厂用电率
综合厂用电率偏高分析

20M 木仁高勒光伏电站综合厂用电率偏高分析阿拉善左旗光伏电站近几月发电指标与新能源公司下发的发电计划对比如下表:实际指标 计划指标 月份 发电量 厂用电率 综合厂用电率 发电量 厂用电率 综合厂用电率 1月份 295.620 1.60 3.16 250 0.87 3.03 2月份 270.925 1.03 2.51 250 0.86 3.03 3月份 316.5770.461.733100.471.45完成率(%) 月份 发电量 厂用电率 综合厂用电率1月份 118.2 183.9 104.3 2月份 108.4 119.8 82.8 3月份102.197.9119.3由以上两表可见,三个月的发电量指标均完成,但一三月份的综合厂用电率却超出计划。
由综合厂用电率计算公式:%100⨯=日发电量综合厂用电量综合厂用电率W W L综合厂用电量W =日发电量W –日上网电量W +日购网电量W由公式知,日发电量低、日上网电量低、日购网电量高都能导致综合厂用电率的偏高。
现根据我厂站实际情况进行分析。
一、根据厂站实际情况分析,可能导致发电量降低的因素有以下几点。
1、受本地沙尘天气多发因素的影响,可能导致光伏板附尘较多影响光电转化效率,从而导致发电量的下降。
基于此项,统计厂站光伏板清洗前后的发电量,得出下表:时间 已清洗1区发电量(kw ·h )未清洗16区发电量(kw ·h )3月4日 6424.3 5771.5 3月5日5444.54758.53月6日6595.4 58003月7日5406.1 4791.93月8日5884.2 5284.93月9日4017 3581.73月10日5166 4738.4 合计38937.534726.9根据表格统计,算出清洁的光伏板全站全月(按30天计)应发333.75万kw·h。
我厂厂用电率高原因分析及采取措施

我厂厂用电率偏高原因分析及建议改进措施自投产到现在我厂厂用电率一直偏高,以下是今年5月、6月、7月(截止至29日)份和去年5、6、7月份的发电量和厂用电率、综合厂用电率的对比:由上表可以看出,今年虽然负荷率有所下降,并且增加了化学石灰石和循环水处理两套耗电系统,但经过一年的攻关和技术改造,厂用电率还是有了一定程度的下降。
但是如果与行业内平均值相比我们还是有一定差距。
一、厂用电率高的原因分析:1、我公司锅炉主要辅机设备选型偏大以7月30日19时,#2机组为例从上表可以看出,580MW负荷时,三大风机(除增压风机外)的实际运行电流是额定电流的50%—60%,(如果考虑到#2GGH差压大的因素,实际运行电流会更小一些)几乎有一半的富裕容量,三大风机的动(静)叶开度都为60%左右。
而经上表得出的锅炉吸、送、一次风机的耗电率之和为1.3%,可见这三大风机的耗电率偏高是导致整个厂用电率偏高的一个重要原因。
2、负荷率偏低,造成厂用电率高发电出力越高,厂用电率相对越小,经统计资料表明,大型机组负荷率每变化1%,厂用电率变化0.03%,我厂4、5、6月份发电量均未完成计划,虽然经过各种努力,但综合厂用电率还是未完成计划任务。
7月份计划负荷率78%,实际完成73%,影响厂用电率升高0.15%。
3、设备或系统缺陷原因影响厂用电率升高1)、以下是7月20日—7月26日与厂用电率相关的参数周参数累计报表:2)、通过上表可以看出,#2锅炉三大风机、磨煤机、脱硫系统耗电率均高于#1锅炉,原因如下:3)、因#2锅炉空预器漏风、空预器效率低、磨煤机冷风门内漏等原因,使磨煤机出口温度偏低,为提高出口温度被迫提高一次风压,使一次风机电耗升高。
4)、因#2磨煤机磨损严重,#2炉磨煤机电耗升高。
5)、#2脱硫GGH差压大,导致#2脱硫和#2吸风机耗电率偏高。
4、环境温度升高影响1)、今年从6月份以来环境温度比去年高,且高温持续时间长,为了保证机组真空,经常保持三台甚至四台循环水泵运行。
厂用电率计算方法

厂用电率计算方法厂用电率是指工厂每天或每月所消耗的电量与工厂的生产产量之间的比率。
厂用电率的计算方法可以分为简单的比率计算和复杂的综合分析计算两种方法。
一、简单的比率计算方法:1.根据工厂的生产产量和电量计算出单位产量所消耗的电量。
单位产量所消耗的电量=工厂的电量/工厂的产量。
2.根据单位产量所消耗的电量计算出厂用电率。
厂用电率=单位产量所消耗的电量/1二、复杂的综合分析计算方法:1.分析工厂的电耗现状:根据工厂的生产情况,逐个设备分析其用电情况,包括功率、使用时间等因素。
记录下每个设备的用电量并分类统计。
2.计算每个设备的电耗率:设备的电耗率=设备的用电量/设备的产量。
对每个设备进行电耗率的计算,并记录下来。
3.综合分析电耗率数据:根据设备的电耗率数据,对工厂的电耗情况进行综合分析。
可以针对不同设备的电耗率进行比较,找出用电量较高的设备,并进行优化。
4.优化设备和工艺:根据分析结果,对用电量较高的设备进行优化。
可以采取调整设备的使用时间、更换高效节能设备或改进工艺等方法来减少用电量。
5.监测和管理:建立电耗监测系统,定期监测和记录用电量,及时发现和解决用电量异常问题。
同时建立用电管理制度,加强对用电情况的管理和监督。
三、注意事项:1.在计算厂用电率时,要对电量和产量进行准确的测量和记录,以确保结果的准确性。
2.在综合分析电耗率时,要考虑到不同设备的使用时间、工艺的复杂程度等因素,以确保分析结果的科学性和实用性。
3.在优化设备和工艺时,要综合考虑成本、效益和环保等因素,寻找最佳的节能措施。
4.在监测和管理过程中,要注重数据的及时性和可靠性,确保用电管理的有效性和实效性。
总结起来,厂用电率的计算方法可以采用简单的比率计算或复杂的综合分析计算。
采用综合分析计算方法可以更全面地了解工厂的电耗情况,并对电耗率进行综合分析和优化。
在计算和分析过程中要注意数据的准确性和科学性,并加强对用电的监测和管理。
火力发电厂技术经济指标介绍

火力发电厂技术经济指标介绍关键信息项:1、发电煤耗名称:____________________________定义:____________________________单位:____________________________计算公式:____________________________影响因素:____________________________2、厂用电率名称:____________________________定义:____________________________单位:____________________________计算公式:____________________________影响因素:____________________________3、供电煤耗名称:____________________________定义:____________________________单位:____________________________计算公式:____________________________影响因素:____________________________ 4、机组热效率名称:____________________________定义:____________________________单位:____________________________计算公式:____________________________影响因素:____________________________ 5、设备可用率名称:____________________________定义:____________________________单位:____________________________计算公式:____________________________影响因素:____________________________ 11 发电煤耗发电煤耗是指火力发电厂每发一度电所消耗的标准煤量。
火电厂厂用电率的状况及对策

火电厂厂用电率的状况及对策摘要:近年来,随着用电的逐渐增多,作为发电主力的火电厂的负荷也在不断的增加。
火电厂在进行电力生产的过程中,需要大量的电动机拖动设备,以此保证主要设备,例如锅炉、汽轮机、发电机、运输系统等和辅助设备的正常运行。
而带动这些机械设备运行、操作、照明、实验等的总耗电量,被称之为厂用电。
厂用电占用同一时期火电厂全部发电总量的百分比,被称之为厂用电率。
厂用电是火电厂发电供给自身运作的动力,同时也是火电厂的重要负荷之一。
厂用电的多少与火电厂的类型、机械化和自动化的程度、燃料种类以及燃烧方式、蒸汽参数等等有直接的关系。
本文分析了火电厂厂用电的使用状况,找出了降低厂用电率的办法及对策,意在从根本上推进火电厂的节能降耗工作。
关键词:火电厂;厂用电;厂用电率;现状;节能;对策Abstract: in recent years, along with the power increasing, as the main power of the load of thermal power plants has been increased. Coal-fired power plants in the process of power production, need a lot of motor drive device, to ensure the main equipment, such as boiler, turbine, generator, transportation system and the normal operation of the auxiliary equipment. And driving the mechanical equipment operation, operation, lighting, experiment, etc. The total power consumption, is called “auxiliary power. Auxiliary power occupy the same percentage of total power generation in thermal power plants, known as auxiliary power rate. Auxiliary power is a power plant generating operation of the power supply itself, is also one of the important load of thermal power plants. How many and the type of power plant auxiliary power, mechanization and automation degree, type of fuel and combustion mode, steam parameters and so on have a direct relationship. Coal-fired power plant are analyzed in this paper the use of auxiliary power status, find out the ways to reduce the service-power consumption rate and countermeasure, to fundamentally promote the coal-fired power plant energy saving work.Key words: thermal power plants; Auxiliary power; Auxiliary power rate; The status quo; Energy saving; countermeasures节能降耗一直是我国经济发展的国策,也是一项长远的战略方针。
平均厂用电率

平均厂用电率摘要:一、什么是平均厂用电率二、平均厂用电率的计算方法三、平均厂用电率的作用和意义四、如何提高平均厂用电率正文:一、什么是平均厂用电率平均厂用电率,顾名思义,是指在一个特定的时间段内,工厂所用电力的平均消耗率。
它是衡量工厂能源使用效率的重要指标,对工厂的运营成本、环保和可持续发展等方面具有重要影响。
二、平均厂用电率的计算方法平均厂用电率的计算方法相对简单,公式为:平均厂用电率(千瓦时/千瓦时)= 总用电量(千瓦时)/ 总产值(千瓦时)。
其中,总用电量是指在特定的时间段内,工厂所消耗的全部电力。
总产值则是在同一时间段内,工厂所生产的全部产品和服务的价值。
通过这两个数据,我们就可以计算出平均厂用电率。
三、平均厂用电率的作用和意义平均厂用电率对于工厂来说,具有重要的作用和意义。
首先,它是衡量工厂能源使用效率的重要指标。
能源使用效率的提高,意味着成本的降低和利润的提高。
其次,它是评估工厂环保程度的重要依据。
平均厂用电率越低,说明工厂的能源消耗越少,对环境的影响也就越小。
最后,它是工厂制定节能减排计划的重要依据。
通过比较不同时间段的平均厂用电率,工厂可以找出能源消耗的高峰期和低谷期,从而制定出合理的节能减排计划。
四、如何提高平均厂用电率提高平均厂用电率,需要从以下几个方面入手:一是提高能源利用效率。
这需要工厂引进先进的生产设备,优化生产流程,提高生产效率。
二是加强能源管理。
工厂需要建立健全的能源管理制度,定期对能源使用情况进行监测和分析,发现问题及时改正。
三是推广节能技术。
工厂可以引进和使用节能技术,如节能灯、太阳能发电等,降低能源消耗。
四是提高员工节能意识。
火电厂专业基础知识概述

火电厂专业基础知识一、电厂专业术语:1、发电机功率:是指发电机每小时连续发电量;常用MW /h表示,1MW/h =万kw/h,330MW/h =33万kw/h;2、锅炉容量:是指锅炉每小时连续蒸发量;常用吨表示,我厂锅炉蒸发量1020吨/小时;锅炉HG-1020/3、厂用电率:发电厂直接用于发电生产过程的自用电量占发电量的百分比;厂用电率=辅机消耗的电量/发电机发电量;4、机组补水率:是指机组每小时补水量除盐水与锅炉蒸汽流量之比;5、发电水耗:是指每发一度电所消耗的水量;冷却塔补水量多少,单位Kg/kW;6、供电标准煤耗:是指向网上供1度电所消耗的标准煤的数量;供电标准煤耗=上网电量/所消耗的标准煤;单位g/kwh;7、发电厂总效率:发电厂发出电能与所消耗总能量之比;300MW机组总效率在38%左右;发电厂总效率=锅炉效率×汽机效率×发电机效率;二、鄂尔多斯电力有限责任公司1至4机简介:鄂尔多斯电力有限责任公司1至4号机组为4×330MW凝汽式燃煤汽轮发电机组,发电机出口额定电压20KV,1、2机组分别经1、2主变升压为220KV送至鄂绒总降变220KV母线,3、4机组分别经3、4主变升压为220kV 送至棋盘井变电站220KV母线;四台机组共装设2台启备变,1启备变作为1、2机组的启动备用电源,2启备变作为3、4机组的启动备用电源,启备变电源取自鄂绒总降变220KV母线, 1、2启备变共用一个断路器,分别通过一组分支隔离开关引至1、2启备变;鄂尔多斯电力有限责任公司1至4号发电机为北京重型电机厂引进法国阿尔斯通技术生产的QFSN330-2型汽轮发电机组,主要包括发电机、主变、高厂变、励磁变、脱硫变和短线路,发电机定子绕组共有54槽,静止机端并励,有刷励磁方式,定子采用双星形接线,发电机出口电压为20kV,定子引出线与主变压器、厂用变压器、脱硫变压器、励磁变压器及电压互感器采用封闭母线相连,封闭母线采用微正压装置充入干燥空气有效的防止绝缘受潮和发电机出口短路,发电机中性点经干式变压器接地以减小接地电流;发电机定子线圈和引出线采用定子冷却水冷却,发电机转子线圈、定子铁芯及其它部件采用氢气冷却,采用成套引进的密封油系统,发电机配置有4组氢气冷却器;鄂尔多斯电力有限责任公司1至4号汽轮机为北京重型电机厂引进法国阿尔斯通技术生产的540/540型亚临界一次中间再热、单轴、三缸双排汽、凝汽式汽轮机;汽轮机采用高、中压汽缸分缸,通流部分对称布置,高、中压缸均采用双层缸;低压缸对称分流布置,在低压排汽口装有水雾化降温装置;高、中、低压转子均为整锻转子,高压转子由一个单列调节级和10个压力级组成,中压转子由12个压力级组,低压转子由2×5个压力级组成;鄂尔多斯电力有限责任公司1至4号锅炉HG-1020/为亚临界参数,自然循环单炉膛,一次中间再热,平衡通风,四角喷燃,紧身封闭,固态排渣,全钢架悬吊结构汽包炉,燃用烟煤;锅炉整体呈“π”型布置;三、火电厂生产流程:火力发电厂的原料就是原煤;原煤一般用火车运或汽车送到发电厂的储煤场,在用输煤皮带输送到原煤仓;原煤从原煤仓落下由给煤机送入磨煤机磨成煤粉,并同时送入热空气来干燥和输送煤粉;形成的煤粉空气混合物经分离器分离后,合格的煤粉经过排粉机送入输粉管,通过燃烧器喷入锅炉的炉膛中燃烧;燃料燃烧所需要的热空气由送风机送入锅炉的空预器中加热,预热后的热空气经过风道一部分送入磨煤机作干燥以及输送粉之外,另一部分直接引至燃烧器进入炉膛作为助燃之用,燃烧生成的高温烟气,在引风机的作用下先沿着锅炉的倒“U”形烟道一依次流过炉膛,水冷壁管,过热器,省煤器,空气预热器,同时逐入将烟气的热能传给工质以及空气,自身变成低温烟气,经除尘器净化后的烟气由引风机抽出,经脱硫后经烟囱拍入大气;煤燃烧后生成的灰渣,其中大的灰子会因自重从气流中分离出来,沉降到炉膛底部的冷灰斗中形成固态渣,最后由捞渣机排入渣仓,由汽车外运;大量细小的灰粒飞灰则随烟气带走,经电除尘器分离后,送到干灰系统外运;锅炉给水先进入省煤器预热到接近饱和温度,后经蒸发器受热面加热为饱和蒸汽,再经过热器被加热为过热蒸汽,此蒸汽又称为主蒸汽;主蒸汽又经过主蒸汽管道进入汽轮机高压缸膨胀做功,高压缸做完功蒸汽再次引入锅炉再热器再次加热,加热后的再热蒸汽加热汽轮机中压缸做功,从而带动发电机发电;从汽轮机排出的乏汽排入凝汽器,被凝结冷却成水,通过凝结水泵送出经化学处理后,再经低压加热器,除氧器,高压加热器进行加热、除氧,最后由给水泵送到锅炉,从而使工质完成一个热力循环;电厂主要设备可分为以下几个重要部分;一、锅炉火电厂中锅炉设备的主要任务就是通过燃烧,把燃料的化学能转化成热能,锅炉的产品就是高温高压蒸汽,在锅炉机组中的能力转换主要包括三个过程:燃料的燃烧过程,传热过程和水的汽化过程;燃料和空气中的氧气在燃烧室中混合,氧化燃烧,生成高温烟气,这个过程就是燃烧过程;高温烟气通过锅炉的各个受热面传热,将热能传给锅炉的工质——水;水吸热后汽化变成饱和蒸汽,饱和蒸汽进一步吸热变成高温过热蒸汽,这就是传热和水的汽化过程;二、汽轮机汽轮机是把工质的热能转变成机械能的设备,由锅炉的过热器出来的主蒸汽经过主蒸汽管道进入汽轮机膨胀作功,冲转汽轮机,从而带动发电机发电;汽轮机还分成高压缸、中压缸、低压缸,高压缸做过功的蒸汽引致锅炉再热器再经过加热加压后送至中压缸,这个过程又称中间再热,中压缸做过功的蒸汽排至低压缸继续做功,低压缸的排汽又称作乏汽排入凝汽器凝结成水,此凝结水称为主凝结水,主凝结水通过凝结水泵排出,再经过加热和除氧,由给水泵打出经过高压加热器加热送入锅炉,从而使工质完成一个热力循环;汽轮机又分成许多做功单元—级,从中间级抽出部分蒸汽分别引致各级加热器,除氧器加热给水除氧,提高给水温度,从而提高循环效率;三、发电机发电机是将机械能转化为电能的设备,主要由定子、转子、机座、端盖、轴承等部件组成;定子和转子的主要部件是铁芯和绕组;发电机转子和汽轮机转子刚性连接,转子绕组在运行时被输入励磁电流,用以建立磁场,这个原理和电磁铁是一样的,励磁电流通常由专用的励磁发电机或励磁变压器提供,这样在汽轮机带动发电机转子高速旋转时,便在定子铁芯中建立3000转/分频率50赫兹的旋转磁场,处在定子铁芯槽内的定子绕组做切割磁力线运动,产生电流,从而将机械能转化为电能,在相同的电能功率条件下,电压越高,电流越小,这样在远距离输送时损耗也越小,因此,发电机发出的电能大部分经过主变压器升压220KV、500KV后送至电网,少部分通过厂用变压器转化为厂内生产所必须的电能;四、火电厂三大主要设备及组成:1、锅炉部分:锅炉包括锅和炉两部分及辅机系统,炉包括:炉膛、空预器、燃烧器;锅包括:水冷壁、汽包、过热器、再热器、省煤器;锅炉系统包括:制粉系统、风烟系统、给水系统、过热蒸汽系统、再热蒸汽系统、除渣系统、除灰系统; 2、汽机部分:汽机部分包括静止部分和转动部分,静止部分包括:汽缸、隔板、喷嘴、轴承和轴封;转动部分包括叶轮、轴、叶片;汽机系统包括:凝结水系统、低加系统、高加系统、轴封系统、循环水系统、润滑油系统、真空系统、密封油系统、EH油系统、旁路系统;3、发电机部分:发电机通常由、、..机座及等部件构成;定子由机座.定子铁芯、线包、以及固定这些部分的其他组成;转子由转子铁芯、转子磁极有磁扼.磁极绕组、滑环、又称铜环.集电环、风扇及转轴等部件组成;五、辅网部分:1、输煤系统:汽车卸煤沟→1皮带→1转运站→2皮带→2转运站→3皮带→3转运站→4皮带→梳式筛→碎煤机→4转运站→除木器→5皮带→除铁器→6皮带→7皮带→煤仓;2、水化系统:万吨水池生水→生水加热器→3套盘式过滤器→6套超滤→超滤水箱→超滤水泵→3套反渗透→淡水箱→淡水泵→一级混床→二级混床→除盐水箱→除盐水泵→百吨水箱→凝汽器;3、脱硫系统:引风机出口→增压风机→GGH→吸收塔→GGH→烟囱→大气;4、除灰系统:炉底大渣→刮板捞渣机→碎渣机→渣沟→前池→除渣水泵→灰渣分配箱→高效浓缩机→渣→汽车→灰场;高效浓缩机→水→清水箱→除灰水泵→渣沟;空预器出口烟气→电除尘灰→气力输灰→灰库→汽车→灰场;六、变电站部分:装订线七、机组整体启动:厂用倒送→公用母线送电→工作段送电→工业水泵启动→空压机启动→化水系统制水→输煤系统上煤→冷却塔补水→第一台循环水泵启动→高压工业水泵启动→汽机润滑油投入→发电机密封油投入→发电机氢气置换→汽机盘车启动→100吨水箱补水→凝汽器补水→凝泵启动上水→定冷水投入→除氧器投加热→第一台电泵启动锅炉上水→空预器启动→锅炉风烟系统启动→捞渣机启动→锅炉点火及第一台磨煤机启动→汽机抽真空→汽机冲转→高低加投入→汽机3000转→发电机并网→负荷30MW时汽机切缸→第二台磨煤机启动→负荷66MW时汽机疏水关闭→厂用切换→除氧器汽源切换→第二台电泵启动→第二台循泵启动→第三台磨煤机启动→汽机轴封切换→机组负荷200MW时油枪撤出→除尘投入→脱硫投入→第四台磨煤机启动→机组负荷加满→启动结束;八、煤质变化对机组运行的影响一、煤发热量变化对机组负荷、厂用电率及灰分的影响:在总煤量保持在165吨/小时,煤的发热量发生变化时机组负荷相应也会发生变化,根据反平衡推算出煤的热值发生变化与机组负荷变化、厂用电率变化及煤中灰1、如果煤的发热量由4500大卡/千克下降到4000大卡/千克,一台机组电量每小时损失万度电,一天损失万度电,一个月损失万度电,一年损失亿度电;四台机全年损失亿度电;2、如果煤的发热量由4500大卡/千克下降到3800大卡/千克,一台机组电量每小时损失万度电,一天损失万度电,一个月损失3700万度电,一年损失亿度电;四台机全年损失18亿度电;3、如果煤的发热量由4500大卡/千克下降到4000大卡/千克,厂用电率由%升高到%,每台机一小时多耗厂用电1122度电,一天多耗厂用电万度电,一个月多耗厂用电万度电,一年多耗厂用电万度电;四台机全年多耗厂用电万度电;4、如果煤的发热量由4500大卡/千克下降到3800大卡/千克,厂用电率由%升高到%,每台机一小时多耗厂用电1551度电,一天多耗厂用电万度电,一个月多耗厂用电万度电,一年多耗厂用电万度电;四台机全年多耗厂用电万度电;5、如果煤的发热量由4500大卡/千克下降到4000大卡/千克,煤中的灰分由%升高到%,每台机每小时多产生吨灰和吨的渣,每天多产生吨灰和吨渣,每年多产生万吨灰和吨渣;6、如果煤的发热量由4500大卡/千克下降到3800大卡/千克,煤中的灰分由%升高到%,每台机每小时多产生吨灰和吨的渣,每天多产生吨灰和吨渣,每年多产生万吨灰和万吨渣;二、煤质变差对制粉系统的影响1、造成制粉电耗增加,致使机组的综合厂用电率大幅度提高,给节能降耗带来很大的困难;2、磨煤机研磨部件磨损严重,设备的寿命大大缩短,设备的可靠性降低,检修频繁,不仅加大了检修工作量,而且严重时影响机组带负荷;3、增加了检修人员和拉渣人员的工作量;三、煤质变差对除灰渣系统的影响1、锅炉燃烧劣质煤时,产生大量的灰渣,造成渣沟频繁堵塞;为确保渣沟的畅通不得不启动两台冲灰水泵和两台灰渣泵运行,导致机组的综合厂用电率大幅度提高;同时,刮板捞渣机磨损严重,频繁出现故障,故障严重时还需机组降负荷消缺,直接影响电量;2、锅炉燃烧劣质煤,电除除尘负担加重、输灰困难、输灰管路磨损严重,造成灰库容量明显不足,卸灰和拉灰工作量明显增加;3、增加了卸灰人员和检修人员的工作量;四、对锅炉汽温的影响1、锅炉煤质变差时,一方面锅炉吸送风机出力增加,机组的综合厂用电率大幅度提高;另一方面炉膛火焰中心上移,造成汽温调整困难,锅炉吹灰次数增加,机组的经济性降低;2、锅炉煤质变差时,机组总煤量增加,严重时机组负荷带不够,不能满足外界用户的需要;3、锅炉煤质变差时,锅炉送风量增加造成烟气量增加,低过金属壁温超温,为抑制低过壁温,机组主再热汽温不能维持在额定值运行,严重影响到机组的经济性;五、对锅炉受热面的影响1、锅炉燃烧劣质煤时,加速对水冷壁、过热器、再热器、省煤器受热面的磨损,设备的使用寿命大大缩短,严重时锅炉受热面频繁泄漏,机组不得不停运检修,检修工作量大大增加;2、锅炉燃烧劣质煤时造成烟气通道磨损严重,空预器支撑部件磨损严重,随着时间的增加而加剧,严重时空预器支撑部件磨穿坍塌,后果不堪设想;3、锅炉燃烧劣质煤时对引风机部件的磨损也显而易见,鄂电4台炉同样都存在因磨损严重而影响机组带负荷的不安全现象;六、其它影响煤中灰份是动力用煤中无用成分,灰份每增加1%,发热量将降低约kg,而煤中灰份硬度较大,是煤中有机物质的两倍,因此,对输煤设备及磨煤机造成冲刷和磨损,使设备提前进入剧烈磨损阶段,增加检修费用和发电成本;同样,煤中水份和硫份也是动力用煤中的无用成分,水份的上升会导致磨煤机出口温度降低,制粉困难,对输煤设备容易造成因下煤不畅而堵煤,对设备造成潜在的事故隐患;煤中硫的含量会对输煤设备及磨煤机造成严重腐蚀,增加检修费用,同样,对环境污染较大,增加人员职业病发病率;总之煤质变差及煤中水分大对机组负荷和电厂设备的影响是百害而无一利;附件:1、锅炉引风机导向叶轮磨损照片2、燃烧器磨损照片3、2炉A空预器内部磨损照片2张4、水冷壁磨损泄漏照片。
垃圾焚烧发电厂经济技术指标

垃圾焚烧发电厂经济技术指标在当今社会,随着城市化进程的加速和居民生活水平的提高,垃圾产生量也日益增加。
为了实现垃圾的无害化、减量化和资源化处理,垃圾焚烧发电技术应运而生。
垃圾焚烧发电厂作为一种新型的环保能源设施,其经济技术指标对于评估其运行效率、经济效益和环境影响具有重要意义。
一、垃圾处理量垃圾处理量是垃圾焚烧发电厂最基本的经济技术指标之一。
它指的是单位时间内焚烧处理的垃圾总量,通常以吨/日为单位。
垃圾处理量的大小直接影响着发电厂的规模和效益。
一般来说,垃圾处理量越大,发电厂的规模也就越大,单位成本相对越低,经济效益也就越好。
然而,垃圾处理量也受到当地垃圾产生量、收集运输能力以及发电厂处理能力等因素的限制。
二、垃圾热值垃圾热值是指单位质量的垃圾燃烧所释放的热量,通常以千焦/千克(kJ/kg)为单位。
垃圾热值的高低直接影响着焚烧炉的燃烧效率和发电效率。
热值较高的垃圾,燃烧时能够产生更多的热量,从而提高蒸汽参数,增加发电量。
反之,热值较低的垃圾则需要添加辅助燃料,以保证焚烧炉的正常运行,这会增加运行成本。
因此,在垃圾焚烧发电厂的设计和运营中,需要对垃圾热值进行准确的测定和分析,以便合理配置设备和优化运行参数。
三、焚烧炉温度焚烧炉温度是垃圾焚烧过程中的一个关键技术指标。
一般来说,焚烧炉的温度应保持在 850℃以上,停留时间不少于 2 秒,以确保垃圾中的有害物质得到充分分解和燃烧。
如果焚烧炉温度过低,不仅会影响垃圾的燃烧效果,还可能导致二噁英等有害物质的生成。
因此,通过合理的燃烧控制和炉型设计,保持稳定的焚烧炉温度对于保证垃圾焚烧发电厂的安全运行和环保达标至关重要。
四、蒸汽参数蒸汽参数包括蒸汽压力和温度,它直接影响着汽轮机的发电效率。
较高的蒸汽压力和温度可以提高汽轮机的做功能力,从而增加发电量。
目前,垃圾焚烧发电厂的蒸汽参数一般在 40MPa、400℃左右,随着技术的不断进步,一些先进的垃圾焚烧发电厂已经能够达到更高的蒸汽参数,提高发电效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电厂建设技术经济的考核指标主要有厂用电率、汽机热耗、锅炉效率、发电机效率、变压器损耗等,这些指标在工程建设过程中控制的好坏,直接影响电厂长期运行的经济效益。
控制和减少消耗在电厂内部的能量。
就增加了电厂输出的能量。
现在国内外电厂已在逐步重视和解决这个问题。
下面仅就厂用电率谈一些看法。
厂用电率是电厂主要技术经济指标之一,我国电力行业一般认为是发电厂电力生产过程中所必需的自用电量占发电量的百分比。
厂用电量包括电力生产过程中电动机、照明、采暖通风以及其它控制、保护装置等所耗用的电能,不包括非发电(如机修厂、基本建设、大修理后试运转以及食堂、宿舍、办公室、道路照明等)用电。
近年来,我国电厂向大装机容量发展,厂用电率有所降低,这也是大机组效益好的一个体现。
现在相同装机容量的机组的情况与过去比较是有变化的,厂用电率随着电厂自动控制水平提高而使机组运行状态逐步趋于合理。
同时,设备性能的改善,设计水平、管理水平的提高使电厂厂用电率也有所降低。
2.3国内外电厂过去对厂用电的要求
胜利发电厂2×210MW发电机组工程(1987年开始建设)在设计中提出厂用电率是8.3%。
近年来,随着市场经济的发展,招标的发展,业主对厂用电率是重要的技术经济指标的认识有了提高,国内外业主有了新的要求。
从下面的叙述可以看到,现在业主不仅提出技术性能指标要求,还提出对超标者给予严厉的经济制裁的要求,表现出对厂用电率的极大重视。
电厂本身是用电大户,业主应该对厂用电率给予重视。
现在国内外用户对厂用电率(厂用电量)超过标准就罚款的做法是正确的,尤其在市场经济的情况
下,更是有必要的。
承包电厂建设的单位在这个问题上首当其冲。
此外,还要靠设计管理部门、设计部门、制造厂、安装单位、运用单位共同努力,共同把关,厂用电率才会降低,电厂综合技术经济指标才会从计划变成现实。
设计规程应适应市场要求
设计规程(2000版)总则中提到“应选用高效率的大容量机组”,在总体规划中提到“应符合工程造价低,运行费用小,经济效益高”的要求。
规程同时在对一些风机选用时提出要留压头裕量达到5%~35%,风量裕量有些达到5%~35%,却没有对风机的运行效率选择提出要求。
一些泵也提出压头和流量裕度的要求,但没有对运行效率提出要求。
实际上还是没有把电厂技术经济指标(如厂用电)的事情放在要求和必保的规程内,也说明有关部门组织编写的规程应随着市场经济的要求进行调整。
否则,作为电力工程设计的依据将没有保证用户需求,也无法适应国内外电厂建设的要求。
系统设计优化
布局选型合理性
尽量达到满足规范、经济合理、适合运行、便于管理的要求,最大限度地发挥设备的功能。
如:
(1)送引风机及其它风机的烟风道的位置、距离、通径、转弯半径等,降低烟风道系统阻力,风门正常工作时的开启状况;
(2)储煤场的位置,输煤设备的输送距离、倾角、输送能力等;
(3)循环水泵房的位置、取水口的位置、转弯的半径等直接影响泵的输送距离和管道阻力;
(4)化学水处理车间的位置也影响除盐水的输送距离;
(5)集中空调系统的位置,减少输送距离,减少输送损耗;
(6)电缆的走向、长度等。
4.2.2措施合理性
如采用保温措施、施工工艺措施等,减少能量损耗。
4.2.3匹配合理性
(1)主机匹配合理,锅炉、汽轮机、发电机选型要一致;
(2)变压器和电动机的配置应选用合理容量,不要过高或过低;
(3)电缆材料、截面选用合理,减少发热损耗;
(4)配套设备宜选用小容量(如50%)2或3台并列运行,不要选单台100%运行的方式。
4.2.4合理选择工况区
选型工况点应尽量设在高效区,杜绝偏离高效区。
电厂考核时往往采用几种工况按一定比例加权计算,这样就应尽量把选型设备(不具备性能曲线可调功能的设备,如不是叶片可调的风机等)的工况点设在占比例大的机组工况点附近。
4.2.5设计选型杜绝大马拉小车
这个问题在风机、水泵上的反映特别突出。
笔者曾参与建设的国外某电厂1#、2#机的风机就发生过选型不合理的情况。
特别是2台引风机,电动机功率均为1800kW,机组满负荷正常运行时,风门开启只有25%~30%,单台电动机的
出力才1100kW。
当年1#机组启动时,锅炉由于风量过大发生天然气点不着火的情况。
风机选型过大本身就不合理,不仅多花了钱用于购设备,而且风机设备风门的调节性能很差,风门在打开很小的状态下运行,增大了风阻。
如果设计选型合理,风机和电动机减小,电动机的功率消耗还会减小,厂用电率当然也会降低。
上面所说的,强调的是改善和调整,是裕量予留的合理,是设备要按运行要求在设备高效区选型,是要优化设计。
4.3设备优化
如果每种设备的设计和选型合理,厂用电的消耗就能降下来。
4.3.1主机设备
(1)锅炉系统。
提高锅炉效率,对于锅炉的风阻、风量、风压要认真进行核算,不要因过于保守而造成向设计院提资时要求过高,使系统运行不便,且增加电耗。
研究采用正压通风方式,取消引风机等设备。
减少空气预热器的漏风。
(2)汽轮机系统。
提高汽轮机热效率,降低热耗;改善冷凝器设计,做到冷却面积和水阻设计合理,提高冷却效率。
(3)发电机系统。
提高发电机和励磁机的效率,降低铁损和铜损;改善氢油水系统的配置,提高水冷氢冷效果,降低损耗。
4.3.2电气设备
(1)变压器设备。
降低变压器的空载损耗(铁损和杂散损耗)和负荷损耗(铜损),提高变压器效率。
(2)封闭母线。
降低母线的损耗,增大母线截面,改变母线连接部位状况,减小
母线的阻抗,降低母线工作温度。
如采用制冷强风干燥。
4.3.3辅机设备
锅炉给水泵可采用小汽机拖动方式,但应综合分析,权衡利弊(小汽机费用比电动机高),再做选择。
采用变频电动机组拖动风机和水泵,长期运行对省电是无可非议的,但不是所有电力拖动均可采用此方案,需要做经济技术分析才可决定,否则,电厂造价会大幅增加,投标能否得到认可也有问题。
提高阀门质量,消除阀门内漏和外漏,合理选用阀门流道形式,减少阀门输送损失。
总之,现在通常采用提高辅机效率,用汽动拖动代替电力拖动以降低电耗(汽轮机驱动给水泵及锅炉送引风机),改善电动机和设备的拖动联接方式以降低损耗和改变传递性能(采用液力耦合器等);用双速电动机等变速传动装置提高电动机在不同工况的效率;采用叶片角度可调的轴流式风机和循环水泵以改善设备在不同工况下的出力效率等措施来降低厂用电率。
这些措施的确是可行的。
4.4 施工单位的质量监督
施工质量的好坏,直接影响厂用电量。
如保温、漏风、漏汽、漏水和管线的径、弯度等,需要承包建设单位协同设计部门和施工单位妥善处理。
4.5 改善主机和辅机运行方式
提高运行人员的素质,制定不同负荷条件下的厂用电指标,采取奖惩措施,使运行人员把厂用电率和工资奖金挂钩,使运行人员特别是值长,能在不同工况条件下运行时,采取不同的运行方式,如一台设备运行可以满足需要时,就不
启动第2台等。
在整套机组考核时的运行情况也直接影响厂用电率的测试效果。