生态塘水生植物对受污染河水中氮磷的净化效果

合集下载

水生植物对氮磷的去除

水生植物对氮磷的去除

水生植物对氮磷的去除湖泊富营养化已成为一个世界性的环境问题。

利用水生大型植物富集氮磷是治理、调节和抑制湖泊富营养化的有效途径之一。

湖泊水环境包括水体和底质两部分,水体中的氮磷可由生物残体沉降、底泥吸附、沉积等迁移到底质中。

对过去的营养状况的追踪说明,水生植物可调节温度适中的浅水湖中水体的营养浓度[2]。

而大型沉水植物则通过根部吸收底质中的氮磷,从而具有比浮水植物更强的富集氮磷的能力。

沉水植物有着巨大的生物量,与环境开展着大量的物质和能量的交换,形成了十分庞大的环境容量和强有力的自净能力。

在沉水植物分布区内,COD、BOD,总磷、铁氮的含量都普遍远低于其外无沉水植物的分布区[3]。

而漂浮植物的致密生长使湖水复氧受阻,水中溶解氧大大降低,水体的自净能力并未提高,且造成二次污染,影响航运。

挺水植物则必须在湿地、浅滩,湖岸等处生长,即合适深度的繁衍场所,具有很大的局限性。

不同的沉水植物对水体中的总氮总磷均有显著的去除作用。

在关于常见沉水植物对滇池草海水体(含底泥)总氮去除速率的研究中发现:物种去除能力的大小顺序依次为伊乐藻>苦草>狐尾藻>篦齿眼子菜>金鱼藻>范草>轮藻。

随着时间的延长,水体中总氮浓度呈负指数形式衰退,且在实验的总氮浓度范围内(2.628~16.667mg∕L)每种沉水植物的去除速率随总氮浓度的增加而增加[4]。

此外,黑藻(Hydrillaverticillata(L.f.)Royle)对磷的需求较低,并可利用重碳酸盐作为光用的碳源。

磷吸收是主动过程[6]。

在亚热带湿地中,磷主要是在植物内流动,而氮主要是通过沉积作用和反硝化作用开展流动。

对于夏季浮游植物(主要是外来蓝藻),磷是限制因子。

据推测:磷循环强烈依赖于大型植物的调节;底泥中磷的衰竭影响植物香蒲(Typhadomingensis)的减少,而随后磷的有效性的增加又使其重现[7]。

在对东湖的围隔实验中,结果显示了沉水植物在磷营养滞留物中的关键地位[8]。

三种水生植物对模拟污水中氮、磷的生物净化效果

三种水生植物对模拟污水中氮、磷的生物净化效果

三种水生植物对模拟污水中氮、磷的生物净化效果王斌;周亚平【摘要】通过水生植物灯芯草(Juncus effusust L.)、空心莲子草[Alternanthera Philoxeroides (Mart.)Griseb.]和金鱼藻(Ceratophyllum demersum L.)在模拟污水中的培养试验,研究其对模拟污水中总氮、总磷的去除效果,探讨3种水生植物对富营养化水体中污染物的去除能力.结果表明,在模拟的轻度、中度和高度富营养污水中,灯芯草对氮去除率最高(88.5%~94.2%),金鱼藻最低(62.7%~71.2%);空心莲子草对磷的去除效果最佳(79.5%~94.0%),其次是灯芯草(82.9%~90.1%).从植物对氮磷的吸收贡献率来看,氮的吸收贡献率呈现富营养化程度不同、植物表现亦不同的状况,轻度、中度和高度富营养污水中,对氮的吸收贡献率从高到低分别是金鱼藻(70.3%)、空心莲子草(65.8%)和灯芯草(38.8%);金鱼藻在3种不同富营养化程度的污水中对磷的吸收贡献率最高(60.1%~84.8%),其次是空心莲子草(55.6%~70.1%).综合考虑污水氮磷去除率以及植物对氮磷的吸收贡献率可知,3种植物均适用于轻、中度污水的治理,特别是在中度富营养状况下,3种水生植物都表现出优良的净化能力.【期刊名称】《湖北农业科学》【年(卷),期】2014(053)020【总页数】3页(P4835-4837)【关键词】模拟污水;水生植物;生物净化;效果【作者】王斌;周亚平【作者单位】东华理工大学化学生物与材料科学学院,南昌330013;东华理工大学化学生物与材料科学学院,南昌330013【正文语种】中文【中图分类】Q948.116中国水资源人均占有量少,属于水资源紧缺的国家。

自上世纪70年代以来,中国的水体富营养化问题日趋严重。

利用水生植物治理富营养化水体,由于其具有净化效果好,投资少,运行方便、有利于水生生态系统恢复和重建等特点,已日益受到人们的关注[1]。

水生植物对污染物的清除及其应用

水生植物对污染物的清除及其应用

水生植物对污染物的清除及其应用水生植物是指在水中、湿地或泥沼等环境中生长的植物,它们具有很好的吸收和分解水体中的营养物质、重金属离子和有机物等的能力,能够有效地对水体进行净化。

这种绿色植物对环境的保护有着重要的意义,而且还有一些实用的应用。

一、水生植物净化污染物的机制在清除水体污染物的过程中,水生植物发挥了重要的作用。

它们吸收、分解、沉淀和切割污染物,进而净化水体。

水生植物清除污染物主要有以下几个方面的机制:1、生长和代谢。

水生植物通过根、茎和叶等器官生长代谢过程中摄取了水中的营养物质,如氮、磷等,减少水中的营养盐浓度,防止富营养化,对水质的净化起到了作用。

2、吸收和积累有机物。

水生植物具有吸收和积累有机物的能力,可以有效地去除水体中的有机物、化学污染物和放射性污染物等有害物质,减少或消除水体异味和色度等问题。

3、粘附和吸附。

通过吸附和粘附等机制,水生植物可以去除水体中的颗粒物和泥沙,从而净化水体。

4、根系高级化合物的释放。

水生植物通过根系释放一些有机酸、多糖物质等高级化合物,可以有效地降解水体中的有机物,加速其氧化分解,促进生物循环。

二、水生植物应用的实践随着人们对环境保护意识的增强和环境治理技术的不断发展,水生植物净化污染物的应用变得越来越广泛。

1、水质净化。

通过投放水生植物,可以清除水体中的营养盐、化学物质和有机物等,起到净化水质的作用,为人类提供了更优质的饮用水。

例如,中国大亚湾核电站采用水生植物技术净化机组冷却水。

2、湿地建设。

水生植物是湿地生态系统的基本组成部分,通过植被修复可以恢复湿地自然生态系统,提高水质和土壤质量,促进土地持续利用。

3、城市景观。

水生植物可以作为城市绿化的重要组成部分,通过布置水生植物景观可以提升城市生态环境质量,改善城市空气质量。

4、养殖业。

水生植物可以作为养殖污染物的生物滤器,对水体中的废气和废水进行处理,降低养殖对环境的污染。

三、水生植物产业的现状和前景随着人们对于环境保护意识的提高和污染治理技术的发展,水生植物产业得到了迅速发展。

水生植物对水体的净化作用

水生植物对水体的净化作用

水生植物对水体的净化作用水是生命之源,对于地球上的所有生物来说都是不可或缺的。

然而,随着工业化和城市化的迅速发展,水体受到了严重的污染,给环境和人类健康带来了巨大的威胁。

水生植物作为水生生物的一部分,拥有独特的生理特性和生态功能,可以起到对水体的净化作用。

本文将从以下几个方面详细介绍水生植物对水体的净化作用。

首先,水生植物能够吸收和转化废水中的有害物质。

废水中通常含有大量的营养物质,如硝酸盐和磷酸盐等,在适量的情况下这些营养物质对水生植物生长发育有利,能够帮助水生植物吸收更多的光合产物。

然而,过量的营养物质会引发水体富营养化的问题,导致水中藻类和有害细菌的大量繁殖,影响水质。

水生植物通过吸收和转化废水中的硝酸盐和磷酸盐等营养物质,将其固定在植物体内,减少营养物质在水体中的含量,达到净化水质的效果。

此外,水生植物还能够吸收和转化废水中的有机物质,如悬浮物,油污等,有机物质的吸收和转化能力使得水生植物成为了水体的天然净化器。

其次,水生植物通过气孔呼吸,释放氧气,提高水体中的溶解氧含量。

水中溶解氧的含量与水生生物的生存和繁殖息息相关,过低的溶解氧含量会导致水生生物窒息,生态系统崩溃。

水生植物通过光合作用吸收二氧化碳,并利用水分和阳光产生氧气。

这样,水中的溶解氧含量就会得到提高,提供了充足的氧气供水生生物进行呼吸,减少了水中有机废物的堆积,促进了水体的自净作用。

再次,水生植物的根系结构有助于固定泥沙和砂粒,防止水体泥沙淤积。

水体中的泥沙和砂粒是不可忽视的污染源,对水质造成较大影响。

水生植物的根系可以持续释放出黏液物质,形成一种薄膜,将泥沙和砂粒牢牢地固定在底部,减少泥沙的悬浮,同时水生植物的根系还可以增加沉积物的交互内聚力,减少底部泥沙的扩散和迁移,起到稳定水底的作用。

此外,水生植物的生长状态对水体的净化也有明显的影响。

一般来说,水生植物的茂密生长会极大地增加水体的净化效果。

水生植物通过大量的光合作用,减少水体中的有机污染,降低氮磷的浓度。

水生植物对水质净化的作用与机制

水生植物对水质净化的作用与机制

水生植物对水质净化的作用与机制水是生命之源,而水的质量则关系着人们的健康与生存。

随着经济的发展和人口的增长,水污染问题越来越严重,成为世界范围内的焦点。

水质净化是保障人类健康的重要手段之一,除了传统的水处理方法外,水生植物净化水体的方法越来越受到关注。

本文将介绍水生植物对水质净化的作用与机制。

一、水生植物对水质的净化作用水生植物在水体中具有吸收养分和吸附污染物的能力,通过其根系、茎叶、花粉等部位有效地去除水体中的磷、氮、有机污染物、重金属等。

同时,水生植物微生物固定在植物表面或根部形成的生物膜也对水体微生物的减少起到了显著作用,使水体的细菌含量降低,水质提高。

此外,水生植物对调节水体温度、增加氧气含量、防止水体生态失衡等方面也起到了非常重要的作用。

二、水生植物对水质净化的机制1. 吸收养分与吸附污染物水生植物生长速度较快,具有吸收底泥中养分的能力。

它们的根系可以扎在底泥中吸收磷、氮等营养物质,起到了有效控制藻华的作用。

此外,水生植物的叶子、茎、花等部位具有吸附污染物的能力,在水体中吸附大量的重金属和有机污染物,逐渐净化水体。

2. 微生物代谢作用水生植物上的微生物主要以硝化菌、硫化菌等为主,可以对水体中的氨、亚硝酸、硫酸盐等进行代谢作用。

硝化菌可以将亚硝酸盐等氧化成硝酸盐,而硫化菌则可以将硫酸盐还原为硫化物。

这两种作用都可以促进水体中营养物质的转化,促进水体环境平衡。

3. 生物膜效应水生植物与周围水体之间会形成一种称为“生物膜”的界面。

生物膜是由群体微生物通过自身分泌物形成的微生态体系,可以吸收水体中的营养物和有机物,维持水体中的微生物种群的平衡,促进水体自净能力的提高。

4. 植物吸氧作用水生植物可以吸收水中的二氧化碳和底泥的有机物,并将其转换为氧气,增加水体中氧气含量,为水体中的生物提供了生存所需的氧气,降低了水体中有机物的浓度。

三、水生植物净化水体的应用在实际应用中,水生植物可以通过植物繁殖、扩大间隔、适当调节水位等措施进一步加强对水体的净化作用。

水生植物在水污染治理中的净化机理及应用

水生植物在水污染治理中的净化机理及应用

水生植物在水污染治理中的净化机理及应用水生植物是指能在水体中生长并繁殖的植物。

它们是水域生态系统中不可或缺的一部分,具有净化水质、维持水体生态平衡的重要作用。

在水污染治理中,水生植物被广泛应用于水体净化和修复工程中,发挥着重要的作用。

本文将重点介绍水生植物在水污染治理中的净化机理及应用。

一、水生植物的净化机理1. 吸附作用水生植物的根、茎、叶等表面具有丰富的微生物和菌丝,这些微生物和菌丝可以吸附并寄生在水生植物的表面。

通过这些微生物和菌丝的作用,水生植物能够有效吸附水中的悬浮物、有机物质和重金属等污染物,净化水质。

2. 生物吸收水生植物的根部长期浸泡在水中,具有较大的比表面积,能够通过根系吸收水中的营养物质和污染物。

对于水体中的氮、磷等营养物质和重金属等污染物具有较强的吸收能力,将其转化为植物组织中的有机物。

3. 生物转化水生植物在吸收水体中的营养物质和污染物后,能够通过自身的新陈代谢过程将其转化为无害的物质,并释放氧气,提高水体的氧含量,改善水质环境。

4. 生态平衡水生植物通过其独特的生长方式和生态功能,能够促进水体中微生物和藻类等生物的繁衍,构建起一套相对稳定的生态平衡系统,从而净化水体中的有机物、营养物和重金属等污染物。

1. 河流湖泊生态修复在河流湖泊的水污染治理中,通过引种适宜的水生植物,例如莲藕、菰、香蒲等,能够有效稳定水体微生物群落结构,净化水体,改善水质环境。

水生植物的根系能够有效固定土壤,防止水土流失,保护岸坡生态环境,促进河流湖泊的生态修复和可持续发展。

2. 污水处理水生植物还被广泛应用于污水处理工程中。

通过建设人工湿地、植物滤池等单位工程,利用水生植物的吸收和转化作用,对进入的废水进行净化处理,将水体中的有机物、氮、磷和重金属等污染物去除或转化,达到排放标准,减少对周边环境的影响。

3. 水产养殖水生植物在水产养殖中也发挥着积极作用。

水生植物能够吸收水中的氨氮、硝酸盐等有害物质,提供优质的生态环境,有利于水产养殖业的健康发展。

水生植物在水污染治理中的净化机理及应用探究

水生植物在水污染治理中的净化机理及应用探究

水生植物在水污染治理中的净化机理及应用探究作者:毕建美来源:《科学与财富》2018年第25期摘要:水环境质量不仅与个人健康息息相关,而且对农业、工业等行业的发展有重要影响。

虽然近年来国家加强了对水污染治理工作的重视,但是在实际工作中,治理难度大、投入成本高等问题仍然没有得到很好的解决。

利用水生植物进行水污染治理,具有成本低、对水环境扰动小、植物资源可回收利用等优点,兼顾了生态效益、经济效益和社会效益,符合当前倡导的“绿色发展”理念。

探究水生植物在水污染治理中的具体应用方法,也成为相关部门的重要任务。

关键词:水污染;水生植物;净化机理;应用引言:水体因其分布的广泛性和自身的流动性,容易同时受到多个污染源的污染。

例如同一条河流,可能会受到上游生活污水和下游工业废水的污染。

污染源繁多,也增加了水污染治理的成本和难度。

以往水污染治理主要以化学方法为主,虽然见效较快,但是容易造成二次污染。

本文提出了基于水生植物的污染净化方案,通过人工控制水生植物的种类、密度,提高了水污染治理成效,可以作为一种常态化的水污染治理措施进行推广应用。

一、水生植物在水污染治理中的净化机理1、植物的吸收作用水生植物在生长过程中,需要从水体、淤泥中吸收氮、磷等营养物质,从而达到降低水体中超标化学元素的效果。

例如,农业生产中滥用氮肥,造成土壤中氮元素的含量严重超标。

在雨水作用下,这些氮元素汇入河流中,造成水体富营养化。

通过种植水生植物,可以吸收水体中以离子形式存在的NH4+和NO3-,既可以促进水生植物的生长,又达到了治理水污染的目的。

不同的水生植物,对这些污染元素的吸收能力也不尽相同,例如马蹄莲、水仙等挺水植物,对磷的吸收能力较强,而金鱼藻等沉水植物,则对铜、铅等重金属离子的吸收能力较强。

可以根据污水分析结果,选择合适的水生植物,以提高吸收效果。

2、植物的富集作用生物富集又被称为生物浓缩,可以将水体中不易消解的污染物,通过吸收作用聚集到植物体内,然后随着食物链的传递和转运,不断提高污染物浓度。

水生植物在水污染治理中的净化机理及应用

水生植物在水污染治理中的净化机理及应用

水生植物在水污染治理中的净化机理及应用水生植物是一种可持续使用的治理手段,在水污染治理中发挥着重要作用。

水生植物能够通过吸收、降解和转化等过程,有效净化水体。

水生植物的净化机理主要体现在以下两个方面:1. 吸收污染物质水生植物的根系能够吸收大量的污染物质,包括氮、磷、重金属、有机物等,通过这种方式将污染物质直接从水中移除,从而起到净化作用。

2. 降解和转化污染物质水生植物具有生物降解和生物转化能力。

通过水生植物的生长和代谢过程,能够将水中的有机物、氨氮等有害物质降解和转化为无害物质,同时在降解和转化过程中还能释放氧气,提高水体的溶解氧含量。

水生植物在水污染治理中应用广泛。

以下是几种常用的水生植物:1. 浮游植物浮游植物可以通过光合作用消耗水中的氮、磷等营养物质,控制水中营养物质的浓度,从而减少水体富营养化程度。

2. 水面水生植物水面水生植物可以通过根系吸收水中的有机物、氨氮等污染物质,同时也可以为野生动物提供栖息和繁殖的场所。

空气水生植物可以利用其根系进行有机物的分解和吸收,净化污染水体。

水底水生植物通过根系对水中的氮、磷等营养物质进行吸收,同时还能释放出氧气,降低水中的二氧化碳含量,维持水体的生态平衡。

在实际应用中,水生植物的种类和植被覆盖率等因素需要根据具体的水污染情况进行选择。

此外,也需注意水生植物的管理和维护,以确保其持续稳定的治理效果。

总之,水生植物在水污染治理中具有重要作用,它的治理效果不仅削减了水污染物质,还维持了水体的生态平衡。

应积极推广和应用水生植物,提高水环境治理和管理的效率和质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生态塘水生植物对受污染河水中氮磷的净化效果
水生植物是水生态系统的重要组成部分,对水生态系统的物质循环和能量传递起到重要作用。

水生植物可以通过自身的吸收、吸附和与微生物的协同作用,有效降低水体中氮、磷含量和有机污染物水平,净化水质。

采用水生植物净化污水,具有处理效果好、投资少、管理成本低、景观美化等功能。

本试验挑选狐尾藻、水白菜两种水生植物,应用到生态塘1—水平潜流人工湿地—生态塘2复合系统中的生态塘中,研究水生植物对受污染河水中氮磷的净化效果
一、材料与方法
1.1 试验装置
该复合系统由生态塘1、水平潜流人工湿地、生态塘2三个独立的系统串联而成,各级系统形成一定的高度差,用于保持系统处理的进出水在重力作用下顺畅流动,形成一个无能耗污水处理系统。

该复合系统的基质填料为碎石和沙子,其中生态塘1和生态塘2从底部往上分别铺设5cm的大碎石(Φ=2~4cm)和沙子,水平潜流人工湿地从底部往上分别铺设大碎石20cm,小碎石(Φ=1~2cm)50cm,沙子10cm。

各级系统分别种上植物(如图1、表1)。

1.2 生态塘植物
狐尾藻(MyriopHyllumverticillatum):被子植物门、双子叶植物纲、小二仙草科中的狐尾藻属,水生草本,均为沉水植物。

中国狐尾藻属植物常见有4~5种,如小狐尾藻、穗花狐尾藻、轮叶狐尾藻、三裂叶狐尾藻等。

狐尾藻可作水生态修复植物、观赏植物,全草为草鱼和猪的饲料。

水白菜:学名大薸(Pistiastratiotes),天南星科大薸属,多年生浮水生植物本。

水白菜雌雄同株,繁殖迅速,原产巴西,20世纪50年代被作为猪饲料在我国推广栽培。

水白菜有发达的根系,可直接从污水中吸收有害物质和过剩营养物质,净化水体。

1.3 运行方案
河水→高位水箱→生态塘1→水平潜流人工湿地→生态塘2→出水。

系统24h连续进水,按HRT=3d、2d、1d的顺序交替运行,每个HRT条件下复合系统运行5~7d,3个HRT时间连续运行一次为一个周期。

每运行一个周期后,系统停止运行
5d,用于系统的恢复,系统停止运行期间,把人工湿地里的水排干,生态塘在下一运行周期进水前分别把上一周期的水排干。

系统运行时段为8—12月份。

1.4 进水水质
1.5 分析与计算方法
1.5.1 水质分析方法
TP:过硫酸钾氧化—钼蓝比色法(国家环境保护局编,2002);
TN:过硫酸钾消解—紫外分光光度法(国家环境保护局编,2002)。

1.5.2 植物样品分析方法
根据植物的生长情况定期移除,对植物的全氮和全磷进行测定。

全氮:H2SO4-H2O2消煮法;
全磷:钒钼黄吸光光度法。

二、结果与分析
通过选取生态塘1和生态塘2系统5个运行周期收割的水生植物,分别统计出各个生态塘各种水生植物的干重,测定不同水生植物的TN、TP的质量分数以及不同HRT条件下生态塘对处理进水中的TN、TP的总去除量,可以知道收割的生态塘水生植物量对TN、TP 的去除量与生态塘系统对TN、TP总去除量的关系。

2.1 水生植物P、N的质量分数
由表3可知,两生态塘中狐尾藻和水白菜的总收割干重差别不大,分别为751.41g和678.98g。

生态塘1中的狐尾藻生长态势要好于生态塘2,生态塘1中狐尾藻的收割干重为404.40g,远远大于生态塘2的220.94g;而生态塘2中水白菜生长态势则要好于生态塘1,水白菜的收割干重分别为458.04g和347.01g。

除生态塘1中狐尾藻的TN的质量分数比生态塘2的略低外,生态塘1中水白菜的TP、TN质量分数和生态塘1中狐尾藻的TP质量分数均要比生态塘2的高。

原因是生态塘1的处理进水为原水,N、P等污染物浓度比生态塘2的要高出许多,水生植物在高富营养化的环境中吸收的N、P也相应增多。

2.2 水生植物对污水中TN、TP的净化效果
由表4可知,生态塘1和生态塘2中水生植物对TN的去除量分别为30.80g和26.99g,对TP的去除量分别为2.06g和1.78g。

不同生态塘水生植物对TN、TP的去除量均较为接近,
去除效果稳定。

不同生态塘水生植物对TN、TP的去除量占相应系统总去除量的比例差异较大,其中生态塘1和生态塘2水生植物对TN的去除量分别占系统总去除量的4.98%和8.88%,生态塘1和生态塘2水生植物对TP的去除量分别占系统总去除量的2.70%和7.40%,主要是因为生态塘1进水的TN、TP浓度大大高于生态塘2,其相应的TN、TP系统去除总量也远远大于生态塘2。

三、结论
狐尾藻在高浓度污水中的生长量要远远高于低浓度污水,水白菜在高浓度污水中的生长量则要低于低浓度污水。

生态塘中狐尾藻与水白菜样本中N、P的质量分数总体上随着污水浓度的降低而降低。

生态塘水生植物对受污染河水中TN、TP的去除效果稳定,受污水浓度及负荷变化的影响小。

水生植物在污水浓度较低的污水末端处理环节中,发挥的作用尤为明显。

因此,针对低浓度污水的处理,可通过选种水生植物的方式,不但可进一步强化污水中TN、TP的净化效果,还可创造良好的景观生态功能。

(。

相关文档
最新文档