戴维南和诺顿定理1
戴维南定理、诺顿定理

戴维南定理、诺顿定理戴维南定理和诺顿定理是电路分析中常用的两个重要定理。
它们分别用于简化复杂电路的计算和分析,为工程师提供了便利。
本文将依次介绍戴维南定理和诺顿定理的原理和应用。
一、戴维南定理戴维南定理是一种将电路中的电源和负载分离计算的方法。
它通过将电源和负载分别替换为等效电源和等效电阻,简化了电路的计算过程。
根据戴维南定理,我们可以将电源替换为一个等效电压源,其电压等于原电源的电压,内阻等于原电源的内阻。
同样地,我们可以将负载替换为一个等效电阻,其阻值等于原负载的阻值。
通过这样的替换,原本复杂的电路被简化为一个等效电压源和一个等效电阻的串联电路。
这样的简化使得电路的计算更加便捷,尤其适用于大规模复杂电路的分析。
二、诺顿定理诺顿定理是一种将电路中的电源和负载分离计算的方法。
它通过将电源和负载分别替换为等效电流源和等效电阻,简化了电路的计算过程。
根据诺顿定理,我们可以将电源替换为一个等效电流源,其电流等于原电源的电流,内阻等于原电源的内阻。
同样地,我们可以将负载替换为一个等效电阻,其阻值等于原负载的阻值。
通过这样的替换,原本复杂的电路被简化为一个等效电流源和一个等效电阻的并联电路。
这样的简化使得电路的计算更加便捷,尤其适用于大规模复杂电路的分析。
三、戴维南定理和诺顿定理的应用戴维南定理和诺顿定理在电路分析中有着广泛的应用。
它们可以用于计算电路中的电流、电压、功率等参数,帮助工程师进行电路设计和故障排查。
通过戴维南定理,我们可以将复杂的电路转化为等效电路,从而简化计算。
例如,在求解电路中某个分支的电流时,我们可以将其他分支看作一个等效电阻,这样就可以利用欧姆定律直接计算电流。
而诺顿定理则更适用于电流的计算。
通过将电路中的电源和负载分离,我们可以更方便地计算负载电流。
例如,在计算电路中某个负载的电流时,我们可以将电源看作一个等效电流源,利用欧姆定律计算电流。
戴维南定理和诺顿定理为电路分析提供了重要的工具和方法。
3-3 戴维南定理诺顿定理1乙乙乙

c 12v 2A 1V 18V 4Ω 6Ω o 1Ω
Ua b 0
b
40 1 + U C = (V ) = = Ud 7
6Ω
12v 2A
1V 18V 4Ω 6Ω
1Ω
6Ω
c 12v 2A 1V 18V 4 6 o 1
19 (Ω) Rd= 6 // 6 // 4 + 1 = 7 40 3Ω Ud 7 I= 1 ( A) I = = Rd + 3 19 + 3 7
将ab短接
Id=12/(2//3+1) ×3/(2+3)
=36/11 (A) Rd=5.5(Ω) I1=Ud/(5.5+6)=1.57(A)
最大功率传输 I
Ud R Rd
已知Ud Rd,R可以单独调节,当R 为多少时,它吸收的功率最大,最大 值为多少? Ud I= Rd + R Ud 2 R 2 = P I= R ( R Ud 2 )= Rd + R () Rd + R 2
B
加压法:
1A 6Ω I 2V 3I
A 6Ω I
IW A 3I UW
B
B
UW = −6 I
IW = −4 I
UW = Rd = 1.5 (Ω) IW
例3:如图所示,I1=2A,I2=1/3A,当电阻R增加10Ω, I1=1.5A,I2=0.5A;当电阻R减小10Ω时,I1=?I2=?
I1 R
I1 R ΔR
Ud Rd
a
b
例3 用戴维南定理求I1。
a 2Ω 2Ω 2Ω 1Ω 3U 2Uab 1 1Ω 12V a
解:
3U1
3Ω
I1
4Ω b
戴维南定理和诺顿定理的区别

戴维南定理和诺顿定理的区别
戴维南定理(Thevenin's theorem)和诺顿定理(Norton's theorem)都是在电路分析中使用的两个重要定理,用于简化
复杂电路的分析和计算。
它们之间的区别如下:
1. 直流和交流电路:戴维南定理适用于线性直流和交流电路,而诺顿定理只适用于线性直流电路。
2. 等效电源类型:戴维南定理将原电路转化为等效电压源和等效电阻的串联电路,诺顿定理将原电路转化为等效电流源和等效电阻的并联电路。
3. 转换过程:在应用戴维南定理时,需要通过计算电路中两个端点的开路电压和短路电流来确定等效电压源和等效电阻。
而应用诺顿定理时,需要计算电路中两个端点的开路电压和短路电流来确定等效电流源和等效电阻。
4. 分析目的:戴维南定理主要用于计算和分析电路中的电压和电流,而诺顿定理主要用于计算和分析电路中的电流和功率。
综上所述,戴维南定理和诺顿定理在适用范围、等效电源类型、转换过程和分析目的等方面存在一些差异,但它们都可以用于电路分析中,能够简化复杂电路的计算和分析过程。
戴维南定理与诺顿定理

2 28
U o c U a b ( 6 o 4 4 ) 2 2 4 4 4 1V 0
2、求等效电阻
R022 2244 4432 2
a
b
4 4
3、将待求支路接
入 等效电阻
R=1 R=3 R=5
I 1064A 31
I1062.67A 33
106
总结:解题步骤:
I
2A
35
1、断开待求支路 2、计算开路电压U oc
[解] 求 Isc
+
2
– 2V 2
Uo = 0 Isc
21 Is c1120.5A
b
a
a
– 0.53
前求得 Uoc0.26V 7
0.5 A
与R 用o戴U 维Iso宁cc 定 理0 0.等.2 5效6所7 得0.结5果 3相符
-0.53 b
+ –
– 0.267V b
补充例题已知 IC = 0.75 I1 求电路的戴维宁及诺顿等效电路
2020 55
++ 1401V40_V_
a I I 66
b
图图bc
__ +90+V90V
+ UOC_
R0
a +
U _
图a I 6
[解] 已知电路可用图a等效代替
b
UOC 为除6支路外有源二端网络的开路电压,见图b
UOC =Uab=14200++590 5 –90 = –44V
R0 =20 5=4 I =
5k I1
a
a
+
+
2.5 k
a
–
40V 20k
电路定理——戴维南,诺顿,等效

电路定理——戴维南,诺顿,等效
1.戴维南定理
戴维南定理是一种简化线性电路分析的方法,它的出发点是利用电压和电流之间的关系,把原来的电路转化为一个等效的电压源和电阻的串联电路,从而简化了电路的分析。
戴维南定理的基本思想是:在一个电路中,任何两个端点之间都可以看成是一个电压源和一个内部电阻的串联,其等效电路的电压源等于这两个端点之间的电压,内部电阻等于这两个端点看到的电阻。
式子表示为:
Vth=Voc
Rth = Voc/Isc
其中,Vth为等效电路的电压源,Rth为等效电路的内部电阻,Voc为开路电压,Isc 为短路电流。
2.诺顿定理
In = Isc
3.等效电路
等效电路是指具有相同电学特性的两个电路,它们在电性能上是等价的,可以相互替代。
在分析和设计电路时,我们可以将一个复杂的电路转化为一个简单的等效电路来替代原电路,从而使分析和设计电路变得更容易。
等效电路的基本特点是:
1)等效电路与原电路在端口参数方面具有相同的电学特性。
等效电路的应用主要有以下两个方面:
1)简化电路分析。
将一个复杂的电路转化为等效电路来代替原电路,从而使电路的分析变得更简单和方便。
2)设计和优化电路。
根据等效电路的特性和性能,我们可以对电路进行优化和设计,从而实现电路的更好性能和更高效的运行。
本文简要介绍了戴维南定理、诺顿定理和等效电路的概念和基本原理。
希望读者可以通过学习这些电路定理,更好地掌握电路分析和设计的技能。
戴维南定理与诺顿定理

戴维南定理与诺顿定理
六、实验报告要求:
1、根据测量数据,在同一坐标系中绘制等效
前后的U-I曲线;
2、将理论值与实验测量数据相比较,分析(fēnxī)
产生误差的原因;
3、实验小结。
共十六页
内容(nèiróng)总结
戴维南定理与诺顿定理。戴维南定理与诺顿定理。戴维南定理与诺顿定 理。1、通过验证戴维南定理与诺顿定理,加深对等效概念的理解。2、学 习测量有源二端网络的开路电压和等效内阻的方法。将原网络端口a、b之 间用导线短接,流过导线的电流就是短路电流Isc。戴维南定理和诺顿定理 是一对互为对偶形式的定理。Uoc = Isc ×Ro。1、利用戴维南定理和诺顿定 理分别计算(jìsuàn)该网络的开路电压U’oc、等效电阻R’o和短路电流I’sc
源Is=10mA,接入实验电路,测量该网络(wǎngluò)的
开路电压Uoc、等效内阻Ro和短路电流Isc,分别 填入表2.3.3中。(注:本实验中开路电压Uoc 、等效内阻Ro 的测量均采用直接测量法。)
Uoc(V)
Isc(mA)
R0(Ω)
Uoc/Isc (Ω)
实测值
共十六页
戴维南定理与诺顿定理
2、诺顿定理:
任何(rènhé)一个线性有源二端网络,对外电路来说,总 可以用一个理想电流源和电导并联的有源支路代替,
其中理想电流(diànliú)源的电流(diànliú)值等于原
网络端口的短路电流Isc,电导等于原网络中所有独 立电源为零时的等效电导。
诺顿等效
共十六页
戴维南定理与诺顿定理
戴维南定理和诺顿定理是一对 互为对偶(duì ǒu)形式的定理。对同一 个电路而言,其开路电压Uoc、短 路电流Isc和等效内阻Ro满足下式:
戴维南定理和诺顿定理
戴维南定理和诺顿定理引言在电路理论中,戴维南定理和诺顿定理都是非常重要的理论。
戴维南定理和诺顿定理是解决电路中相互独立的两个部分联通时的问题,最早于19世纪初被提出。
本文将介绍这两个定理的定义、证明以及应用。
戴维南定理定义戴维南定理是指任何由电阻、电源和电线组成的电路网络,在一对电端子之间的电势差等于这一对电端子在电路网络中所取的任何一条通路的电阻乘以沿此通路的电流的代数和。
证明设电路网络中有一对电端子,其电压为V,电流为I,连接这一对电端子的任意通路电阻为R。
则戴维南定理可以写成如下的方程:V = IR戴维南定理可以很容易地从欧姆定律推导出来。
因为电势差等于电流和电阻的乘积:V = IR应用戴维南定理可以应用于解决电路中的任何问题。
例如,可以使用戴维南定理计算两个点之间的电位差;可以使用戴维南定理计算电路中的总电阻,以及计算电阻的并联和串联等。
诺顿定理定义诺顿定理是指任何由电阻、电流源和电线组成的电路网络,在任意两个电端子之间的电流等于这一对电端子所取的任意一条通路的电流源的代数和和这一对电端子所取的任意一条通路的电阻的倒数之和。
证明设电路网络中有一对电端子,其电流为I,连接这一对电端子的任意通路电阻为R,通路电流源为Is。
则诺顿定理可以写成如下方程式:I = I_s - IR将其化简可得:I_s = IR + I诺顿定理的本质和戴维南定理相同,只是引入了电流源。
应用诺顿定理和戴维南定理可以互相转换。
诺顿定理通常用于求解对称网络中的电路,因为对于这类电路,电压源和电流源的作用是相同的。
戴维南定理和诺顿定理是电路理论中非常基础的两个定理。
熟练掌握这两个定理可以在解决电路问题中起到重要的作用,可以大大简化计算难度。
同时,掌握这两个定理还可以帮助我们更深入地理解电路中电势、电流以及电阻等基本概念。
【推荐】电路原理基础:第二章 第四节 戴维南定理与诺顿定理
②对除源后的简单电阻电 路用串并联的方法求Ri : Ri
8 8
24 24
3
9
+
4V -
I
③由戴维南等效电路求I :
9Ω
RL
I UOC R i RL
9 9
4
7
0.25A
4 11
0.2A
RL 7 RL 11
此解法简单
7
例2.求图(a)电路的最简等效电路。
2I1
1Ω
5Ω I a
1Ω
5Ω
+ 1- 2V
I1
I1
I1 10Ω
+
U
-
(a)
b
解法一:求UOC 、Ri
2I1
5Ω I a
5Ω
I1
+
U
10Ω -
b
(b)
① I =0 求UOC.(图a)
UUOOCC
10I1 5(2I1
I1 )
1
I1
12
U( IO1C22A0)V
②除源(受控源不得除去)求Ri(图b)
3、一步法:端口不能开路,不能短路; 二端网络不能除源。
11
注意点:
1、对端钮处等效,即对外电路等效。
2、含源一端口网络一定是线性网络。
3、外电路为任意(线性、非线性、有源、无源、支 路或部分网络均可)。
4、开路电压uoc与端电压u不同,要注意等效电压源 uoc的参考极性。
5、若含源一端口网络NS内具有受控源时,这些受控 源只能受NS内部(包括端口)有关电压或电流控 制,而NS内部的电压或电流也不能作为外电路中 受控源的控制量。即NS与外电路之间一般应没有 耦合关系。
戴维南定理和诺顿定理
01
பைடு நூலகம்
戴维南定理
任何有源线性二端网络,总可以用一个电压源和一个电阻串联来表示。
电压源的电压等于网络的开路电压,电阻等于网络内部所有独立源为零
时的等效电阻。
02
诺顿定理
任何有源线性二端网络,总可以用一个电流源和一个电阻并联来表示。
电流源的电流等于网络的短路电流,电阻等于网络内部所有独立源为零
时的等效电阻。
交叉学科研究
随着电子工程与其他学科的交叉融合,戴维南定理和诺顿定理可以与其他学科的理论和方法相结合,开 展交叉学科的研究和应用。
THANKS
戴维南定理与诺顿定理在电路分析中的应用选择
选择应用戴维南定理或诺顿定理取决于具体电路的特性和需求。如果需要计算一端口网络的开路电压 或短路电流,则应用戴维南定理;如果需要计算一端口网络的等效电阻或等效电流,则应用诺顿定理 。
在实际应用中,可以根据一端口网络的性质和电路分析的目的选择合适的定理。例如,对于一个无源 一端口网络,如果需要计算其等效电阻,则可以选择应用诺顿定理;对于一个有源一端口网络,如果 需要计算其开路电压或短路电流,则可以选择应用戴维南定理。
诺顿定理
任何一个有源线性二端网络,对其外部电路来说,都可以用一个等效的理想电流 源和电阻并联的电源模型来代替。其中,理想电流源的电流等于有源线性二端网 络的短路电流,电阻等于该网络的开路电压与电流源电流的比值。
戴维南定理和诺顿定理的重要性
简化电路分析
通过应用戴维南定理和诺顿定理,可以将复杂的有源电路简化为简单的电源模型,从而简化电路 分析过程。
电子设备设计
在电子设备设计中,可以利用戴维南定理来计算电路的性能 参数,如电压放大倍数、输入电阻等。
戴维南定理和诺顿定理
戴维南定理和诺顿定理1.戴维南定理一个线性含源一端口网络,对外电路来说,可以用一个电压源和电阻串联的电路等效替换。
电压源电压等于该一端口网络的开路电压uoc;电阻等于一端口网络内部所有独立源置零后的等效电阻Req 。
线性含源网络11′1′1戴维南等效电路u oc+–u oc+–R eq2.诺顿定理一个线性含源一端口网络,对外电路来说,可以用一个电流源和电阻并联的电路等效替换。
电流源电流等于该一端口网络的短路电流isc;电阻等于一端口网络内部所有独立源置零后的等效电阻Req 。
线性含源网络11′诺顿等效电路i scR eq1′1i sc3.定理证明R eq u oc +–线性含源网络支路支路i u +–i线性含源网络u (1)+–线性含源网络)2()1(u u +=oc u =i R eq −=iu (2)+–线性无源网络i R u eq oc −==+R eq iR u eq oc −=u +–i–u +i有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)线性无源网络4.定理应用线性含源网络支路支路线性含源网络u oc :将代求支路断开后的一端口的开路电压。
R eq :将一端口内部独立电源全部置零后所得无源一端口的等效电阻。
u oc +–R eqR eq u oc+–戴维南定理的应用线性无源网络R eq 的计算方法(1)一端口内部不含受控源,电阻串联、并联和Y-∆等效法。
(2)一端口内部含有受控源,电压比电流法:加电压求电流或加电流求电压。
(3)开路电压-短路电流法。
iuR =eq i sc i sc u oc +–scoc eq i u R =eqocR u =线性含源网络R eq u oc+–ii u +–线性无源网络线性含源网络支路支路线性含源网络i sc :将代求支路断开后的一端口的短路电流。
R eq :将一端口内部独立电源全部置零后所得无源一端口的等效电阻。
R eq诺顿定理的应用i scR eq 诺顿等效电路可由戴维南等效电路经电源等效变换得到i scu oc+–sc oceq i u R =惠斯通电桥x eq oc R R u I +=+–u s R 2R 4R 1R 3I R x +–u s 11′R 2R 4R 1R 3R eq u oc+–11′R x I 求戴维南等效电路)(211433s oc -R R R R R R u u ++=4422R R R R R R R R R +++=3311eq 断开R x 支路42423131s 424313sc R R R R R R R R u R R R R R R i ++++−+=)(i sc R 411′R 2R 1R 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)开路电压
将支路1从图中移去后,电路如图所示。
用网孔法:
在外围电路中应用KVL得
开路电压
(2)求戴维南等效电阻
将上图中的独立源置零后的电路如图所示:
(3)电路化简为
∵
∴
例2已知: , , , , 。
试计算电流I3(用戴维南定理)
解:(1)求开路电压 。
注意:应用戴维南定理时,具有耦合的支路必须包含在二端网络N之内。
电路符号:
一、戴维南定理
(一)定理:
一含源线性单口一端网络N,对外电路来说,可以用一个电压源和电阻的串联组合来等效置换,此电压源的电压等于端口的开路电压,电阻等于该单口网络对应的单口松驰网络的输入电阻。(电阻等于该单口网络的全部独立电源置零后的输入电阻)。
上述电压源和电阻串联组成的电压源模型,称为戴维南等效电路。该电阻称为戴维南等效电阻。
5.在画戴维南等效电路时,等效电压源的极性,应与开路电压相一致。
6.戴维南等效电路等效的含义指的是,网络N用等效电路替代后,在连接端口ab上,以及在ab端口以外的电路中,电流、电压都没有改变。但在戴维南等效电路与被替代网络N中的内部情况,一般并不相同。
例1 , , , , , , ,R1可变,试问:R1=?时 。
(I3被处理在N之内)
∵ ,∴
(2)求等效电阻Req,用开、短路法
(1)
(2)
(2)代入(1)得
∴短路电流
(3)电路化简为
例3已知: , , , , , , , , 。
试求电流 。
解:本例只要计算电流 ,采用戴维南定理求解是适宜的。
1)ab左端网络的等效参数
2)cd右端网络的等效参数
3)电路化简为
∴
求戴维南等效电路,对负载性质没有限定。用戴维南等效电路置换单口网络后,对外电路的求解没有任何影响,即外电路中的电流和电压仍然等于置换前的值。
(二)戴维南定理的证明:
1. 设一含源二端网络N与任意负载相接,负载端电压为U,端电流为I。
2.任意负载用电流源替代,取电流源的电流为 。
方向与I相同。替代后,整个电路中的电流、电压保持不变。
例1.求戴维南等效电路
解:1)求开路电压
(V)
2)求等效电阻
a) 用外加电压源法
( )
b) 用外加电流源法
( )
c)用开短路法
,
( )
3)画戴维南等效电路
例2.求戴维南等效电路,r=2
解:1)求开路电压
2)求等效电阻
用外加电流源法
3)戴维南等效电路:
§4-3戴维南定理和诺顿定理
戴维南定理(Thevenin’stheorem)是一个极其有用的定理,它是分析复杂网络响应的一个有力工具。不管网络如何复杂,只要网络是线性的,戴维南定理提供了同一形式的等值电路。
在§2-4(输入电阻和等效电阻)一节中曾介绍过二端网络/也叫一端口网络的概念。(一个网络具有两个引出端与外电路相联,不管其内部结构多么复杂,这样的网络叫一端口网络)。
下面用叠加定理分析端电压U与端电流I。
3.设网络N内的独立电源一起激励,受控源保留,电流源IS置零,即ab端开路。这时端口电压、电流加上标(1),有
4. IS单独激励,网络N内的独立电源均置零,受控电源保留,这时,含源二端网络N转化成单口松驰网络N0,图中端口电流、电压加上标(2),
外加电压源法
外加电流源法
③开短路法
(四)应用戴维南定理要注意的几个问题
1.戴维南定理只适用于含源线性二端网络。
因为戴维南定理是建立在叠加概念之上的,而叠加概念只能用于线性网络。
2.应用戴维南定理时,具有耦合的支路必须包含在网络N之内。
3.计算网络N的开路电压时,必须画出相应的电路,并标出开路电压的参考极性。
4.计算网络N的输出电阻时,也必须画出相应的电路。
含源单口(一端口)网络──内部含有电源的单口网络。
单口网络一般只分析端口特性。这样一来,在分析单口网络时,除了两个连接端钮外,网络的其余部分就可以置于一个黑盒子之中。
ቤተ መጻሕፍቲ ባይዱ含源单口网络的电路符号:
图中N──网络
方框──黑盒子
单口松驰网络──含源单口网络中的全部独立电源置零,受控电源保留,(动态元件为零状态),这样的网络称为单口松驰网络。