四阶行列式的一种展开法1解读

四阶行列式的一种展开法1解读
四阶行列式的一种展开法1解读

四阶行列式的一种展开法正文

四阶行列式的一种展开法

笔者通过学习与使用行列式的运算,从中悟出四阶行列式的一种展开法,此法只适宜对四阶行列式展开而言。

四阶行列式的计算,通常是在讲授了行列式的性质后,采取降阶的方法进行计算,难免计算的繁杂,有时,按以下介绍的方法,仍能达到快而准的效果。具体方法如下:

四阶行列式:

a11

D4

a21a31a41

a12a22a32a42

a13a23a33a43

a14a24a34a44

第一次将该行列式前三列重复书写在该行列式的右边,可在前四列中作出两条对角线,然后在此七列中作出相应的平行线,可得(图表一):

a11a12a21a31a41a42a13a43

a14 44

a11a12224142a13a23a33(图表一)

作乘积关系,可得如下八项:

a11a22a33a44,a12a23a34a41,a13a24a31a42,a14a21a32a43,a41a32a23a14,a42a33a24a 11,a43a34a21a12,a44a31a22a13, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号是正负相间的。

a11a12a21a31a41a42aa43

(图表二)

a44a11a12224142a13a23a3343

同前理可得如下八项:

a11a23a34a42,a13a24a32a41,a14a22a31a43,a12a21a33a44,a41a33a24a12,a43a34a22a 11,a14a32a21a13,a42a31a23a14, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号仍是正负相间的。

第三次先将图表二中的第2、3、4列作一个轮换,即第2列变到第4列上去,第3列变到第2列上去,第4列变到第3列上去,这样可得到一个新的四列关系,尔后参照第一次的作法,可得图表三:

a21a313241a42a43a1444a11a12224142a13a23a33 1

四阶行列式的一种展开法正文

(图表三)

同前理可得如下八项:

a11a24a32a43,a14a22a33a41,a12a23a31a44,a13a21a34a42,a41a34a22a13,a44a32a23a 11,a42a33a21a14,a43a31a24a12, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号仍是正负相间的。

综合三次变形,其符号确定方法,可得四阶行列式的及展开如下:

D4=a11a22a33a44-a12a23a34a41+a13a24a31a42-a14a21a32a43+a41a32a23a14-

a42a33a24a11

+a43a34a21a12-a44a31a22a13+a11a23a34a42-a13a24a32a41+a14a22a31a43-

a12a21a33a44

+a41a33a24a12-a43a34a22a11+a14a32a21a13-a42a31a23a14+a11a24a32a43-

a14a22a33a41

+a12a23a31a44-a13a21a34a42+a41a34a22a13-a44a32a23a11+a42a33a21a14-

a43a31a24a12

四阶行列式的展开式共有24项,全如上面所述结论式。

下面将从三个方面进行证明。

证明:

一、前述展开四阶行列式的结论中的每一项,均由四阶行列式中的元素组成,而且四个元素取自不同的排列。由于每次排列的各列中,相邻4列始终没有相同的列,所以,组成每项的元素绝对不会相同。即满足行列式的展开项的特征。

二、由所作出的对角线关系可知,在每一次所得的乘积中,每一个元素只能有两条线经过,所以,一个元素只能在两个乘积中出现,共作三次图表。所以只能得六项含有该元素,在n阶行列式中,当首选某一个元素为某一展开项中的元素时,其余元素的选择只能从余下的n-1阶子式中去选择n-1个元素组成该项,方法有(n-1)!种。对于四阶行列式而言,且有(4-1)!=6种,所以该展开法符合上述原则。

三、按上述三次所作的展开项中,每一项的行标的排列应为1234或4321,此二排列的逆序数为0和6,均为偶数,所以每一项的符号全由列标排列的逆序数确定,第一次所得的第一项的列标为1234,其逆序数为零,所以,该项前应冠以正号。而第二项恰为将1234作一次向前的轮换而得的2341,由于是4个元素参与轮换,相当于作3次置换,逆序数发生改变,并由前偶数变为现今的奇数,所以,第二项前应冠以负号。第三项又是对第二项的列标作一轮换而得到的列标,因此,就在该项前冠以正号,依此类推,前八项的符号为+,-,+,-,+,-,+,-,由于第二次与第二次所作的图表是在前一次的基础之上将234列作一轮换,而3个元素作一轮换相当于向前置换两次,逆序数的奇偶特性未发生改变,所以它们所得八项

的符号仍与第一次一样为正负相间的。因此,展开式的第一项为正,第二项为负,第三项为正,第四项为负,依此下去,各项符号是正负相间的。

下面举例说明。

例1:计算四阶行列式:

四阶行列式的一种展开法正文

01D4=

11

解:D4=-1+1-1+1-1+1-1-1-1=-3 例2:计算四阶行列式:

1011110111 10

73D4=

55

展开图表如下:

6546373572 54

766337535655

(例题2图表一)

773732555554

(例题2图表二)

777635545446

(例题2图表三)

解:

D4=7?6?3?4-6?7?5?5+3?2?5?6-7?3?4?5+5?4?7?7-6?3?2?7 +5?5?3?6-4?5?5?3+7?7?5?6-

3?2?4?5+7?5?5?5-6?3?3?4 +5?3?2?6-5?5?5?7+4?4?3?3-6?5?7?7+7?2?4?5-7?5?3?5 +6?7?5?4-

3?3?5?6+5?5?5?3-4?4?7?7+6?3?3?7-5?5?2?6 =420-1056+180-420+980-252+450-300+1470-120+875-216+180-875+144 -1470+280-525+840-270+375-784+378-300 =-10

例3:计算四阶行列式:

四阶行列式的一种展开法正文

2-5433-475

D4=

4-985-32-5-3

展开图表如下:

34-3734

-22524478-5353

-5-2(例题3图表一)

--334

353235-4-9

(例题3图表二)

-2

-3

解:

(例题3图表三)

D4=2?(-4)?8?3-(-5)?7?5?(-3)+4?5?4?2-3?3?(-9)?(-5)+(-3)?(-9)?7?5 -2?8?5?2+(-5)?5?3?(-5)-

3?4?(-4)?4+2?7?5?2-4?5?(-9)?(-3) +3?(-4)?4?(-5)-(-5)?3?8?3+(-3)?8?5?(-5)-(-5)?5?(-4)?2+3?(-9)3?4 -2?4?7?3+2?5?(-9)?5-3?(-4)?8?(-3)+(-5)?7?4?3-4?3?5?2 +(-3)?5?(-4)?4-3?(-

9)?7?2+2?8?3?3-5?4?5?(-5)

=-192-525+160-405+567-160+375+192+140-540+240+360+600-200-324 -168-430-288-420-120+240+378+144+500 =4

通过以上三例说明,该展开式简单易学,在未学习行列式性质之前,也能计算四阶行列式并加以应用。此法容易记忆,很快地掌握四阶行列式的计算方法。今作此文,方便计算四阶行列式时,减少繁杂的运算,提高运算速度。但是五阶以上的行列式不能用此法,因为元素多,排列种数(全排列)增大,不可能用此简便的方法,将所给元素进行全排列。

2009年8月于水城

行列式的计算技巧与方法总结(修改版)

行列式的若干计算技巧与方法内容摘要 1. 行列式的性质 2.行列式计算的几种常见技巧和方法 定义法 利用行列式的性质 降阶法 升阶法(加边法) 数学归纳法 递推法 3. 行列式计算的几种特殊技巧和方法 拆行(列)法 构造法 特征值法

4. 几类特殊行列式的计算技巧和方法三角形行列式 “爪”字型行列式 “么”字型行列式 “两线”型行列式 “三对角”型行列式 范德蒙德行列式 5. 行列式的计算方法的综合运用 降阶法和递推法 逐行相加减和套用范德蒙德行列式构造法和套用范德蒙德行列式

行列式的性质 性质1 行列互换,行列式不变.即 nn a a a a a a a a a a a a a a a a a a n 2n 1n2 2212n12111 nn n2 n1 2n 22211n 1211= . 性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即 =nn n2 n1 in i2i1n 11211k k k a a a a a a a a a k nn a a a a a a a a a n2 n1in i2i1 n 112 11. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即 11 12 111 12111 121112212 121 2 12 1 2 .n n n n n n n n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a +++=+ 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那

四阶行列式的一种展开法1解读

四阶行列式的一种展开法正文 四阶行列式的一种展开法 笔者通过学习与使用行列式的运算,从中悟出四阶行列式的一种展开法,此法只适宜对四阶行列式展开而言。 四阶行列式的计算,通常是在讲授了行列式的性质后,采取降阶的方法进行计算,难免计算的繁杂,有时,按以下介绍的方法,仍能达到快而准的效果。具体方法如下: 四阶行列式: a11 D4 a21a31a41 a12a22a32a42 a13a23a33a43 a14a24a34a44 第一次将该行列式前三列重复书写在该行列式的右边,可在前四列中作出两条对角线,然后在此七列中作出相应的平行线,可得(图表一): a11a12a21a31a41a42a13a43 a14 44 a11a12224142a13a23a33(图表一) 作乘积关系,可得如下八项: a11a22a33a44,a12a23a34a41,a13a24a31a42,a14a21a32a43,a41a32a23a14,a42a33a24a 11,a43a34a21a12,a44a31a22a13, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号是正负相间的。 a11a12a21a31a41a42aa43 (图表二) a44a11a12224142a13a23a3343 同前理可得如下八项: a11a23a34a42,a13a24a32a41,a14a22a31a43,a12a21a33a44,a41a33a24a12,a43a34a22a 11,a14a32a21a13,a42a31a23a14, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号仍是正负相间的。 第三次先将图表二中的第2、3、4列作一个轮换,即第2列变到第4列上去,第3列变到第2列上去,第4列变到第3列上去,这样可得到一个新的四列关系,尔后参照第一次的作法,可得图表三: a21a313241a42a43a1444a11a12224142a13a23a33 1 四阶行列式的一种展开法正文

三阶行列式展开

9.4(2)三阶行列式按一行(或一列)展开 一、教学内容分析 三阶行列式按一行(或一列)展开是三阶行列式计算的另外一种法则,学习这种法则有助于学生更好地理解二阶行列式、三阶行列式的内在联系,同时这个法则也是较复杂的行列式计算的常用方法,这个法则更是蕴涵了数学问题研究过程中将复杂问题转化为简单问题的研究方法.本节课的教学内容主要围绕代数余子式的符号的确定研究三阶行列式按一行(或一列)展开法则. 二、教学目标设计 ⑴ 掌握余子式、代数余子式的概念; ⑵ 经历实验、分析的数学探究,逐步归纳和掌握代数余子式的符号的确定方法和三阶行列式按一行(或一列)展开方法,体验研究数学的一般方法; (3)体会用简单(二阶行列式)刻画复杂(三阶行列式)、将复杂问题简单化的数学思想. 三、教学重点及难点 三阶行列式按一行(或一列)展开、代数余子式的符号的确定. 四、教学过程设计 一、情景引入 【实验探究1】 (1)将下列行列式按对角线展开: 223 3 b c b c =_______________ 223 3 a b a b =_______________ 2233 a c a c =_______________ 1 1 33 b c b c =_______________ 11 2 2 b c b c =_______________ 111 2223 3 3 a b c a b c a b c =_______________ (2)对比、分析以上几个行列式的展开式,你能将三阶行列式 111 2223 3 3 a b c a b c a b c 表示成含有几个二阶行列式运算的式子吗? [说明]

n阶行列式的计算方法

n 阶行列式的计算方法 徐亮 (西北师大学数信学院数学系 , 730070 ) 摘 要:本文归纳总结了n 阶行列式的几种常用的行之有效的计算方法,并举列说明了它们的应运. 关键词:行列式,三角行列式,递推法,升降阶法,得蒙行列式 The Calculating Method of the N-order Determinant Xu Liang (College o f M athematics and Information Scien ce ,North west Normal Uni versit y , Lanzhou 730070,Gansu ,Chin a ) Abstract:This paper introduces some common and effective calculating methods of the n-order determinant by means of examples. Key words: determinant; triangulaire determinant; up and down order; vandermonde determinant 行列式是讨论线形方程组理论的一个有力工具,在数学的许多分支中都有这极为广泛的应用,是一种不可缺少的运算工具,它是研究线性方程组,矩阵,特征多项式等问题的基础,熟练掌握行列式的计算是非常必要的.行列式的计算问题多种多样,灵活多变,需要有较强的技巧.现介绍总结的计算n 阶行列式的几种常用方法. 1. 定义法 应用n 阶行列式的定义计算其值的方法,称为定义法. 根据定义,我们知道n 阶行列式 12121211 12121222() 1212(1)n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a π= -∑ L L L L L M M L M L .

行列式的计算方法

专题讲座五行列式的计算方法 1.递推法 例1求行列式的值: (1) 的构造是:主对角线元全为;主对角线上方第一条次对角线的元全为,下方 第一条次对角线的元全为1,其余元全为0;即为三对角线型。又右下角的(n)表示行列式为n阶。 解把类似于,但为k阶的三对角线型行列式记为。 把(1)的行列式按第一列展开,有两项,一项是 另一项是 上面的行列式再按第一行展开,得乘一个n– 2 阶行列式,这个n– 2 阶行列式和原行列式的构造相同,于是有递推关系: (2) 移项,提取公因子β: 类似地: (递推计算) 直接计算

若;否则,除以后移项: 再一次用递推计算: ∴,当β≠α(3) 当β = α,从 从而。 由(3)式,若。 ∴ 注递推式(2)通常称为常系数齐次二阶线性差分方程. 注1仿照例1的讨论,三对角线型的n阶行列式

(3) 和三对角线型行列式 (4) 有相同的递推关系式 (5) (6) 注意 两个序列 和 的起始值相同,递推关系式(5)和(6)的构造也相同,故必有 由(4)式,的每一行都能提出一个因子a,故等于乘一个n阶行列式,这一个行列式就是例1的。前面算出,故 例2 计算n阶范德蒙行列式行列式 解:

即n阶范德蒙行列式等于这n个数的所有可能的差的乘积 2.拆元法 例3:计算行列式 解

①×(x + a) ②×(x – a)

3.加边法 例4计算行列式 分析:这个行列式的特点是除对角线外,各列元素分别相同.根据这一特点,可采用加边法. 解 4.数学归结法 例5计算行列式 解: 猜测: 证明 (1)n = 1, 2, 3 时,命题成立。假设n≤k– 1 时命题成立,考察n=k的情形:

#线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 0010020010000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式 n ij D a =的元素满足 ,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j i a a =-知i i i i a a =-,即 0,1,2, ,ii a i n ==

故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)0 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。 因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a = 解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,

行列式的计算技巧与方法总结

行列式的若干计算技巧与方法 内容摘要 1. 行列式的性质 2.行列式计算的几种常见技巧和方法 定义法 利用行列式的性质 降阶法 升阶法(加边法) 数学归纳法 递推法 3. 行列式计算的几种特殊技巧和方法 拆行(列)法 构造法 特征值法 4. 几类特殊行列式的计算技巧和方法 三角形行列式 “爪”字型行列式 “么”字型行列式 “两线”型行列式 “三对角”型行列式 范德蒙德行列式 5. 行列式的计算方法的综合运用 降阶法和递推法 逐行相加减和套用范德蒙德行列式 构造法和套用范德蒙德行列式

行列式的性质 性质1 行列互换,行列式不变.即 nn a a a a a a a a a a a a a a a a a a n 2n 1n2 2212n12111nn n2n12n 2221 1n 1211 . 性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即 nn n2 n1in i2i1n 11211 k k k a a a a a a a a a k nn a a a a a a a a a n2n1in i2i1n 11211. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即 111211112111121112212121 2 1212.n n n n n n n n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a K K K M M M M M M M M M M M M K K K M M M M M M M M M M M M K K K 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即 k a a a ka ka ka a a a a a a nn n n in i i in i i n 21 2121112 11nn n n in i i in i i n a a a a a a a a a a a a 212121112 11 =0. 性质5 把一行的倍数加到另一行,行列式不变.即

四阶行列式的一种展开法1

四阶行列式的一种展开法 笔者通过学习与使用行列式的运算,从中悟出四阶行列式的一种展开法,此法只适宜对四阶行列式展开而言。 四阶行列式的计算,通常是在讲授了行列式的性质后,采取降阶的方法进行计算,难免计算的繁杂,有时,按以下介绍的方法,仍能达到快而准的效果。具体方法如下: 四阶行列式: 44 43 42 413433323124 23222114131211 4a a a a a a a a a a a a a a a a D 第一次将该行列式前三列重复书写在该行列式的右边,可在前四列中作出两条对角线,然后在此七列中作出相应的平行线,可得(图表一): (图表一) 作乘积关系,可得如下八项: a 11a 22a 33a 44,a 12a 23a 34a 41,a 13a 24a 31a 42,a 14a 21a 32a 43,a 41a 32a 23a 14,a 42a 33a 24a 11,a 43a 34a 21a 12,a 44a 31a 22a 13, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号是正负相间的。 (图表二) 同前理可得如下八项: a 11a 23a 34a 42,a 13a 24a 32a 41,a 14a 22a 31a 43,a 12a 21a 33a 44,a 41a 33a 24a 12,a 43a 34a 22a 11,a 14a 32a 21a 13,a 42a 31a 23a 14, 这八项的符号可由它们的下标排列的逆序数确定,不难知道,此八项的符号仍是正负相间的。 第三次先将图表二中的第2、3、4列作一个轮换,即第2列变到第4列上去,第3列变到第2列上去,第4列变到第3列上去,这样可得到一个新的四列关系,尔后参照第一次的作法,可得图表三: 43 42 4144 43 42 413332 31 343332 312322212423222113121114131211 a a a a a a a a a a a a a a a a a a a a a a a a a a a a 43 42 4144 43 42 413332 31 343332 31 2322212423222113121114131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a 42 4144 43 42 413332 31 343332 31 2322212423222113121114131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a

n阶行列式的计算方法

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1定义法 (1) 2利用行列式的性质 (23) 化三角形行列式 (3) 4行列式按一行(列)展开 (4) 5 升阶法 (5) 6 递推法 (6) 7 范德蒙德行列式 (7) 8 拉普拉斯定理 (7) 9 析因法 (8) 小结 (10) 参考文献 (11)

n阶行列式的计算方法 学生姓名:孙中文学号:20120401217 数学与计算机科学系数学与应用数学专业 指导老师:王改霞职称:讲师 摘要:行列式是高等代数中最基本也是最重要的内容之一,是高等代数学习中的一个难点.本文主要探讨一般n阶行列式的计算方法和一些特殊的行列式求值方法.如:化三角形法、拉普拉斯定理法、升阶法等.总结了每种方法的行列式特征. 关键词:行列式;定义;计算方法 Abstract: Determinant is one of higher algebra the most fundamental and important content, is a difficult point in Higher Algebra Learning. This paper mainly discusses the general order determinant of calculation method and some special determinant evaluation method. Such as: triangle method, method of Laplace theorem, ascending order method. This paper summarizes the determinant of the characteristics of each method. Keywords: Determinant ;Definition ;Calculation method 引言 行列式是高等代数的一个非常重要的内容,同时它也是非常复杂的.它的计算方法多种多样.在我们本科学习中只解决了一些基本的有规律的行列式.当遇到低阶行列式时,我们可以根据行列式的性质及其定义便能计算得出结果.但对于一些阶数较大的n阶行列式来说,用定义法就行不通了,本文根据各行列式的特征总结了一些对应方法. 1定义法 n阶行列式计算的定义:

行列式的展开法则

03. 行列式的展开法则 一、按一行(列)展开法则 定义3.1 (,)i j 元素或(,)i j 位置的余子式ij M 、代数余子式(1)i j ij ij A M +=- 例3.1 3111112121313111112121313||ij a a M a M a M a A a A a A =-+=++. 定理3.1 1)按一行展开法则 1122||(1,2,,)A i i i i in in a A a A a A i n =+++= ; 2)按一列展开法则 1122||(1,2,,)A j j j j nj nj a A a A a A j n =+++= . 按第一行的展开公式就是n 阶行列式(2)n ≥的降阶定义. 例3.2 计算下列n 阶行列式 1) x y x y y x ; 2) 11 1111 1 21n n ---- ; 3)121111n n n a a x D a x a x ---= - . 解 1)按1c 展开得 原式1 111111(1)(1)n n n n n n n xA yA xx y y x y -+-+=+=+-=+-. 2)原式 121 (1) (12)2 n n nn n c c c c n n n A c -++++++++= 按展开 . 3)法1 按1r 展开得 () 112112121223121211(,,,)(,,) (,,). ()n n n n n n n n n n n n n n n D a a a a x D a a a x a x D a a a x a x a x a D a a --------=+=++==++++= 法2 在n D 中,元素(21)i a i n ≤≤-的余子式为 1111 1 (1)11 i n i i x x M x x x x -----= =--- . 将n D 按1c 展开得 11211211 (1)n i n n n i i n n i D a M a x a x a x a +---==-=++++∑ . 法3 1 12 1 21211212110 1,1,,2 10 i i n n n n n n n n a a x a r xr D i n n a x a x a a x a x a x a --------+-+=-+++-++++

行列式按行列展开定理

行列式按行列展开定理 一、 余子式的定义: 在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M 二、 代数余子式: 在n 阶行列式的ij a 余子式ij M 加上符号(1) i j +-,称作ij a 的代数 余子式ij A : (1)i j ij ij A M +=- 三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ij a 外都为0,则这个行列式等于ij a 与它的代数余子式乘积: i j i j D a A =? 四、 行列式按行(列)展开法则: 定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和: 1122i i i i in in D a A a A a A =?+?+???+? 1122j j j j nj nj D a A a A a A =?+?+???+? (i j ≠) 推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0: 1122i j i j in jn D a A a A a A =?+?+???+? 1122i j i j ni nj D a A a A a A =?+?+???+? (i j ≠)

五、 克拉默法则: 如果含有n 个未知数的n 个线性方程组: 11112211n n a x a x a x b ++???+= 21122222n n a x a x a x b ++???+= 31132233n n a x a x a x b ++???+= ………………………………… ………………………………… ………………………………… 1122n n nn n n a x a x a x b ++???+= 其系数行列式不等于0,即:1111...... ......0...n n nn a a D a a =≠ 那么,方程组有惟一解: 11D x D =,22D x D =,…n N D x D = 1111,1122,1 1,1............ ....... ...j n j j n n n j nn a b a a b a D a b a a +++= ① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。 ② 定理4':如果含n 个未知数的n 个线性方程组无解或

线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100 20010000 n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---= . 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算

例2 一个n 阶行列式n ij D a =的元素满足 ,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j a a =-知i i i a a =-,即 0,1,2,,ii a i n == 故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A ' = 1213112 23213 2331230000n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)00 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

行列式的计算技巧与方法总结

计算技巧及方法总结 一、 一般来说,对于二阶、三阶行列式,可以根据定义来做 1、二阶行列式 2112221122 2112 11a a a a a a a a -= 2、三阶行列式 33 32 31 23222113 1211a a a a a a a a a =.332112322311312213322113312312332211a a a a a a a a a a a a a a a a a a ---++ 例1计算三阶行列式6 01504 321 - 解 =-6 015043 21601??)1(52-?+043??+)1(03-??-051??-624??- 4810--=.58-= 但是对于四阶或者以上的行列式,不建议采用定义,最常采用的是行列式的性质以及降价法来做。但在此之前需要记忆一些常见行列式形式。以便计算。 计算上三角形行列式 nn nn n n a a a a a a a a a 2211222112110 = 下三角形行列式 nn n n a a a a a a 21 222111000.2211nn a a a = 对角行列式 nn nn n n a a a a a a a a a 221121 2221 11 0= 二、用行列式的性质计算 1、记住性质,这是计算行列式的前提 将行列式D 的行与列互换后得到的行列式,称为D 的转置行列式,记为T D 或'D ,即若

,21222 21 11211nn n n n n a a a a a a a a a D = 则 nn n n n n T a a a a a a a a a D 2122212 12111=. 性质1 行列式与它的转置行列式相等, 即.T D D = 注 由性质1知道,行列式中的行与列具有相同的地位,行列式的行具有的性质,它的列也同样具有. 性质2 交换行列式的两行(列),行列式变号. 推论 若行列式中有两行(列)的对应元素相同,则此行列式为零. 性质3 用数k 乘行列式的某一行(列), 等于用数k 乘此行列式, 即 .2 1 21112 112 1 21 112111kD a a a a a a a a a k a a a ka ka ka a a a D nn n n in i i n nn n n in i i n === 第i 行(列)乘以k ,记为k i ?γ(或k C i ?). 推论1 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面. 推论2 行列式中若有两行(列)元素成比例,则此行列式为零. 性质4 若行列式的某一行(列)的元素都是两数之和, 例如, nn n n in in i i i i n a a a c b c b c b a a a D 2 12 21111211+++=. 则 212 1 21112112 1 21 11211 D D a a a c c c a a a a a a b b b a a a D nn n n in i i n nn n n in i i n +=+= . 性质5 将行列式的某一行(列)的所有元素都乘以数k 后加到另一行(列)对应位置的元素上, 行列式不变. 注: 以数k 乘第j 行加到第i 行上,记作j i kr r +; 以数k 乘第j 列加到第i 列上,记作j i kc c +. 2、利用“三角化”计算行列式 计算行列式时,常用行列式的性质,把它化为三角形行列式来计算. 例如化为上三角形行列式的步骤是:

行列式的计算方法

行列式的计算方法 摘要:线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组,行列式的计算是一个重要的问题。本文依据行列式的繁杂程度,以及行列式中字母和数字的特征,给出了计算行列式的几种常用方法:利用行列式的定义直接计算、化为三角形法、降阶法、镶边法、递推法,并总结了几种较为简便的特殊方法:矩阵法、分离线性因子法、借用“第三者”法、利用范德蒙德行列式法、利用拉普拉斯定理法,而且对这些方法进行了详细的分析,并辅以例题。 关键词:行列式矩阵降阶 The Methods of Determinant Calculation Abstract:Solving multiple linear equations is the main content of the linear algebra, determinants produced in solving linear equations, determinant calculation is an important issue.This article is based on the complexity degree of the determinant, and the characteristics of letters and numbers of the determinant ,and then gives several commonly used methods to calculate the determinant: direct calculation using the definition of determinant, into the triangle, reduction method, edging method , recursion, and summarizes several relatively simple and specific methods: matrix, linear separation factor method, to borrow "the third party" method, using Vandermonde determinant method, using Laplace theorem,also analyze these methods in detail,and supported by examples. Keywords:determinant matrix reduction. 1.引言 线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组,

四阶行列式的计算

四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A、B为同阶方阵,则|AB|=|A|*|B|; ④|kA|=k^n|A| 3.矩阵的秩 (1)定义非零子式的最大阶数称为矩阵的秩; (2)秩的求法一般不用定义求,而用下面结论: 矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。 求秩:利用初等变换将矩阵化为阶梯阵得秩。 4.逆矩阵 (1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立); (2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)

关于行列式的一般定义和计算方法

关于行列式的一般定义和计算方法 n 阶行列式的定义 n 阶行列式 nn n n n n a a a a a a a a a 2 122221112 11=∑ -n n n j j j nj j j j j j a a a 212 1 2121) () 1(τ 2 N 阶行列式是 N ! 项的代数和; 3、N 阶行列式的每项都是位于不同行、不同列N 个元素的乘积; 特点:(1)(项数)它是3!项的代数和; (2)(项的构成)展开式中的每一项都是取自行列式不同行不同列的三个元素之积.其一般项为: (3)(符号规律)三个正项的列标构成的排列为123,231,312. 它们都是偶排列; 三个负项的列标构成的排列为321,213,132, 它们都是奇排列. § 行列式的性质 性质1:行列式和它的转置行列式的值相同。 即nn n n n n a a a a a a a a a 2 122221112 11=nn n n n n a a a a a a a a a 2122212121 11; 行列式对行满足的性质对列也同样满足。 性质2 互换行列式的两行(列),行列式的值变号. 如: D= d c b a =ad-b c , b a d c =bc-ad= -D 以r i 表第i 行,C j 表第j 列。交换 i ,j 两行记为r j i r ?,交换i,j 两列记作 C i ? C j 。 32 2311332112312213a a a a a a a a a ---3221133123123322113332 31 232221 13 1211 a a a a a a a a a a a a a a a a a a D ++==(1

行列式的计算技巧与方法汇总(修改版)

行列式的计算技巧与方法汇总(修改版)

————————————————————————————————作者:————————————————————————————————日期: 2

行列式的若干计算技巧与方法 内容摘要 1. 行列式的性质 2.行列式计算的几种常见技巧和方法 2.1 定义法 2.2 利用行列式的性质 2.3 降阶法 2.4 升阶法(加边法) 2.5 数学归纳法 2.6 递推法 3. 行列式计算的几种特殊技巧和方法 3.1 拆行(列)法 3.2 构造法 3.3 特征值法 4. 几类特殊行列式的计算技巧和方法 4.1 三角形行列式 4.2 “爪”字型行列式 4.3 “么”字型行列式 4.4 “两线”型行列式 4.5 “三对角”型行列式 4.6 范德蒙德行列式 5. 行列式的计算方法的综合运用 5.1 降阶法和递推法 5.2 逐行相加减和套用范德蒙德行列式 5.3 构造法和套用范德蒙德行列式 3

1 1.2 行列式的性质 性质1 行列互换,行列式不变.即 nn a a a a a a a a a a a a a a a a a a n 2n 1n2 2212n12111nn n2n12n 2221 1n 1211 . 性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即 nn n2 n1in i2i1n 11211 k k k a a a a a a a a a k nn a a a a a a a a a n2n1in i2i1n 11211. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即 111211112111121112212121 2 1212.n n n n n n n n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a K K K M M M M M M M M M M M M K K K M M M M M M M M M M M M K K K 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即 k a a a ka ka ka a a a a a a nn n n in i i in i i n 21 2121112 11nn n n in i i in i i n a a a a a a a a a a a a 212121112 11 =0. 性质5 把一行的倍数加到另一行,行列式不变.即

n阶行列式的计算方法与技巧要点

密级: JINING UNIVERSITY 学士学位论文 THESIS OF BACHELOR 题目n阶行列式的计算方法与技巧 系别:数学系 专业年级: 学生姓名:学号: 指导教师:职称: 起讫日期:

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1 利用行列式定义直接计算 (2) 1.1 利用定义计算的条件 (2) 1.2 对定义计算的举例应用 (2) 2 化三角形法 (2) 2.1 化三角形方法的运用条件 (2) 2.2 化三角形方法举例应用 (2) 3 按行(列)展开法(降阶法) (3) 3.1 降阶法法的运用条件 (3) 3.2 降阶法方法举例应用 (3) 4 归一法 (4) 4.1 归一法的运用条件 (4) 4.2 归一法举例应用 (4) 5 加边法(升阶法) (5) 5.1 加边法的运用条件 (5) 5.2 加边法举例应用 (5) 6 递推法 (6) 6.1 递推法的运用条件 (6) 6.2 递推法举例应用 (6) 7 利用范德蒙行列式 (6) 7.1 范德蒙行列式 (6) 7.2 范德蒙行列式方法举例应用 (7) 8 数学归纳法 (7) 8.1 数学归纳法的运用条件 (7) 8.2 数学归纳法举例应用 (7) 9 利用拉普拉斯定理 (8) 9.2 拉普拉斯定理 (8) 9.2 拉普拉斯定理方法举例应用 (8) 10 拆行(列)法 (9) 10.1 拆行(列)法的运用条件 (9)

10.2 拆行(列)法举例应用 (9) 11 析因法 (10) 11.1 析因法的运用条件 (10) 11.2 析因法举例应用及分析 (10) 12 利用矩阵行列式公式 (11) 12.1 引理一及其证明 (12) 12.2 利用矩阵行列式公式方法举例应用 (13) 13 论文总结 (13) 致谢 (14) 参考文献 (14)

四阶行列式的计算

四阶行列式的计算

四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化;

写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:

相关文档
最新文档