的边越长,角越大C.大于直角的角叫作钝角D.两个直角的和一定是平角2. (知识点2)在下列四个图中,能用∠1,∠AOB,∠O三种方法表示同一个角的是()3. (知识点3)将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″4. (题型一)如图4-3.1-1,从点O发出的五条射线,可以组成小于平角的角共有()图4-3.1-14A.10个B.9个C.8个D.4个5. (题型二)钟表在8:25时,时针与分针的夹角是()A.101.5°B.102.5°C.120°D.125°6. (知识点2)如图4-3.1-2,用三个大写字母表示∠1为_____,∠2为_____,∠3为_____.图4-3.1-27. (知识点2)写出图4-3.1-3中符合下列条件的角.(图中所有的角均指小于平角的角)(1)能用一个大写字母表示的角;(2)以点A为顶点的角;(3)图中所有的角(可用简便方法表示).图4-3.1-3能力提升8. (题型二)某电视台录制的节目在周五21:10播出,此时时钟上的分针与时针所成的角是多少度?在如图4-3.1-4中大致标出此时的角(用短箭头、长箭头分别表示时针和分针),并用至少两种方式写出这个角?(可在表盘上标注相应的字母或数字)图4-3.1-4答案基础巩固1. D 解析:A.周角是两条射线重合组成的,故此选项错误;B.角的边的长度与角的大小无关,故此选项错误;C.大于直角且小于180°的角叫作钝角,故此选项错误;D.两个直角的和一定是平角,故此选项正确.故选D.2. D 解析:A.图中的∠AOB不能用∠O表示,故此选项错误;B.图中的∠1和∠AOB表示的不是同一个角,故此选项错误;C.图中的∠1和∠AOB表示的不是同一个角,故此选项错误;D.图中∠1,∠AOB,∠O表示同一个角,故此选项正确.故选D.3. D 解析:21.54°=21°32.4′=21°32′24″.故选D.4. A 解析:图中共有10个小于平角的角.故选A.5. B 解析:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上8:25时,以8:00为基准,时针转过0.5°×25=12.5°,分针转到数字5上.因为钟表有12个数字,每相邻两个数字之间的夹角为30°,所以8:25时分针与时针的夹角为3×30°+12.5°=102.5°.故选B.6. ∠MCB(或∠MCN)∠A MC∠CAN7. 解:(1)能用一个大写字母表示的角为∠B,∠C.(2)以点A为顶点的角为∠CAD,∠BAD,∠BAC.(3)图中所有的角有∠C,∠B,∠1,∠2,∠3,∠4,∠CAB.能力提升8. 解:如图D4-3.1-1.因为时针每分钟走0.5°,分针每分钟走6°,钟表上每相邻两个数字的夹角是30°,所以10×6°=60°,10×0.5°=5°,21:10时时钟上的分针与时针的夹角为90°+60°-5°=145°,可以表示为∠1,∠AOB,∠O等.图D4-3.1-1∠AON)-(60°-∠AON)=30°.4.3角4.3.2角的比较与运算基础巩固1. (知识点1)将∠1,∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的()A.另一边上B.内部C.外部D.无法判断2.(题型三)图4-3.2-1如图4-3.2-1,∠AOB是直角,∠AOC=38°,OD 平分∠BOC,则∠AOD的度数为()图4-3.2-1A.52°B.38°C.64°D.26°3. (知识点3)如图4-3.2-2,OC平分∠AOD,OD平分∠BOC,下列结论不成立的是()图4-3.2-2A.∠AOC=∠BODB.∠COD=1/2∠AOBC.∠AOC=1/2∠AODD.∠BOC=2∠BOD4. (题型四)如图4-3.2-3,将长方形纸片ABCD的点C沿着GF折叠(点F在BC上,不与点B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是()A.90°<α<180°B.0°<α<90°C.α=90°D.α随折痕GF位置的变化而变化图4-3.2-35. (题型一)如图4-3.2-4,其中最大的角是_____,∠DOC,∠DOB,∠DOA的大小关系是______.图4-3.2-46. (题型二)计算:82°50′12″÷4+31°21′45″=________.图4-3.2-57. (题型三)如图4-3.2-5,两把三角尺的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD是____°.8.(题型三)如图4-3.2-6,AB是一条直线,如果∠1=65°15′,∠2=78°30′,求∠3的度数.图4-3.2-69. (题型三)如图4-3.2-7,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.图4-3.2-7能力提升10. (题型三)如图4-3.2-8,∠AOB=90°,∠AOC=30°,且OM平∠BOC,ON平分∠AOC.(1)求∠MON的度数.(2)若∠AOB=α,其他条件不变,求∠MON的度数.(3)若∠AOC=β(β为锐角),其他条件不变,求∠MON的度数. (4)从上面的结果中得出什么规律?图4-3.2-8答案基础巩固1. C 解析:将∠1,∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的外部.故选C.2. C 解析:∠BOC=∠AOB-∠AOC=90°-38°=52°.因为OD平分∠BOC,所以∠BOD=12∠BOC=26°.所以∠AOD=∠AOB-∠BOD=90°-26°=64°.故选C.3. B 解析:A.因为OC平分∠AOD,所以∠AOC=∠COD.因为OD平分∠BOC,所以∠COD=∠BOD,所以∠AOC=∠BOD,故此选项不符合题意;B.因为OD平分∠BOC,所以∠COD=1/2∠BOC,故此选项符合题意;C.因为OC平分∠AOD,所以∠AOC=1/2∠AOD,故此选项不符合题意;D.因为OD平分∠BOC,所以∠BOC=2∠BOD,故此选项不符合题意.故选B.4. C 解析:因为∠CFG=∠EFG=1/2∠EFC,且FH平分∠BFE,所以∠GFH=∠EFG+∠EFH=1/2∠EFC+1/2∠EFB=1/2(∠EFC+∠EFB)=12×180°=90°.故选C.5. ∠AOD∠DOA>∠DOB>∠DOC解析:由图可知,最大的角是∠AOD,∠DOA>∠DOB>∠DOC.6. 52°4′18″ 解析:82°50′12″÷4+31°21′45″=20°42′33″+31°21′45″=52°4′18″.7. 135 解析:因为OB平分∠COD,所以∠COB=∠BOD=45°.因为∠AOB=90°,所以∠AOC=45°,所以∠AOD=135°.8. 解:因为∠1=65°15′,∠2=78°30′,所以∠3=180°-∠1-∠2=180°-65°15′-78°30′=36°15′.9. 解:因为∠AOB=90°,OC 平分∠AOB ,所以∠BOC =12∠AOB =45°.因为∠BOD=∠COD-∠BOC =90°-45°=45°,∠BOD =3∠DOE , 所以∠DOE =15°.所以∠COE=∠COD-∠DOE =90°-15°=75°.能力提升10. 解:(1)因为∠AOB =90°,∠AOC =30°,所以∠BOC =120°.因为OM 平分∠BOC ,ON 平分∠AOC ,所以∠COM=60°,∠CON =15°,所以∠MON =∠COM -∠CON =45°.(2)因为∠AOB =α,∠AOC =30°,所以∠BOC =α+30°.因为OM 平分∠BOC ,ON 平分∠AOC ,所以∠COM =2α+15°,∠CON =15°.所以∠MON =∠COM -∠CON =2α.(3)因为∠AOB =90°,∠AOC=β,所以∠BOC =90°+β.因为OM 平分∠BOC ,ON 平分∠AOC ,所以∠COM =45°+ 2β,∠CON = 2β.所以∠MON=∠COM-∠CON=45°.(4)从上面的结果中,发现∠MON=1/2∠AOB,∠MON的大小与∠AOC 的大小无关.4.3角4.3.3余角和补角基础巩固1.(知识点1)下列图形中互为补角的两个角是()A.①和②B.①和③C.①和④D.②和④2.(题型二)如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向3.(题型三)下列选项是将一副三角尺按不同位置摆放的,∠α与∠β互余的是()4. (题型二)一艘海上搜救船借助雷达探测仪寻找到事故船的位置,雷达示意图如图4-3.3-1,搜救船位于图中圆心O处,事故船位于距点O40海里的A处,雷达操作员要用方位角把事故船相对于搜救船的位置汇报给船长,以便调整航向,下列四种表述方式正确的是()图4-3.3-1A.事故船在搜救船的北偏东60°方向B.事故船在搜救船的北偏东30°方向C.事故船在搜救船的北偏西60°方向D.事故船在搜救船的南偏东30°方向5.(题型三)如图4-3.3-2,∠AOC=∠BOD=90°,四位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD;乙:∠BOC+∠AOD=180°;丙:∠AOB+∠COD=90°;丁:图中小于平角的角有6个.其中观点正确的是()图4-3.3-2A.甲、乙、丙B.甲、丙、丁C.乙、丙、丁D.甲、乙、丁6. (题型一)已知∠A=35°10′48″,则∠A的补角是_____.7. (题型一)如图4-3.3-3,A,B,C三点在同一条直线上,若∠ECD=90°,∠1=23°30′,则∠2的度数是______°.图4-3.3-38. (题型一)若∠1和∠2互为余角,则∠1和∠2的补角之和是______.9. (题型一)一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.能力提升10. (题型二)如图4-3.3-4,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东30°、西北(即北偏西45°)方向上又分别发现了客轮B和海岛C.(1)仿照表示灯塔方位的方法,分别画出表示客轮B和海岛C方向的射线OB,OC(不写作法);(2)若图中有一艘渔船D,且∠AOD的补角是它的余角的3倍,画出表示渔船D方向的射线OD,则渔船D在货轮O的______方向上.(写出方位角)图4-3.3-411. (题型三)如图4-3.3-5,O为直线AB上一点,过点O作射线OC 使∠BOC=120°,将有一30°角的直角三角尺的直角顶点放在点处,一边OM在射线OB上,另一边ON在直线AB的下方.(中∠OMN=30°,∠NOM=90°)(1)(2)(3)图4-3.3-5(1)将图4-3.3-5(1)中的三角尺绕点O逆时针旋转至图4-3.3-5(2),使OM在∠BOC的内部,且恰好平分∠BOC.问:直线ON是否平分∠AOC?请说明理由.(2)将图4-3.3-5(1)中的三角尺绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分∠AOC,求t.(3)将图4-3.3-5(1)中的三角尺绕点O顺时针旋转至图4-3.3-5(3),使ON在∠AOC的内部.请探究:∠AOM与∠NOC之间的数量关系,并说明理由.答案基础巩固1. C 解析:因为①和④两个角的和为180°,所以①和④互为补角.故选C.2. A 解析:由图D4-3.3-1可知,∠1=30°.因为从甲船看乙船,乙船在甲船的北偏东30°方向,所以从乙船看甲船,甲船在乙船的南偏西30°方向.故选A.图D4-3.3-123. A 解析:A.∠α与∠β互余,故此选项符合题意;B.∠α=∠β,故此选项不符合题意;C.∠α=∠β,故此选项不符合题意;D.∠α与∠β互补,故此选项不符合题意.故选A.4. B 解析:由题图可知,事故船在搜救船的北偏东30°方向.故选B.5. D 解析:因为∠AOC=∠BOD=90°,所以∠AOC-∠BOC=∠BOD-∠BOC,即∠AOB=∠COD,所以甲同学的观点正确;因为∠BOC+∠AOD=∠AOC+∠COD+∠BOC=∠AOC+∠BOD=90°+90°=180°,所以乙同学的观点正确;因为∠AOB+∠BOC=∠AOC=90°,∠BOC和∠COD不一定相等,所以丙同学的观点不正确;因为图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,共6个,所以丁同学的观点正确.故选D.6. 144°49′12″解析:因为∠A=35°10′48″,所以∠A的补角为180°-35°10′48″=144°49′12″.7. 66.5 解析:因为∠ECD=90°,∠ACB=180°,所以∠2+∠1=90°.因为∠1=23°30′,所以∠2=90°-23°30′=66°30′=66.5°.8. 270°解析:设∠2=x,则∠1=90°-x.由题意,得180°-(90°-x)+180°-x=270°.9. 解:设这个角为x°.由题意,得180-x+10=3(90-x),解得x=40.即这个角是40°,它的余角是50°,补角是140°.能力提升10. 解:(1)如图D4-3.3-2.图D4-3.3-2图D4-3.3-3(2)由∠AOD的补角是它的余角的3倍,得180°-∠AOD=3(90°-∠AOD),解得∠AOD=45°.如图D4-3.3-3,故渔船D在货轮O南偏东15°或北偏东75°方向上.11. 解:(1)直线ON平分∠AOC.理由如下:设ON的反向延长线为OD.因为OM平分∠BOC,∠BOC=120°,∠BOC=60°.所以∠MOC=∠MOB=12又因为∠MON=90°,所以∠BON=30°,所以∠CON=120°+30°=150°,所以∠COD=30°.又因为∠AOC=180°-∠BOC=60°,所以∠DOA=∠AOC-∠COD=30°,所以∠COD=∠AOD,所以OD平分∠AOC,即直线ON平分∠AOC.(2)由(1)可知,当ON绕点O沿逆时针方向旋转60°时,直线ON平分∠AOC,当ON绕点O沿逆时针方向旋转240°[即(1)中OD的位置]时,直线ON平分∠AOC.由题意,得6t=60或6t=240,解得t=10或t=40.(3)因为∠MON=90°,∠AOC=60°,所以∠A OM=90°-∠AON,∠NOC=60°-∠AON,所以∠AOM-∠NOC=(90°-∠AON)-(60°-∠AON)=30°.章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1. 下列第一行的四个图形,每个图形均是由四种简单的图形a,b,c,d(圆、直线、三角形、长方形)中的两种组成.例如,由a,b组成的图形记作a⊙b,那么由此可知,下列选项的图形,可以记作a ⊙d的是()2. 如图4-1,该几何体从正面看得到的平面图形是()图4-13. 对于直线AB、线段CD、射线EF,其中能相交的图是()4. 下列现象:(1)用两个钉子就可以把木条固定在墙上;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象是()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)5. 如图4-2,AB=12,C为AB的中点,点D在线段AC上,且AD∶CB=1∶3,则线段DB的长度为()图4-2A.4B.6C.8D.106. 已知线段AB和点P,如果PA+PB=AB,那么()A.P为AB的中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上7. 学校、书店、邮局在平面图上的标点分别是A,B,C,书店在学校的正东方向,邮局在学校的南偏西25°,那么平面图上的∠CAB 等于()A.25°B.65°C.115°D.155°8. 若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是()A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对图4-39. 如图4-3,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°C.∠BOE=2∠COD∠EOCD.∠AOD=1210. 如图4-4,OD⊥AB于点O,OC⊥OE,图中与∠AOC互补的角有()图4-4A.1个B.2个C.3个D.4个二、填空题(每小题4分,共32分)11.夏天,快速转动的电扇叶片,给我们一个完整的平面的感觉,说明_____.12.如图4-5,C,D是线段AB上的两点,若AC=4,CD=5,DB=3则图中所有线段长度的和是_____.图4-513.已知∠A=100°,那么∠A的补角是_____.14.时钟上3点40分时分针与时针夹角的度数为____.15.如图4-6,O在直线AB上,∠AOD=90°,∠COE=90°,则图中相等的锐角有_____对.图4-616.已知∠AOC和∠BOD都是直角,如果∠AOB=150°,那么∠COD的度数为_____.17.如图4-7,一个正方体的表面上分别写着连续的6个整数,且每两个相对面上的两个数的和都相等,则这6个整数的和为_____.图4-718.平面内有四个点A,B,C,D,过其中每两个点画直线可以画出的直线有_____.三、解答题(共58分)19.(8分)计算:(1)22°18′×5;(2)90°-57°23′27″.20.(8分)把图4-8的展开图和它们的立体图形连起来.图4-821.(10分)如图4-9,已知线段a,b,c,用圆规和直尺画图.(不用写作法,保留画图痕迹)(1)画线段AB,使得AB=a+b-c;(2)在直线AB外任取一点K,画射线AK和直线BK;(3)反向延长AK至点P,使AP=KA,画线段PB,比较所画图形中线段PA与BK长度的和与线段AB长度的大小.图4-922.(10分)如图4-10,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB,CD的中点E,F之间的距离是10 cm,求线段AB,CD的长度.图4-1023.(10分)如图4-11(1),已知直角三角形两直角边的长分别为3和4,斜边的长为5.(1)试计算该直角三角形斜边上的高;(2)按如图4-11(2),4-11(3),4-11(4)三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积.(结果保留π)图4-1124.(12分)如图4-12,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.图4-12答案一、1.A 解析:根据题意,知a代表长方形,d代表直线,所以记作a⊙d的图形是长方形和直线的组合.故选A.2. A3. B 解析:A.直线AB与线段CD不能相交,故此选项不符合题意;B.直线AB与射线EF能相交,故此选项符合题意;C.射线EF与线段CD不能相交,故此选项不符合题意;D.直线AB与射线EF不能相交,故此选项不符合题意.故选B.4. B 解析:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间,线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间,线段最短.故选B.5. D 解析:因为C为AB的中点,AB=12,所以AC=BC=12AB=12×12=6.因为AD∶CB=1∶3,所以AD=2,所以DB=AB-AD=12-2=10.故选D.6. B 解析:如图D4-1.因为PA+PB=AB,所以点P在线段AB上.故选B.图D4-17. C 解析:如图D4-2.由图可知,∠CAB=∠1+∠2=25°+90°=115°.故选C.图D4-28. B 解析:因为∠1=40.4°=40°24′,∠2=40°4′,所以∠1>∠2.故选B.9. B 解析:因为OD,OE分别是∠AOC,∠BOC的平分线,所以∠AOD=∠COD,∠EOC=∠BOE.又因为∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,所以∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.故选B.10. B 解析:根据题意,得(1)因为∠AOC+∠BOC=180°,所以∠BOC与∠AOC互补.(2)因为OD⊥AB,OC⊥OE,所以∠EOD+∠DOC=∠BOC+∠DOC=90°,所以∠EOD=∠BOC,所以∠AOC+∠EOD=180°,所以∠EOD与∠AOC互补,所以图中与∠AOC互补的角有2个.故选B.二、11.线动成面12. 41 解析:AD=AC+CD=9,AB=AC+CD+DB=12,CB=CD+DB=8,故题图中所有线段长度的和为AC+AD+AB+CD+CB+DB=41.13. 80°14. 130°解析:3点40分时分针与时针夹角的度数为30°×4+1=130°.315. 2 解析:因为∠AOD=90°,所以∠AOC+∠COD=90°.因为∠COE=90°,所以∠COD+∠DOE=90°,所以∠AOC=∠DOE.因为∠BOD=180°-∠AOD=90°,所以∠DOE+∠BOE=90°,所以∠BOE=∠COD.故图中相等的锐角有2对.16. 30°或150°解析:如图D4-3(1),因为∠BOD=90°,∠AOB=150°,所以∠AOD=60°.又因为∠AOC=90°,所以∠COD=30°.如图D4-3(2),因为∠BOD=90°,∠AOC=90°,∠AOB=150°,所以∠AOD=60°,所以∠COD=150°.综上所述,∠COD的度数为30°或150°.图D4-317. 51 解析:因为正方体的表面展开图,相对的面一定相隔一个正方形,所以6若不是最小的数,则6与9是相对面.因为6与9相邻,所以6是最小的数,所以这6个整数的和为6+7+8+9+10+11=51. 18. 1条、4条或6条解析:如果A,B,C,D四点在同一直线上,那么只能确定一条直线,如图D4-4(1);如果4个点中有3个点(不妨设点A,B,C)在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图D4-4(2);如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B,C,D确定3条直线,点B分别与点C,D确定2条直线,最后点C,D确定一条直线,这样共确定6条直线,如图D4-4(3).综上所述,过其中每2个点可以画1条、4条或6条直线.(1)(2)(3)图D4-4三、19.解:(1)22°18′×5=110°90′=111°30′.(2)90°-57°23′27″=32°36′33″.20. 解:如图D4-5.图D4-521. 分析:(1)首先作射线CE在射线CE上截取CD=a,BD=b,再在CB上截取AC=c,则可得出AB=a+b-c;(2)根据射线和直线的概念过点K即可作出;(3)根据AP=AK,利用两点之间线段最短即可得出答案.解:(1)如图D4-6(1).(2)如图D4-6(2).(1)(2)(3)图D4-6(3)如图D4-6(3).因为AP=KA,所以线段PA与BK长度的和大于线段AB的长度. 22. 解:设BD=x cm,则AB=3x cm,CD=4x cm,AC=6x cm.因为E,F分别为线段AB,CD的中点,所以AE=12AB=1.5x(cm),CF=12CD=2x(cm).所以EF=AC-AE-CF=6x-1.5x-2x=2.5x(cm). 因为EF=10 cm,所以2.5x=10,解得x=4. 所以AB=12 cm,CD=16 cm.23. 解:(1)三角形的面积为12×5h=12×3×4,解得h= 12/5.(2)在图4-11(2)中,所得立体图形的体积为13π×32×4=12π;在图4-11(3)中,所得立体图形的体积为13π×42×3=16π;在图4-11(4)中,所得立体图形的体积为13π×(125)2×5=485π.24. 解:(1)图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=1/2∠AOC=25°,∠BOC=180°-∠AOC=130°.所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE-∠DOC=90°-25°=65°.又因为∠BOE=∠BOD-∠DOE=155°-90°=65°,所以∠COE=∠BOE,即OE平分∠BOC.。
人教版初中七年级数学上册第四单元《几何图形初步》提高卷(含答案解析)(1)

一、选择题1.已知线段AB 、CD ,<AB CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( )A .点B 在线段CD 上(C 、D 之间) B .点B 与点D 重合C .点B 在线段CD 的延长线上D .点B 在线段DC 的延长线上 2.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ).A .点C 在线段AB 上B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定 3.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个C .3个D .4个 4.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个5.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°6.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .67.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A.20°B.30°C.10°D.15°8.已知:∠AOC=90°,∠AOB:∠AOC=2:3,则∠BOC的度数是()A.30°B.60°C.30°或60°D.30°或150°9.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.圆锥,正方体,三棱柱,圆柱10.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为()A.互余B.互补C.相等D.无法确定11.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是()A.8B.7C.6D.412.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°13.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q14.已知线段AB,在AB的延长线上取一点C,使25BC AC=,在AB的反向延长线上取一点D,使34DA AB=,则线段AD是线段CB的____倍A.98B.89C.32D.2315.在钟表上,1点30分时,时针与分针所成的角是( ).A.150°B.165°C.135°D.120°二、填空题16.如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠BOD =76°,则∠BOM 等于________.17.按照图填空:(1)图中以点0为端点的射线有______条,分别是____________.(2)图中以点B 为端点的线段有______条,分别是____________.(3)图中共有______条线段,分别是_____________.18.如图,已知OM 是AOC ∠的平分线,ON 平分BOC ∠.若120AOC ︒∠=,30BOC ︒∠=,则MON ∠=_________.19.钟表在8:30时,时针与分针所成角的度数为________,2:40时,时针与分针所成角的度数是_________.20.魏老师去农贸市场买菜时发现,若把10千克的菜放在秤上,则指针盘上的指针转了180︒,第二天魏老师请同学们回答以下两个问题:(1)若把0.5千克的菜放在秤上,则指针转过________度;(2)若指针转了243︒,则这些菜共有________千克.21.8点15分,时针与分针的夹角是______________。
(人教版)福州七年级数学上册第四章《几何图形初步》提高练习(答案解析)

(人教版)福州七年级数学上册第四章《几何图形初步》提高练习(答案解析)一、选择题1.下面四个图形中,能判断∠1>∠2的是()A.B.C.D. D解析:D【分析】根据图象,利用排除法求解.【详解】A.∠1与∠2是对顶角,相等,故本选项错误;B.根据图象,∠1<∠2,故本选项错误;C.∠1是锐角,∠2是直角,∠1<∠2,故本选项错误;D.∠1是三角形的一个外角,所以∠1>∠2,故本选项正确.故选D.【点睛】本题考查了学生识图能力和三角形的外角性质.2.如图.∠AOB=∠COD,则( )A.∠1>∠2 B.∠1=∠2C.∠1<∠2 D.∠1与∠2的大小无法比较B解析:B【解析】∵∠AOB=∠COD,∴∠AOB-∠BOD=∠COD-∠BOD,∴∠1=∠2;故选B.【点睛】考查了角的大小比较,培养了学生的推理能力.3.如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是()A .∠AOD+∠BOE=60°B .∠AOD=12∠EOC C .∠BOE=2∠CODD .∠DOE 的度数不能确定A解析:A【分析】 本题是对角的平分线的性质的考查,角平分线将角分成相等的两部分.结合选项得出正确结论.【详解】A 、∵OD 、OE 分别是∠AOC 、∠BOC 的平分线,∴∠BOE+∠AOD=∠EOC+∠DOC=∠DOE=12(∠BOC+∠AOC )=12∠AOB=60°. 故本选项叙述正确;B 、∵OD 是∠AOC 的角平分线,∴∠AOD=12∠AOC . 又∵OC 是∠AOB 内部任意一条射线,∴∠AOC=∠EOC 不一定成立.故本选项叙述错误;C 、∵OC 是∠AOB 内部任意一条射线,∴∠BOE=∠AOC 不一定成立,∴∠BOE=2∠COD 不一定成立.故本选项叙述错误;D 、∵OD 、OE 分别是∠AOC 、∠BOC 的平分线,∴∠DOE=12(∠BOC+∠AOC )=12∠AOB=60°. 故本选项叙述错误;故选A .【点睛】本题是对角平分线的性质的考查.然后根据角平分线定义得出所求角与已知角的关系转化求解.4.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等D解析:D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与β∠互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.5.已知:∠AOC =90°,∠AOB :∠AOC =2:3,则∠BOC 的度数是( )A .30°B .60°C .30°或60°D .30°或150°D 解析:D【分析】根据两角的比和两角的和即可求得两个角的度数.【详解】由∠AOC =90°,∠AOB :∠AOC =2:3,可得当B 在∠AOC 内侧时,可以知道∠AOB 23=⨯90°=60°,∠BOC =30°; 当B 在∠AOC 外侧时,∠BOC =150°.故选:D .【点睛】本题考查了三角形中角的求法,解题的关键是分两种情况讨论.6.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( )A .30°B .60°C .120°D .150°C 解析:C【分析】根据∠1的余角是∠2,并且∠1=2∠2求出∠1,再求∠1的补角.【详解】∵∠1的余角是∠2,∴∠1+∠2=90°,∵∠1=2∠2,∴2∠2+∠2=90°,∴∠2=30°,∴∠1=60°,∴∠1的补角为180°﹣60°=120°.故选:C .【点睛】本题考查了余角和补角,熟记概念并理清余角和补角的关系求解更简便.∠=∠的图形的个数是()7.如图,一副三角尺按不同的位置摆放,摆放位置中αβA.1B.2C.3D.4C解析:C【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.8.如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中,从A地到B地有三条水路、两条陆路,从B地到C地有4条陆路可供选择,走空中,从A地不经B地直线到C地,则从A地到C地可供选择的方案有( )A.10种B.20种C.21种D.626种C解析:C【分析】本题只需分别数出A到B、B到C、A到C的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.9.下列图形中,不可以作为一个正方体的展开图的是()A .B .C .D . C解析:C【解析】【分析】 利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A .可以作为一个正方体的展开图,B .可以作为一个正方体的展开图,C .不可以作为一个正方体的展开图,D .可以作为一个正方体的展开图,故选:C .【点睛】本题考查正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.10.线段10AB cm =,C 为直线AB 上的点,且2BC cm =,,M N 分别是,AC BC 中点,则MN 的长度是( )A .6cmB .5cm 或7cmC .5cmD .5cm 或6cm C 解析:C【分析】根据题意分两种情况,①C 为线段AB 延长线上的点,②C 为线段AB 上的点,利用中点的性质分别进行求解.【详解】如图1, ①C 为线段AB 延长线上的点,∵,M N 分别是,AC BC 中点,∴CM=12AC=12(AB+BC )=6cm, CN=12BC=1cm, ∴MN=CM-CN=5cm;如图2,②C 为线段AB 上的点,∵,M N 分别是,AC BC 中点,∴CM=12AC=12(AB-BC )=4cm, CN=12BC=1cm,∴MN=CM+CN=5cm;故选C.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.二、填空题11.长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)解析:几何体体面平曲【解析】【分析】几何体又称为体,包围着体的是面,分为平的面和曲的面两种【详解】长方体、四面体、圆柱、圆锥、球等都是几何体,几何体也简称为体,包围着体的是面,面有平面和曲面两种.故答案为:(1). 几何体(2). 体 (3). 面(4). 平(5). 曲【点睛】此题考查认识立体图形,解题关键在于掌握其性质定义.12.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm则长方形的宽为(14-2x)cm根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm 宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm,则长方形的宽为(14-2x)cm,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm,宽为6cm,长为8cm,长方形的体积为:8×6×4=192(cm3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.13.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE=11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.14.如图,点C ,M ,N 在线段AB 上,且M 是AC 的中点,CN :NB=1:2,若AC=12,MN=15,则线段AB 的长是_______.39【分析】根据中点的定义可求出MC的长根据MN=MC+CN 可得CN 的长根据CN :NB=1:2可求出NB 的长根据AB=AC+CN+NB 即可得答案【详解】∵M 是AC 的中点AC=12∴MC=AC=6∵M 解析:39【分析】根据中点的定义可求出MC 的长,根据MN=MC+CN 可得CN 的长,根据CN :NB=1:2,可求出NB 的长,根据AB=AC+CN+NB 即可得答案.【详解】∵M 是AC 的中点,AC=12,∴MC=12AC=6, ∵MN=MC+CN ,MN=15,∴CN=15-6=9,∵CN :NB=1:2,∴NB=18,∴AB=AC+CN+NB=12+9+18=39.故答案为39【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.15.如图所示,填空:(1)AOB AOC ∠=∠+_________;(2)COB COD ∠=∠-_________=_________-_________;(3)AOB COD AOD ∠+∠-∠=_________.∠BOC 【分析】根据图中各角的和与差的关系进行运算即可完成解答;【详解】(1);(2)=∠AOB-∠AOC (3)====∠BOC 【点睛】此题主要考查角的和差关系解答的关键在于在图形中寻找角的和差关系解析:BOC ∠ BOD ∠ AOB ∠ AOC ∠ ∠BOC【分析】根据图中各角的和与差的关系进行运算,即可完成解答;【详解】(1)AOB AOC ∠=∠+BOC ∠;(2)COB COD ∠=∠-BOD ∠=∠AOB-∠AOC(3)AOB COD AOD ∠+∠-∠=()AOB COD AOB BOD ∠+∠-∠+∠=AOB COD AOB BOD ∠+∠-∠-∠=COD BOD ∠-∠=∠BOC【点睛】此题主要考查角的和差关系,解答的关键在于在图形中寻找角的和差关系.16.如图是一个多面体的表面展开图,则折叠后与棱AB 重合的棱是________.BC 【分析】把展开图折叠成一个长方体找到与AB 重合的线段即可【详解】解:根据题意得:折叠后与棱AB 重合的棱是BC 故答案为BC 【点睛】本题考查了展开图折叠成几何体解决这类问题时不妨动手实际操作一下即可解析:BC【分析】把展开图折叠成一个长方体,找到与AB 重合的线段即可.【详解】解:根据题意得:折叠后与棱AB 重合的棱是BC .故答案为BC .【点睛】本题考查了展开图折叠成几何体,解决这类问题时,不妨动手实际操作一下,即可解决问题.17.乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A ,B 两站之间需要安排不同的车票________种.20【解析】【分析】本题需先求出AB 之间共有多少条线段根据线段的条数即可求出车票的种数【详解】设点CDE 是线段AB 上的三个点根据题意可得:图中共用=10条线段∵A 到B 与B 到A 车票不同∴从A 到B 的车票解析:20【解析】【分析】本题需先求出A 、B 之间共有多少条线段,根据线段的条数即可求出车票的种数.【详解】设点C、D、E是线段AB上的三个点,根据题意可得:图中共用()5152-⨯=10条线段∵A到B与B到A车票不同.∴从A到B的车票共有10×2=20种故答案为20.【点睛】本题主要考查了如何求线段的条数的问题,在解题时要注意线段的条数与车票种数的联系与区别.18.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.若3AC=,1CP=,则线段PN的长为________.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.19.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.3或4或6【分析】分三种情况下:①∠AOP =35°②∠AOP =20°③0<x <50中的其余角根据互余的定义找出图中互余的角即可求解【详解】①∠AOP =∠AOB=35°时∠BOP=35°∴互余的角有∠解析:3或4或6【分析】分三种情况下:①∠AOP =35°,②∠AOP =20°,③0<x <50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP =12∠AOB =35°时,∠BOP=35° ∴互余的角有∠AOP 与∠COP ,∠BOP 与∠COP ,∠AOB 与∠COB ,∠COD 与∠COB ,一共4对;②∠AOP =90°-∠AOB =20°时,∴互余的角有∠AOP 与∠COP ,∠AOP 与∠AOB ,∠AOP 与∠COD ,∠COD 与∠COB ,∠AOB 与∠COB ,∠COP 与∠COB ,一共6对;③0<x <50中35°与20°的其余角,互余的角有∠AOP 与∠COP ,∠AOB 与∠COB ,∠COD 与∠COB ,一共3对.则m =3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.20.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二解析:6【分析】根据从不同方位看到的图形的形状可知,该几何体有2列2行,底面有4个小正方体摆成大正方体,上面至少2个小正方体,放在靠前面的2个小正方体上面.由此解答.【详解】由题图可知,该几何体第一层有4个小正方体,第二层有2个小正方体,所以拼成这个几何体的小正方体的个数为6.故答案为:6.【点睛】本题主要考查从不同方向观察物体和几何体,关键注重培养学生的空间想象能力.三、解答题21.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 解析:7或3【分析】 求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =,12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.22.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.解析:(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.23.如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点.(1)若1AM =,4BC =,求MN 的长度.(2)若6AB =,求MN 的长度.解析:(1)3;(2)3.【分析】(1)由中点可得CN 和MC 的长,再由 MN=MC+CN 可求得MN 的长;(2)由已知可得AB 的长是NM 的2倍,已知AB 的长,可求得MN 的长度.【详解】解:(1)∵N 是BC 的中点,M 是AC 的中点,1AM =,4BC =,∴2CN =,1AM CM ==,∴3MN MC CN =+=.(2)∵M 是AC 的中点,N 是BC 的中点,6AB =,∴132NM MC CN AB =+==. 【点睛】本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.24.如图是由7个相同的小立方体组成的几何体,请画出从正面看、从左面看、从上面看的平面图形.解析:画图见详解.【分析】分别画出从正面看、左面看、上面看的图形,注意所有看到的棱都要表示到三视图中.【详解】如图所示:【点睛】本题主要考查了三视图的画法,所有看到的棱都要在三视图中表示出来是画图的关键. 25.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.解析:(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时: 11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.26.如图,A 、B 、C 三点在一条直线上,根据图形填空:(1)AC = + + ;(2)AB =AC ﹣ ;(3)DB+BC = ﹣AD(4)若AC =8cm ,D 是线段AC 中点,B 是线段DC 中点,求线段AB 的长.解析:(1)AD ,DB ,BC ;(2)BC ;(3)AC ;(4)6cm .【分析】(1)根据图形直观的得到线段之间的关系;(2)根据图形直观的得到线段之间的关系;(3)根据图形直观的得到各线段之间的关系;(4)AD 和CD 的长度相等并且都等于AC 的一半,DB 的长度为CD 长度的一半即为AC 长度的四分之一.AB 的长度等于AD 加上DB ,从而可求出AB 的长度.【详解】(1)AC =AD+DB+BC故答案为:AD ,DB ,BC ;(2)AB =AC ﹣BC ;故答案为:BC ;(3)DB+BC =DC=AC ﹣AD故答案为:AC ;(4)∵D 是AC 的中点,AC =8时,AD =DC =4B 是DC 的中点,∴DB =2∴AB =AD+DB=4+2,=6(cm ).【点睛】本题重点是根据题干中的图形得出各线段之间的关系,在第四问中考查了线段中点的性质.线段的中点将线段分成两个长度相等的线段.27.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.解析:40°【分析】根据3BOC AOB ∠=∠,40AOB ∠=︒求出120BOC ∠=︒,得到∠AOC 的度数,利用OD 平分AOC ∠,求出∠AOD 的度数,即可求出BOD ∠的度数.【详解】解:∵3BOC AOB ∠=∠,40AOB ∠=︒,∴120BOC ∠=︒.∵AOC AOB BOC ∠=∠+∠,40120=︒+︒,160=︒,又∵OD 平分AOC ∠, ∴1802AOD AOC ∠=∠=︒, ∴BOD AOD AOB ∠=∠-∠,8040=︒-︒,40=︒.【点睛】此题考查角度的和差计算,会看图明确各角之间的大小关系,注意角平分线的运用. 28.如图,已知线段a 和b ,直线AB 和CD 相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA ,OB ,OC 上作线段OA′,OB′,OC′,使它们分别与线段a 相等; (2)在射线OD 上作线段OD′,使OD′与线段b 相等;(3)连接A′C′,C′B′,B′D′,D′A′.解析:详见解析【解析】【分析】(1)以点O为圆心,a为半径作圆,分别交射线OA,OB,OC于A′、B′、C′;、(2)以点O为圆心,b为半径作圆,分别交射线OD,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.。
人教版数学七年级上册第4章【几何图形初步】同步单元提升训练(一)

【几何图形初步】同步单元提升训练(一)一.选择题1.如果一个角的补角是125°,那么这个角的余角的度数是()A.55°B.50°C.35°D.110°2.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,三棱锥,圆柱,正方体B.圆锥,四棱锥,圆柱,正方体C.圆锥,四棱柱,圆柱,正方体D.圆锥,三棱柱,圆柱,正方体3.一个底面是正方形的长方体,高为6厘米,底面正方形边长为5厘米.如果它的高不变,底面正方形的边长增加了a厘米,那么它的体积增加了()立方厘米.A.60a+6a2B.6a2C.25a+6a2D.60a+25a24.如图,轮船航行到B处观测小岛A的方向是北偏西32°,那么小岛A观测到轮船B的方向是()A.南偏西32°B.南偏东32°C.南偏西58°D.南偏东58°5.如图,从A地到B地有四条路线,由上到下依次记为路线①、②、③、④,则从A地到B地的最短路线是路线()A.①B.②C.③D.④6.已知线段AB、CD,AB<CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是()A.点B在线段CD上(C、D之间)B.点B与点D重合C.点B在线段CD的延长线上D.点B在线段DC的延长线上7.下列说法:①0是绝对值最小的有理数;②一个数的绝对值越大,表示它的点在数轴上离原点越远;③等角的补角相等;④两点之间线段最短.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,在△ABC中,以点A为圆心,AC的长为半径作弧,与BC交于点E,分别以点E,C为圆心,大于EC的长为半径作弧,两弧相交于点P,作射线AP交BC于点D.若∠B=45°,∠C=2∠CAD,则∠BAC的度数为()A.80°B.75°C.65°D.30°9.如图,一个大长方形恰好被分割成四个正方形,则涂色的小正方形面积是整个长方形面积的()A.B.C.D.10.如图∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=()A.15°B.45°C.15°或30°D.15°或45°二.填空题11.若一个六棱柱,则它有条棱,有个面.12.若一个直四棱柱的底面是边长为2cm的正方形,侧棱长为4cm,则这个直四棱柱的所有棱长之和是cm.13.若两个角互补,且度数之比为3:2,求较大角度数为.14.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.15.如图,是一个正方体的展开图,如果正方体相对的面上标注的值相等,则y2x=.三.解答题16.如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=,c=.(2)求代数式的值:a2﹣|a﹣b|+|b+c|.17.如图,线段AB=8cm,C是线段AB上一点,M是AB的中点,N是AC的中点.(1)AC=3cm,求线段CM、NM的长;(2)若线段AC=m,线段BC=n,求MN的长度(m<n用含m,n的代数式表示).18.已知:如图1,OB、OC分别为锐角∠AOD内部的两条动射线,当OB、OC运动到如图的位置时,∠AOC+∠BOD=100°,∠AOB+∠COD=40°,(1)求∠BOC的度数;(2)如图2,射线OM、ON分别为∠AOB、∠COD的平分线,求∠MON的度数.(3)如图3,若OE、OF是∠AOD外部的两条射线,且∠EOB=∠COF=90°,OP平分∠EOD,OQ平分∠AOF,当∠BOC绕着点O旋转时,∠POQ的大小是否会发生变化,若不变,求出其度数,若变化,说明理由.19.在一个圆柱形水桶里,垂直放入一段半径是3cm的圆柱形钢材.如果把钢材全部侵入水中,桶里的水面上升10cm;如果再把钢材垂直露出水面6cm,桶里的水面下降4cm.(π取3.14)(1)整段钢材的体积是多少?(2)若把整段钢材全部用来锻造底面直径为2cm,高为3cm的圆锥形零件,一共可以锻造多少个这样的圆锥形零件?(假定锻造过程中无任何损耗)20.如图,C是线段AB上一点,AC=5cm,点P从点A出发沿AB以3cm/s的速度匀速向点B运动,点Q从点C出发沿CB以1cm/s的速度匀速向点B运动,两点同时出发,结果点P比点Q先到3s.(1)求AB的长;(2)设点P、Q出发时间为ts,①求点P与点Q重合时(未到达点B),t的值;②直接写出点P与点Q相距2cm时,t的值.。
人教版 七年级数学上册 第4章 几何图形初步 同步综合训练

人教版七年级数学上册第4章几何图形初步同步综合训练一、选择题(本大题共10道小题)1. 下列四个几何体中,是三棱柱的为()2. 经过同一平面内A,B,C三点可连接直线的条数为()A.一条B.三条C.三条或一条D.不能确定3. 如图所示的几何体,从上面看得到的平面图形是()4. [2018·河南]某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我5. 图中的几何体的面数是()A.5B.6C.7D.86. 如图,对于直线AB,线段CD,射线EF,其中能相交的是()7. 如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B8. 如图0,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是()A.∠AOD>∠BOCB.∠AOD<∠BOCC.∠AOD=∠BOCD.无法确定9. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB10. 图(1)(2)中所有的正方形完全相同,将图(1)的正方形放在图(2)中①②③④的某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④二、填空题(本大题共7道小题)11. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:(1)______;(2)______;(3)__________;(4)________.12. 已知∠A=100°,那么∠A的补角为________度.13. 如图所示的几何体由个面围成,面与面相交成条线.14. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.15. 如图所示的8个立体图形中,是柱体的有,是锥体的有,是球的有.(填序号)16. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.17. 图中可用字母表示出的射线有条.三、解答题(本大题共4道小题)18. 如图,是长方体的展开图,将其折叠成一个长方体,那么:(1)与点N重合的点是哪几个?(2)若AG=CK=14 cm,FG=2 cm,LK=5 cm,则该长方体的表面积和体积分别是多少?图19. 计算:(1)48°39'+67°31'; (2)78°-47°34'56″;(3)22°16'×5; (4)42°15'÷5.20. 如图,∠EDC=∠CDF=90°,∠1=∠2.(1)图中哪些角互为余角,哪些角互为补角?(2)∠ADF与∠BDE有什么数量关系?∠ADC与∠BDC有什么数量关系?为什么?21. 已知M是线段AB上一点,点C在线段AM上,点D在线段BM上,C,D 两点分别同时从点M,B出发,以1 cm/s,3 cm/s的速度沿直线BA向左运动.(1)若AB=10 cm,当点C,D运动了2 s时,点C,D的位置如图0①所示,求AC+MD的值;(2)若点C,D在没有运动到点A和点M前,总有MD=3AC,试说明此时有AM=AB;(3)如图②,若AM=AB,N是直线AB上一点,且AN-BN=MN,求的值.人教版七年级数学上册第4章几何图形初步同步综合训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】C3. 【答案】C4. 【答案】D5. 【答案】B[解析] 图中几何体是五棱锥,有5个侧面和1个底面,共有6个面.6. 【答案】B7. 【答案】B8. 【答案】C9. 【答案】B10. 【答案】A二、填空题(本大题共7道小题)11. 【答案】(1)圆柱(2)圆锥(3)圆柱、圆锥的组合体(4)球[解析] 立体图形实际上是由物体抽象得来的.12. 【答案】80【解析】用180度减去已知角,就得这个角的补角.即∠A的补角为:180°-100°=80°.13. 【答案】4614. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同15. 【答案】①②⑤⑦⑧④⑥③16. 【答案】90[解析] 因为∠2=105°,所以∠BOC=180°-∠2=75°,所以∠AOC=∠1+∠BOC=15°+75°=90°.17. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.三、解答题(本大题共4道小题)18. 【答案】解:(1)与点N重合的点是点H,J.(2)由AG=CK=14 cm,LK=5 cm,可得CL=CK-LK=14-5=9(cm),所以长方体的表面积为2×(9×5+2×5+2×9)=146(cm2),体积为5×9×2=90(cm3).19. 【答案】解:(1)48°39'+67°31'=116°10'.(2)78°-47°34'56″=30°25'4″.(3)22°16'×5=111°20'.(4)42°15'÷5=8°27'.20. 【答案】解:(1)因为∠EDC=∠CDF=90°,∠1=∠2,所以∠1和∠ADC,∠1和∠BDC,∠2和∠ADC,∠2和∠BDC互为余角;∠1和∠ADF,∠2和∠ADF,∠EDC和∠CDF,∠2和∠BDE,∠1和∠BDE 互为补角.(2)∠ADF=∠BDE,∠ADC=∠BDC.理由:因为∠1=∠2,∠1+∠ADF=180°,∠2+∠BDE=180°,所以∠ADF=∠BDE.因为∠EDC=∠CDF=90°,所以∠1+∠ADC=90°,∠2+∠BDC=90°.又因为∠1=∠2,所以∠ADC=∠BDC.21. 【答案】解:(1)当点C,D运动了2 s时,CM=2 cm,BD=6 cm.因为AB=10 cm,所以AC+MD=AB-CM-BD=10-2-6=2(cm).(2)因为C,D两点的速度分别为1 cm/s,3 cm/s,所以当运动时间为t s时,BD=3t cm,CM=t cm.又因为MD=3AC,所以BD+MD=3t+3AC=3(CM+AC),即BM=3AM,所以AM=AB.(3)分以下两种情况讨论:①若点N在线段AB上,如图(a)所示:因为AN-BN=MN,且AN-AM=MN,所以BN=AM=AB.所以MN=AB,即=.②若点N在线段AB的延长线上,如图(b)所示:因为AN-BN=MN,AN-BN=AB,所以MN=AB,即=1.综上所述,的值为或1.。
人教版 七年级数学上册 第4章 几何图形初步 同步训练(含答案)

人教版七年级数学第4章几何图形初步同步训练一、选择题(本大题共10道小题)1. 由一些完全相同的小正方体搭成的立体图形,从上面看和从左面看所得的平面图形如图所示,则搭成这个立体图形的小正方体的个数是()A.5或6或7 B.6或7C.6或7或8 D.7或8或92. 粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线3. 如图所示的几何体,从上面看得到的平面图形是()4. 如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B5. 下列说法错误的是()A.图①中直线l经过点AB.图②中直线a,b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点6. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是()7. 由一些完全相同的小正方体搭成的立体图形,从正面、左面、上面看得到的平面图形如图所示,则这个立体图形是图中的()8. 下列四个图形中,是三棱锥的展开图的是 ()9. 已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°10. 如图0,将一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A.①B.②C.③D.④二、填空题(本大题共7道小题)11. (1)将度化为度、分、秒的形式:1.45°=;(2)2700″=°.12. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.13. 如图所示是某几何体的展开图,那么这个几何体是.14. 线段AB被依次分成2∶3∶4的三部分,第一部分和第三部分的中点的距离为4.2 cm,则最长的一部分的长为cm.15. 如果一个角是60°,用放大镜放大到原来的10倍再观察这个角,那么这个角的度数应是.16. 如图,把下列实物图和与其对应的立体图形连接起来.17. 如图4,O是直线AB上的一点,OC,OD,OE是从点O引出的三条射线,且∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,则∠5=°.三、解答题(本大题共4道小题)18. 如图,一条直线上依次有A,B,C,D四点,C为AD的中点,BC-AB=AD,求BC是AB的多少倍.19. 如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC的度数.20. 计算:(1)48°39'+67°31'; (2)78°-47°34'56″;(3)22°16'×5; (4)42°15'÷5.21. 如图,已知∠AOD=150°.(1)如图(a),∠AOC=∠BOD=90°,则∠BOC的余角是°,∠BOC=°.(2)如图(b),已知∠AOB与∠BOC互为余角.①若OB平分∠AOD,求∠BOC的度数;②若∠COD是∠BOC的4倍,求∠BOC的度数.人教版七年级数学第4章几何图形初步同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】C4. 【答案】B5. 【答案】C6. 【答案】B7. 【答案】A8. 【答案】A9. 【答案】C[解析] 如图,若OC在∠AOB内部,则∠BOC1=∠AOB-∠AOC1=70°-42°=28°;若OC在∠AOB外部,则∠BOC2=∠AOB+∠AOC2=70°+42°=112°.10. 【答案】A二、填空题(本大题共7道小题)11. 【答案】(1)1°27'(2)0.7512. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同13. 【答案】圆柱14. 【答案】2.8[解析] 设第一部分的长为2x cm.由题意,得x+3x+2x=4.2,解得x=0.7,所以4x=2.8.15. 【答案】60°[解析] 用放大镜观察角不会改变角的大小,所以这个角的度数应是60°.16. 【答案】①-C,②-B,③-D,④-E,⑤-A连线略17. 【答案】60[解析] 设∠1=x°,则∠2=2x°,∠3=3x°.依题意,得x+2x+3x=180,解得x=30,所以∠4=4x°=120°,∠5=180°-120°=60°.三、解答题(本大题共4道小题)18. 【答案】解:因为C为AD的中点,所以AC=AD,即AB+BC=AD.所以2AB+2BC=AD.又因为BC-AB=AD,所以4BC-4AB=AD.所以2AB+2BC=4BC-4AB,即BC=3AB.故BC是AB的3倍.19. 【答案】解:因为OE平分∠AOB,OF平分∠BOC,所以∠BOE=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC.因为∠BOF=∠EOF-∠BOE=60°-45°=15°,所以∠BOC=2∠BOF=30°.所以∠AOC=∠BOC+∠AOB=30°+90°=120°.20. 【答案】解:(1)48°39'+67°31'=116°10'.(2)78°-47°34'56″=30°25'4″.(3)22°16'×5=111°20'.(4)42°15'÷5=8°27'.21. 【答案】解:(1)因为∠AOC=∠BOD=90°,所以∠BOC+∠AOB=90°,∠BOC+∠COD=90°.所以∠BOC的余角是∠AOB和∠COD.因为∠AOD=150°,∠AOC=90°,所以∠COD=60°.因为∠BOD=90°,所以∠BOC=30°.故答案为60,30.(2)①因为∠AOB与∠BOC互为余角,所以∠AOC=∠AOB+∠BOC=90°.因为OB平分∠AOD,所以∠AOB=∠AOD=×150°=75°.所以∠BOC=∠AOC-∠AOB=90°-75°=15°.②由①知∠AOC=90°.因为∠COD=∠AOD-∠AOC=150°-90°=60°,且∠COD是∠BOC的4倍,所以∠BOC=15°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【几何图形初步】同步提升训练
一.选择题
1.下列图形中,不可以作为一个正方体的展开图的是()
A.B.C.D.
2.对如图所示几何体的认识正确的是()
A.棱柱的底面是四边形B.棱柱的侧面是三角形
C.几何体是四棱柱D.棱柱的底面是三角形
3.延长线段AB到C,使BC=AB,若AC=15,点D为线段AC的中点,则BD的长为()A.4.5B.3.5C.2.5D.1.5
4.如图1,A,B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小,图2中所示的C点即为所求的码头的位置,那么这样做的理由是()
A.两直线相交只有一个交点
B.两点确定一条直线
C.两点之间,线段最短
D.经过一点有无数条直线
5.已知线段AB=9,点C是AB的中点,点D是AB的三等分点,则C,D两点间距离为()
A.3B.1.5C.1.2D.1
6.如图,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD ⊥MN于点D,下列结论错误的是()
A.AD+BC=AB B.与∠CBO互余的角有两个
C.∠AOB=90°D.点O是CD的中点
7.如图,A点在B点的北偏东40°方向,C点在B点的北偏东75°方向,A点在C点的北偏西50°方向,则∠BAC的度数是()
A.85°B.80°C.90°D.95°
8.如图,一张长方形硬纸片的长为12厘米,宽为10厘米,将它的四角各剪下一个边长为x厘米的正方形(阴影部分),然后沿虚线将Ⅰ、Ⅱ、Ⅲ、Ⅳ这四个部分折起,构成一个无盖的长方体纸盒,这个纸盒的体积是()
A.(12﹣x)(10﹣x)B.x(12﹣x)(10﹣x)
C.(12﹣2x)(10﹣2x)D.x(12﹣2x)(10﹣2x)
9.如图是一个正方体的表面展开图,则这个正方体是()
A.B.C.D.
10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.
步骤1:以C为圆心,CA为半径画弧①;
步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;
步骤3:连接AD,交BC延长线于点H.
下列叙述正确的是()
A.AB=AD B.BH⊥AD
C.S△ABC=BC•AH D.AC平分∠BAD
二.填空题
11.48°39′的余角是.
12.如图是正方体展开图,相对面上的数字为一对相反数,则a﹣(b﹣c)的值为.
13.往返于甲、乙两地的列车,中途需要停靠4个车站,如果每两站的路程都不相同,问:
(1)这两地之间有种不同的票价;
(2)要准备种不同的车票.
14.已知M是线段AB的中点,AM=6cm,则AB=cm.15.设三棱柱有a个面,b条棱,c个顶点,则a﹣b﹣c=.三.解答题
16.如图,C、D是线段AB上的点,AD=7cm,CB=7cm.(1)线段AC与BD相等吗?请说明理由.
(2)如果M是CD的中点,MD=2cm,求线段AB的长.
17.(1)计算:(﹣2)2﹣|﹣6|+2﹣3×(﹣);
(2)计算:(﹣3)2﹣(1)2×﹣6÷|﹣|;
(3)已知:∠β=41°31′,求:∠β的余角的度数.
18.如图所示是一张铁皮.
(1)计算该铁皮的面积;
(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.
19.线段与角的计算.
(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB的中点,求DE的长.
(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON 平分∠DOB,且∠MON=90°,求∠AOB的度数.
20.学习《乘法公式》时可以发现:用两种不同的方法表示同一个图形的面积,可以得到一个等式,进而可以利用得到的等式解决问题.
(1)如图1,是由边长为a、b的正方形和长为a、宽为b的长方形拼成的大长方形,由图1可得等式:;
(2)知识迁移:
①如图2,是用2个小正方体和6个小长方体拼成的一个大正方体,类比(1),用不同的方法
表示这个大正方体的体积,可得等式:;
②已知a+b=7,a2b=48,ab2=36,利用①中所得等式,求代数式a3+b3的值.。