第7章数字电子技术MULTISIM仿真实验2.

合集下载

Multisim数字电路仿真实验报告

Multisim数字电路仿真实验报告

低频电子线路实验报告—基于Multisim的电子仿真设计班级:卓越(通信)091班姓名:杨宝宝学号:6100209170辅导教师:陈素华徐晓玲学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:实验一基于Multisim数字电路仿真实验一、实验目的1.掌握虚拟仪器库中关于测试数字电路仪器的使用方法,入网数字信号发生器和逻辑分析仪的使用。

2.进一步了解Multisim仿真软件基本操作和分析方法。

二、实验内容用数字信号发生器和逻辑分析仪测试74LS138译码器逻辑功能。

三、实验原理实验原理图如图所示:四、实验步骤1.在Multisim软件中选择逻辑分析仪,字发生器和74LS138译码器;学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:2.数字信号发生器接138译码器地址端,逻辑分析仪接138译码器输出端。

并按规定连好译码器的其他端口。

3.点击字发生器,控制方式为循环,设置为加计数,频率设为1KHz,并设置显示为二进制;点击逻辑分析仪设置频率为1KHz。

相关设置如下图学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:五、实验数据及结果逻辑分析仪显示图下图实验结果分析:由逻辑分析仪可以看到在同一个时序74LS138译码器的八个输出端口只有一个输出为低电平,其余为高电平.结合字发生器的输入,可知.在译码器的G1=1,G2A=0,G2B=0的情况下,输出与输入的关系如下表所示学生姓名:杨宝宝学号:6100209170 专业班级:卓越(通信)091班实验类型:□验证□综合□设计□创新实验日期:实验成绩:当G1=1,G2A=0,G2B=0中任何一个输入不满足时,八个输出都为1六、实验总结通过本次实验,对Multisim的基本操作方法有了一个简单的了解。

Multisim仿真-数电

Multisim仿真-数电

表7.达1 相式转关换虚为拟逻仪器
辑图
最简表达式转换为逻辑图
7.2 逻辑函数的化简及转换
7.2.1 逻辑函数的化简
利用逻辑转换仪(Logic Converter):化简逻辑函数,得到 最小项表达式或最简表达式。
例:将逻辑函数 Y(A,B,C,D,E)=∑m(2,9,15,19,20,23,24,25,27,28)+d(5,6,16,31) 化简为最简与或表达式。
7.1 相关虚拟仪器
7.1.1 字信号发生器(Word Generator)
用于产生数字信号(最多32位),作为数字
信号源
字信号编 辑区
16 16




数据 触发端 准备端
•7.字1信相号关编辑虚区拟:按仪顺器序显示待输出的数字信号,可直接编
辑修改
• Controls选择区域:数字信号输出控制
Multisim电路仿真 快速入门
之数字电子技术
郭东亮 2010.5
内容
========★☆★○ 基础篇 ○★☆★======= 第1章 Multisim电路仿真软件简介 第2章 仿真基础Ⅰ(放置元件-电路图编辑-仿真-报告) 第3章 仿真基础Ⅱ(元器件库、虚拟仪器) 第4章 仿真基础Ⅲ(仿真分析方法)
Se7t:.1设相置数关字虚信号拟类仪型和器数量
Pre-set Patterns: 不改变字信号编辑区的数字信号 载入数字信号文件*.dp 存储数字信号 将字信号编辑区的数字信号清零 数字信号从初始地址至终了地址输出 数字信号从终了地址至初始地址输出 数字信号按右移方式输出 数字信号按左移方式输出

单击运行按钮,双击逻辑分析仪,测量 结果如图所示。

multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。

在这里,我们将引入Multisim的使用以及电路仿真实验报告。

Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。

通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。

1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。

在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。

在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。

接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。

最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。

1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。

通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。

同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。

希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。

2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。

它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。

使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。

2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。

Multisim电路设计与仿真第7章数字电路仿真

Multisim电路设计与仿真第7章数字电路仿真

217 第7章 Multisim 12在数字电路中的应用和仿真 本章主要介绍Multisim 12中在数字电路中的应用和仿真。

首先进行分立元件特性测试与仿真,然后介绍组合逻辑与时序逻辑电路的分析与仿真,最后介绍555定时器与数/模、模/数转换部分的分析与仿真。

7.1分立元件特性测试与仿真数字电路中逻辑变量有0和1两种取值,对应电子开关的断开和闭合。

构成电子开关的基本元件有二极管、三极管和MOS 管。

理想开关的开关特性有两种:(1)静态特性。

断开时,开关两端的电压不管多大,等效电阻R OFF =∞,电流I OFF = 0;闭合时,不管流过其中的电流多大,等效电阻R ON = 0,电压U AK = 0。

(2)动态特性。

开通时间t on =0,关断时间t off = 0。

客观世界中并没有理想开关。

乒乓开关、继电器、接触器等的静态特性十分接近理想开关,但动态特性很差,无法满足数字电路一秒钟开关几百万次乃至数千万次的需要。

二极管、三极管和MOS 管做为开关使用时,其静态特性不如机械开关,但动态特性很好。

本节主要介绍二极管和三极管的开关特性测试与仿真。

7.1.1二极管开关特性测试与仿真 二极管在正偏导通时的导通压降,硅材料约0.7V ,锗材料约为0.3V ,导通电阻约为几欧姆或几十欧姆,类似关闭合;反向截止时反向饱和电流极小、反向电阻很大(约几百千欧)类似开关断开。

1.使用伏安特性图示仪观察二极管伏安特性曲线图7-1 用伏安特性分析仪观察二极管伏安特性曲线在Multisim 环境下,单击元器件库栏按钮,在弹出的窗口中,“Datebase ”栏选择“Master Datebase”,“Group”栏选择“DIODE”,“Component”栏选择“1N4001”,其它选择默认,把二极管“1N4001”放置在工作区。

再单击仪器仪表库中(IV analyzer,伏安特性分析仪)按钮,放置在工作区。

鼠标左键双击伏安特性分析仪,打开设置窗口,“Component”栏选择“Diode”,可在设置窗口右下角看到二极管符号,即要求外部接线时,左侧端口接“P”区,中间端口接“N”区。

数字电子仿真实验教程(Multisim)

数字电子仿真实验教程(Multisim)
10
李良荣 编著 项目来源:贵州省教育厅 2008 年教学质量与教学改革工程项目“EDA 教学电子资源的建设”
2-9 所示。 (节点名 1 、2 ……是计算机根据连接电路的顺序自动产生的,可以显示和关闭,方 法是在设计窗口的空白处点击鼠标右键 ,然后点击弹出式菜单中的 窗口中 标签下的 可显示) ,再选择弹出
( 3 )由逻辑表达式转换为真值表; 假若我们在逻辑转换仪的下边框内中输入 Y ABC ABCD ABC D AD' ,如图 2-10 所示(用键盘上的单引号键入 “” ) ,然后点击 按钮可得到的真值表,如图
如图 1-1 所示左边的设计管理器可以将所有打开的设计项目中的任何一页置为当前设计 窗口,可以利用设计工具条中的 按钮开启/关闭。
6. 设计工具条
设计工具条如图 1-6 所示:
图 1-6 设计工具条
李良荣 编著 项目来源:贵州省教育厅 2008 年教学质量与教学改革工程项目“EDA 教学电子资源的建设” 4
贵州大学 EDA 技术教学电子资源
( 1) ( 2) 据表。 ( 3) 编辑。 ( 4) ( 5) ( 6) ( 7) ( 8) ( 9) ( 10 ) (11) ( 12 ) (13)
层次项目栏按钮 ( Toggle Project Bar ) ,用于设计管理器的开启 / 关闭。 层次电子数据表按钮 ( Toggle Spreadsheet view ) ,用于开关当前电路的电子数

件组的器件选择界面,其中一个 Group(元器件组)有多个 Family(元器件系列) ,每一个元
超连接
也叫封装名
图 1-3 通用器件选择窗口
3. 仪器工具条
仪表工具条如图 1-4 所示,它是进行虚拟电子实验和电子设计仿真的最快捷而又形象的 特殊工具,各仪表的功能名称与 Simulate 菜单下的虚拟仪表相同,如图 1-5 所示。

multisim仿真实验

multisim仿真实验

Multisim 电路仿真实验(适用于《电工技术》、《电工与电子技术1》课程)1 实验目的:熟悉电路仿真软件Multisim 的功能,掌握使用Multisim 进行输入电路、分析 电路和仪表测试的方法。

2 使用软件:NI Multisim student V12。

(其他版本的软件界面稍有不同)3 预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。

4 熟悉软件功能 (1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。

初步了解各部分的功能。

(2)初步定制:定制元件符号:Options|Global preferences ,选择Components 标签,将Symbol Standard 区域下的元件符号改为DIN 。

自己进一步熟悉全局定制Options|Global preferences 窗口中各标签中的定制功能。

(3)工具栏定制:选择:View|Toolbars ,从显示的菜单中可以选择显示或者隐藏某些工具栏。

通过显示隐藏各工具栏,体会其功能和工具栏的含义。

关注几个主要的工具栏:Standard (标准工具栏)、View (视图操作工具栏)、Main (主工具栏)、Components (元件工具栏)、Instruments (仪表工具栏)、Virtual (虚拟元件工具栏)、Simulation (仿真)、Simulation switch (仿真开关)。

(4)Multisim 中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。

另有一类只有封装没有模型的元件,只能布线不能仿真。

在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。

数字电路实验Multisim仿真完整版

数字电路实验M u l t i s i m仿真HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】实验一逻辑门电路一、与非门逻辑功能的测试74LS20(双四输入与非门)仿真结果二、门)三、与或非门逻辑功能的测试四、现路;一、分析半加器的逻辑功能二.74LS138接成四线-十六线译码器 00000001011110001111(2)用一片74LS153接成两位四选一数据选择器; (3)用一片74LS153一片74LS00和接成一位全加器(1)设计一个有A 、B 、C 三位代码输入的密码锁(假设密码是011),当输入密码正确时,锁被打开(Y 1=1),如果密码不符,电路发出报警信号(Y 2=1)。

以上四个小设计任做一个,多做不限。

还可以用门电路搭建实验三 触发器及触发器之间的转换1. D 触发器逻辑功能的测试(上升沿)2. JK 触发器功能测试(下降沿)Q=0Q=0略3. 思考题:(1)(2)(3)略实验四寄存器与计数器1.右移寄存器(74ls74 为上升沿有效)位异步二进制加法,减法计数器(74LS112 下降沿有效)也可以不加数码显示管3.设计性试验(1)74LS160设计7进制计数器(74LS160 是上升沿有效,且异步清零,同步置数)若采用异步清零:若采用同步置数:(2)74LS160设计7进制计数器略(3)24进制83进制注意:用74LS160与74LS197、74LS191是完全不一样的实验五 555定时器及其应用1.施密特触发器输入电压从零开始增加:输入电压从5V开始减小:2.单稳态触发器3.多谢振荡。

Multisim模拟电路仿真实验

实验19 Multisim 数字电路仿真实验1.实验目的用Multisim 的仿真软件对数字电路进行仿真研究。

2.实验内容实验19.1 交通灯报警电路仿真交通灯故障报警电路工作要求如下:红、黄、绿三种颜色的指示灯在下 列情况下属正常工作,即单独的红灯指示、黄灯指示、绿灯指示及黄、绿灯 同时指示,而其他情况下均属于故障状态。

出故障时报警灯亮。

设字母R 、Y 、G 分别表示红、黄、绿三个交通灯,高电平表示灯亮, 低电平表示灯灭。

字母Z 表示报警灯,高电平表示报警。

则真值表如表 19.1所示。

逻辑表达式为:RY RG G Y R Z ++=若用与非门实现,则表达式可化为:RY RG G Y R Z ⋅⋅= Multisim 仿真设计图如图19.1所示:图19.1的电路图中分别用开关A 、B 、C 模拟控制红、黄、绿灯的亮暗,开关接向高电平时表示灯亮,接向低电平时表示灯灭。

用发光二极管LED1的亮暗模拟报警灯的亮暗。

另外用了一个5V 直流电源、一个7400四2输入与非门、一个7404六反相器、一个7420双4输入与非门、一个500表19.1LED_redLED1图19.1欧姆电阻。

在模拟实验中可以看出,当开关A、B、C中只有一个拨向高电平,以及B、C同时拨向高电平而A拨向低电平时报警灯不亮,其余情况下报警灯均亮。

实验19.2数字频率计电路仿真数字频率计电路(实验13.3)的工作要求如下:能测出某一未知数字信号的频率,并用数码管显示测量结果。

如果用2位数码管,则测量的最大频率是99Hz。

数字频率计电路Multisim仿真设计图如图19.2所示。

其电路结构是:用二片74LS90(U1和U2)组成BCD码100进制计数器,二个数码管U3和U4分别显示十位数和个位数。

四D触发器74LS175(U5)与三输入与非门7410(U6B)组成可自启动的环形计数器,产生闸门控制信号和计数器清0信号。

信号发生器XFG1产生频率为1Hz、占空比为50%的连续脉冲信号,信号发生器XFG2产生频率为1-99Hz(人为设置)、占空比为50%的连续脉冲信号作为被测脉冲。

Multisim数字电子技术仿真实验

用户可以根据个人习惯和 喜好定制软件界面,包括 元件库、工具栏、菜单等, 提高工作效率。
多语言支持
软件支持多种语言界面, 方便不同国家和地区的用 户使用。
02
数字电子技术基础
逻辑门电路
总结词
逻辑门电路是数字电子技术中的 基本单元,用于实现逻辑运算和 信号转换。
详细描述
逻辑门电路由输入和输出端组成 ,根据输入信号的组合,输出端 产生相应的信号。常见的逻辑门 电路有与门、或门、非门等。
交互性强
用户可以在软件中直接对 电路进行搭建、修改和测 试,实时观察电路的行为 和性能。
实验环境灵活
软件提供了多种实验模板 和电路图符号,方便用户 快速搭建各种数字电子技 术实验。
软件功能
元件库丰富
Multisim软件拥有庞大的元件库,包含了各种类型的电子元件和 集成电路,方便用户选择和使用。
电路分析工具
寄存器实验结果分析
总结词
寄存器实验结果分析主要关注寄存器是否能够正确存储和读取数据,以及寄存器的功能 是否正常实现。
详细描述
首先观察实验中使用的寄存器的数据存储和读取过程,记录下实际得到的数据存储和读 取结果。接着,将实际得到的数据存储和读取结果与理论预期的数据存储和读取结果进 行对比,检查是否存在差异。如果有差异,需要分析可能的原因,如电路连接错误、元
触发器
总结词
触发器是一种双稳态电路,能够在外 部信号的作用下实现状态的翻转。
详细描述
触发器有两个稳定状态,根据输入信 号的组合,触发器可以在两个状态之 间进行切换。常见的触发器有RS触发 器、D触发器据的基本单元,用于存储二进制数据。
详细描述
寄存器由多个触发器组成,可以存储一定数量的二进制数据 。寄存器在数字电路中用于存储数据和控制信号。

第7章数字电子技术MULTISIM仿真实验2.


第7章 数字电子技术Multisim仿真实验
(1) 设计要求:设计一个火灾报警控制电路。该报警系 统设有烟感、温感和紫外线感三种不同类型的火灾探测器。 为了防止误报警,只有当其中两种或两种以上的探测器发出 火灾探测信号时,报警系统才产生控制信号。
(2) 探测器发出的火灾探测信号有两种可能:一种是高 电平(1),表示有火灾报警;一种是低电平(0),表示无火灾 报警。设A、B、C分别表示烟感、温感和紫外线感三种探 测器的探测信号,为报警电路的输入信号;设Y为报警电路 的输出。在逻辑转换仪面板上根据设计要求列出真值表,如 图7-8所示。
第7章 数字电子技术Multisim仿真实验
2.实验原理 译码是编码的逆过程。译码器就是将输入的二进制代码 翻译成输出端的高、低电平信号。3线-8线译码器74LS138有 3个代码输入端和8个信号输出端。此外还有G1、G2A、G2B使 能控制端,只有当G1 = 1、G2A = 0、G2B = 0时,译码器才 能正常工作。 7段LED数码管俗称数码管,其工作原理是将要显示的十 进制数分成7段,每段为一个发光二极管,利用不同发光段 的组合来显示不同的数字。74LS48是显示译码器,可驱动共 阴极的7段LED数码管。
第7章 数字电子技术Multisim仿真实验
4.实验步骤 (1) 按图7-12连接电路。双击字信号发生器图标,打开 字信号发生器面板,按图7-14所示的内容设置字信号发生器 的各项内容。 (2) 打开仿真开关,不断单击字信号发生器面板上的单 步输出Step按钮,观察输出信号与输入代码的对应关系,并 记录下来。 (3) 按图7-13连接电路。双击字信号发生器图标,打开 字信号发生器面板,按图7-15所示的内容设置字信号发生器 的各项内容。
第7章 数字电子技术Multisim仿真实验
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章 数字电子技术Multisim仿真实验
(3) 在逻辑转换仪面板上单击按钮
后,得
到图7-8所示面板下方的逻辑函数表达式。
(4) 再单击按钮 电路。
,得到图7-9所示的逻辑
第7章 数字电子技术Multisim仿真实验 图7-9 设计的报警控制电路
第7章 数字电子技术Multisim仿真实验 4.思考题 (1)设计一个四变量一致电路,要求用与非门来实现。 (2) 利用逻辑转换仪对图7-10所示逻辑电路进行分析。
第7章 数字电子技术Multisim仿真实验 图7-10 待分析的组合逻辑电路
第7章 数字电子技术Multisimห้องสมุดไป่ตู้真实验
7.3 编码器仿真实验
1.实验要求与目的 (1) 构建编码器实验电路。 (2) 分析8线-3线优先编码器74LS148的逻辑功能。
第7章 数字电子技术Multisim仿真实验
第7章 数字电子技术Multisim仿真实验
图7-2 与非门逻辑功能验证电路
第7章 数字电子技术Multisim仿真实验 图7-3 或非门逻辑功能验证电路
第7章 数字电子技术Multisim仿真实验
(4) TTL非门逻辑功能验证。实验电路如图7-4所示。打 开仿真开关,切换单刀双掷开关J1,观察探测器的亮灭,验 证集成非门74LS04的逻辑功能。
第7章 数字电子技术Multisim仿真实验 图7-4 非门逻辑功能验证电路
第7章 数字电子技术Multisim仿真实验
(5) TTL异或门逻辑功能验证。实验电路如图7-5所示。 打开仿真开关,切换单刀双掷开关J1和J2,观察探测器的亮 灭,验证集成异或门74LS386的逻辑功能。
第7章 数字电子技术Multisim仿真实验 图7-5 异或门逻辑功能验证电路
观察真值表发现,在A、B、C三个输入变量中有两个 或两个以上为1时,输出为1,否则输出为0,因此这个电路 是一个三人表决电路。
第7章 数字电子技术Multisim仿真实验 图7-7 经分析得到的真值表和表达式
第7章 数字电子技术Multisim仿真实验 2) 利用逻辑转换仪设计逻辑电路
图7-8 真值表
第7章 数字电子技术Multisim仿真实验 3.实验电路及步骤 1) 利用逻辑转换仪对给定的逻辑电路进行分析 (1) 按图7-6所示连接电路。
第7章 数字电子技术Multisim仿真实验 图7-6 待分析的组合逻辑电路
第7章 数字电子技术Multisim仿真实验
(2) 双击逻辑转换仪图标,在逻辑转换仪面板上单击按 钮(由逻辑电路转换为真值表),立刻得到电路的真值表,再 单击按钮(由真值表转换为简化逻辑函数表达式),在面板的 下面得到简化后的逻辑表达式。分析结果如图7-7所示。
1.实验要求与目的 (1) 验证常用门电路的功能。 (2) 掌握集成门电路的逻辑功能。
第7章 数字电子技术Multisim仿真实验 2.实验原理 集成逻辑门电路是最简单、最基本的数字集成元件,任
何复杂的组合逻辑电路和时序逻辑电路都是由逻辑门电路通 过适当的逻辑组合连接而成的。常用的基本逻辑门电路有: 与门、或门、非门、与非门、或非门等。
第7章 数字电子技术Multisim仿真实验
2.实验原理 组合逻辑电路是一种重要的数字逻辑电路。组合逻辑电 路的稳定输出在任何时刻仅仅取决于同一时刻输入信号的取 值组合,而与电路以前的状态无关。 根据给定的逻辑电路确定其逻辑功能的过程称为电路的 分析过程;根据逻辑要求求解逻辑电路的过程称为电路的设 计过程。 逻辑转换仪是在Multisim9软件中常用的数字逻辑电路 设计和分析的仪器,使用方便、简单,能很好地辅助电路的 分析与设计。
2.实验原理 编码器的逻辑功能是将输入的每一个信号编成一个对应 的二进制代码。优先编码器的特点是允许编码器同时输入两 个以上编码信号,但只对优先级别最高的信号进行编码。 8线-3线优先编码器74LS148有8个信号输入端,输入端 为低电平时表示请求编码,为高电平时表示没有编码请求; 有3个编码输出端,输出3位二进制代码;编码器还有一个使 能端EI,当其为低电平时,编码器才能正常工作;还有两个 输出端GS和E0,用于扩展编码功能,GS为0表示编码器处 于工作状态,且至少有一个信号请求编码;E0为0表示编码 器处于工作状态,但没有信号请求编码。
第7章 数字电子技术Multisim仿真实验 4.思考题 (1) 自己构建电路,对其他集成电路的逻辑功能进行仿
真验证。 (2) 对CMOS集成门电路进行仿真验证。
第7章 数字电子技术Multisim仿真实验
7.2 组合逻辑电路的分析与设计
1.实验要求与目的 (1)利用逻辑转换仪对组合逻辑电路进行分析与设计。 (2) 掌握组合逻辑电路的分析与设计方法。
第7章 数字电子技术Multisim仿真实验
第7章 数字电子技术的仿真实验
7.1 集成门电路仿真实验 7.2 组合逻辑电路的分析与设计 7.3 编码器仿真实验 7.4 译码器仿真实验 7.5 计数器仿真实验 7.6 555定时器应用电路仿真实验
第7章 数字电子技术Multisim仿真实验
7.1 集成门电路仿真实验
第7章 数字电子技术Multisim仿真实验
3.实验电路及步骤 (1) TTL 2输入与门逻辑功能验证。实验电路如图7-1所 示。打开仿真开关,切换单刀双掷开关J1和J2,观察探测器 的亮灭,验证集成与门74LS08的逻辑功能。探测器亮表示 输出高电平1,灭表示输出低电平0。
第7章 数字电子技术Multisim仿真实验 图7-1 与门逻辑功能验证电路
第7章 数字电子技术Multisim仿真实验 (2) TTL 2输入与非门逻辑功能验证。实验电路如图7-
2所示。打开仿真开关,切换单刀双掷开关J1和J2,观察探 测器的亮灭,验证集成与非门74LS00的逻辑功能。
(3) TTL 2输入或非门逻辑功能验证。实验电路如图7-3 所示。打开仿真开关,切换单刀双掷开关J1和J2,观察探测 器的亮灭,验证集成或非门74LS02的逻辑功能。
第7章 数字电子技术Multisim仿真实验
(1) 设计要求:设计一个火灾报警控制电路。该报警系 统设有烟感、温感和紫外线感三种不同类型的火灾探测器。 为了防止误报警,只有当其中两种或两种以上的探测器发出 火灾探测信号时,报警系统才产生控制信号。
(2) 探测器发出的火灾探测信号有两种可能:一种是高 电平(1),表示有火灾报警;一种是低电平(0),表示无火灾 报警。设A、B、C分别表示烟感、温感和紫外线感三种探 测器的探测信号,为报警电路的输入信号;设Y为报警电路 的输出。在逻辑转换仪面板上根据设计要求列出真值表,如 图7-8所示。
相关文档
最新文档