2019年四川省巴中市恩阳区茶坝中学中考数学模拟试卷(解析版)

合集下载

四川省巴中市2019年中考数学试卷(Word解析版)

四川省巴中市2019年中考数学试卷(Word解析版)

2019年四川省巴中市中考数学试卷一、选择题(本大题共10小题,共40.0分)1.下列四个算式中,正确的是()A. B. C. D.2.在平面直角坐标系中,已知点A(-4,3)与点B关于原点对称,则点B的坐标为()A. B. C. D.3.企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300万元用科学记数法表示为()A. 元B. 元C. 元D. 元4.如图是由一些小立方体与圆锥组合成的立体图形,它的主视图是()A. B. C. D.5.已知关于x、y的二元一次方程组的解是,则a+b的值是()A. 1B. 2C.D. 06.下列命题是真命题的是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是矩形C. 对角线互相垂直的矩形是正方形D. 四边相等的平行四边形是正方形7.如图所示,是巴中某校对学生到校方式的情况统计图.若该校骑自行车到校的学生有200人,则步行到校的学生有()A. 120人B. 160人C. 125人D. 180人8.如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A. 2:3B. 3:2C. 9:4D. 4:99.如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()A.B.C.D.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b-c>0,④a+b+c<0.其中正确的是()A. ①④B. ②④C. ②③D. ①②③④二、填空题(本大题共5小题,共20.0分)11.函数y=的自变量x的取值范围______.12.如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为______.13.如图,反比例函数y=(x>0)经过A、B两点,过点A作AC⊥y轴于点C,过点B作BD⊥y轴于点D,过点B作BE⊥x轴于点E,连结AD,已知AC=1、BE=1、S矩形BDOE=4.则S△ACD=______.14.若关于x的分式方程+=2m有增根,则m的值为______.15.如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=______.三、解答题(本大题共11小题,共90.0分)16.计算(-)2+(3-π)0+|-2|+2sin60°-.17.已知实数x、y满足+y2-4y+4=0,求代数式•÷的值.18.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.19.△ABC在边长为l的正方形网格中如图所示.①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标.②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.③在②的条件下求出点B经过的路径长.20.在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?21.如图表示的是某班部分同学衣服上口袋的数目.①从图中给出的信息得到学生衣服上口袋数目的中位数为______,众数为______.②根据如图信息,在给出的图表中绘制频数条形统计图,由此估计该班学生衣服上口袋数目为5≤x<7的概率.22.已知关于x的一元二次方程x2+(2m+1)x+m2-1=0有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且x12+x22+x1x2-17=0,求m的值.23.某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)24.如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0,x>0)的图象交于点A(m,8)与点B(4,2).①求一次函数与反比例函数的解析式.②根据图象说明,当x为何值时,k1x+b-<0.25.如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.26.如图,抛物线y=ax2+bx-5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM 的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.答案和解析1.【答案】A【解析】解:A、a+a=2a,故本选项正确;B、a5÷a4=a,故本选项错误;C、(a5)4=a20,故本选项错误;D、a5-a4,不能合并,故本选项错误.故选:A.根据合并同类项法则,同底数幂的除法的性质,幂的乘方的性质对各选项分析判断后利用排除法求解.本题考查了合并同类项法则,同底数幂的除法,幂的乘方.理清指数的变化是解题的关键.2.【答案】C【解析】解:∵点A(-4,3),点A与点B关于原点对称,∴点B(4,-3).故选:C.根据关于原点的对称点,横、纵坐标都变成相反数解答.本题考查了关于原点对称的点的坐标,熟记“关于原点的对称点,横、纵坐标都变成相反数”是解题的关键.3.【答案】C【解析】解:将9300万元用科学记数法表示为:9.3×107元.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:如图所示,它的主视图是:.故选:C.根据实物的特点以及主视图的定义判断即可.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.5.【答案】B【解析】解:将代入得:,∴a+b=2;故选:B.将代入即可求出a与b的值;本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.6.【答案】C【解析】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线相等的平行四边形是矩形,所以B选项错误;C、对角线互相垂直的矩形是正方形,所以C选项正确;D、四边相等的菱形是正方形,所以D选项错误.故选:C.根据矩形的判定方法对A、B矩形判断;根据正方形的判定方法对C、D矩形判断.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.【答案】B【解析】解:学生总数:200÷25%=800(人),步行到校的学生:800×20%=160(人),故选:B.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.8.【答案】D【解析】解:设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.先设出DE=x,进而得出AD=3x,再用平行四边形的性质得出BC=3x,进而求出CF,最后用相似三角形的性质即可得出结论.此题主要考查了相似三角形的判定和性质,平行四边形的性质,中点的定义,表示出CF是解本题的关键.9.【答案】D【解析】解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π,故选:D.圆锥的侧面积:S侧=•2πr•l=πrl,求出圆锥的母线l即可解决问题.本题考查圆锥的侧面积,勾股定理等知识,解题的关键是记住圆锥的圆锥的侧面积公式.10.【答案】A【解析】解:①∵抛物线与x轴由两个交点,∴b2-4ac>0,即b2>4ac,所以①正确;②由二次函数图象可知,a<0,b<0,c>0,∴abc>0,故②错误;③∵对称轴:直线x=-=-1,∴b=2a,∴2a+b-c=4a-c,∵a<0,4a<0,c>0,-c<0,∴2a+b-c=4a-c<0,故③错误;④∵对称轴为直线x=-1,抛物线与x轴一个交点-3<x1<-2,∴抛物线与x轴另一个交点0<x2<1,当x=1时,y=a+b+c<0,故④正确.故选:A.①抛物线与x轴由两个交点,则b2-4ac>0,即b2>4ac,所以①正确;②由二次函数图象可知,a<0,b<0,c>0,所以abc>0,故②错误;③对称轴:直线x=-=-1,b=2a,所以2a+b-c=4a-c,2a+b-c=4a-c<0,故③错误;④对称轴为直线x=-1,抛物线与x轴一个交点-3<x1<-2,则抛物线与x轴另一个交点0<x2<1,当x=1时,y=a+b+c<0,故④正确.本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.11.【答案】x≥1,且x≠3【解析】解:根据题意得:解得x≥1,且x≠3,即:自变量x取值范围是x≥1,且x≠3.本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x-1≥0;根据分式有意义的条件,x-3≠0,则函数的自变量x取值范围就可以求出.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.【答案】【解析】解:根据题意,得:=a,解得:a=5,则这组数据为4、5、5、3、8,其平均数是5,所以这组数据的方差为×[(4-5)2+(5-5)2+(5-5)2+(3-5)2+(8-5)2]=,故答案为:.先根据平均数的定义确定出a的值,再根据方差公式进行计算即可求出答案.此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.13.【答案】【解析】解:过点A作AH⊥x轴于点H,交BD于点F,则四边形ACOH和四边形ACDF 均为矩形,如图:∵S=4,反比例函数y=(x>0)经过B点矩形BDOE∴k=4∴S=4,矩形ACOH∵AC=1∴OC=4÷1=4∴CD=OC-OD=OC-BE=4-1=3∴S=1×3=3矩形ACDF∴S△ACD=故答案为:.过点A作AH⊥x轴于点H,交BD于点F,则四边形ACOH和四边形ACDF=4,可得k的值,即可得到矩形ACOH和矩形均为矩形,根据S矩形BDOEACDF的面积,进而可求出S△ACD.此题主要考查的知识有:反比例函数系数k的几何意义和性质,通过矩形的面积求出k的值是解本题的关键.14.【答案】1【解析】解:方程两边都乘x-2,得x-2m=2m(x-2)∵原方程有增根,∴最简公分母x-2=0,解得x=2,当x=2时,m=1故m的值是1,故答案为1增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入化为整式方程的方程算出m 的值.本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.【答案】24+16【解析】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S △ABP+S△BPC=S=S△BP'B+S△AP'P=BP2+×PP'×AP=24+16四边形AP'BP故答案为:24+16将△BPC绕点B逆时针旋转60°后得△AP'B,根据旋转的性质可得∠PBP′=∠CAB=60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.本题考查了旋转的性质,等边三角形的性质,勾股定理,作辅助线构造出等边三角形和直角三角形是解题的关键,也是本题的难点.16.【答案】解:原式=.【解析】分别根据幂的定义、零指数幂、绝对值的性质、特殊角的三角函数值以及二次根式的性质化简即可.本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握二次根式的性质、绝对值的性质以及特殊角的三角函数值等知识.17.【答案】解:•÷=••=,∵+y2-4y+4=0,∴+(y-2)2=0,∴x=3,y=2,∴原式==.【解析】根据分式的乘除法法则把原式化简,根据非负数的性质分别求出x、y,代入计算即可.本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.18.【答案】①证明:∵∠ACB=90°,∴∠ACE+∠BCD=90°.∵∠ACE+∠CAE=90°,∴∠CAE=∠BCD.在△AEC与△BCD中,∴△CAE≌△BCD(AAS).∴EC=BD;②解:由①知:BD=CE=aCD=AE=b∴S梯形AEDB=(a+b)(a+b)=a2+ab+b2.又∵S梯形AEDB=S△AEC+S△BCD+S△ABC=ab+ab+c2=ab+c2.∴a2+ab+b2=ab+c2.整理,得a2+b2=c2.【解析】①通过AAS证得△CAE≌△BCD,根据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明,解本题的关键是判断两三角形全等.19.【答案】解:①如图,△A1B1C为所作,点A1的坐标为(3,-3);②如图,△A2B2C为所作;③OB==,点B经过的路径长==π.【解析】①延长AC到A1使A1C=2AC,延长BC到B1使B1C=2BC,则△A1B1C满足条件;②利用网格特点和旋转的性质画出A、B的对应点A2、B2,从而得到△A2B2C.③先计算出OB的长,然后根据弧长公式计算点B经过的路径长.本题考查了作图-位似变换:画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.20.【答案】解:①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得:=解得x=90经检验,x=90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y件,则乙种物品购进(55-y)件由题意得:5000≤100y+90(55-y)≤5050解得5≤y≤10∴共有6种选购方案.【解析】①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得分式方程,解之即可;②设购买甲种物品y件,则乙种物品购进(55-y)件,由题意得不等式,从而得解.本题考查了分式方程的应用以及一元一次不等式的整数解的问题.本题中等难度.21.【答案】4 4【解析】解:①由图可知,学生衣服上口袋的数目分别为:3,4,2,6,5,5,3,1,4,2,4,6,10,7,1,4,5,6,2,10,3.按从小到大的顺序排列为:1,1,2,2,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,10,10.故中位数为4,众数为4,故答案为4,4.(2)条形图如图所示:估计该班学生衣服上口袋数目为5≤x<7的概率==.①根据中位数、众数的概念分别求得学生衣服上口袋数目的中位数、众数;②根据图中得出的数据绘制频数条形统计图,用衣服上口袋数目为5≤x<7的人数除以总人数21即可.本题考查条形统计图,样本估计总体,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:①根据题意得:△=(2m+1)2-4(m2-1)>0,解得:m>,②根据题意得:x1+x2=-(2m+1),x1x2=m2-1,x12+x22+x1x2-17=-x1x2-17=(2m+1)2-(m2-1)-17=0,解得:m1=,m2=-3(不合题意,舍去),∴m的值为.【解析】①根据“关于x的一元二次方程x2+(2m+1)x+m2-1=0有两不相等的实数根”,结合判别式公式,得到关于m的不等式,解之即可,②根据“x1,x2是方程的两根且x12+x22+x1x2-17=0”,结合根与系数的关系,列出关于m的一元二次方程,解之,结合(1)的结果,即可得到答案.本题考查了根与系数的关系,根的判别式,解题的关键:①正确掌握判别式公式,②正确掌握根与系数的关系.23.【答案】解:如图,过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD 是矩形,设DE=x,在Rt△ADE中,∠AED=90°,∵tan∠DAE=,∴AE==,∴BE=300-,又BF=DE=x,∴CF=414-x,在Rt△CDF中,∠DFC=90°,∠DCF=45°,∴DF=CF=414-x,又BE=CF,即:300-=414-x,解得:x=214,故:点D到AB的距离是214m.【解析】过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,根据BE=DF=CF,列方程可得结论.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确根据三角函数列方程是解题的关键.24.【答案】解:①把点B(4,2)代入反比例函数y2=(k2≠0,x>0)得,k2=4×2=8,∴反比例函数的解析式为y2=,将点A(m,8)代入y2得,8=,解得m=1,∴A(1,8),将A、B的坐标代入y1=k1x+b(k1、b为常数,k1≠0)得,解得,∴一次函数的解析式为y1=-2x+10;②由图象可知:当0<x<1或x>4时,y1<y2,即k1x+b-<0.【解析】①把B点坐标代入反比例函数解析式可求得k2的值,把点A(m,8)代入求得的反比例函数的解析式求得m,然后利用待定系数法即可求得一次函数的解析式;②直接由A、B的坐标可求得答案.本题考查了一次函数和反比例函数的交点,待定系数法求一次函数和反比例函数的解析式,熟练掌握待定系数法是解题的关键.25.【答案】解:①过点O作OG⊥CD,垂足为G,在菱形ABCD中,AC是对角线,则AC平分∠BCD,∵OH⊥BC,OG⊥CD,∴OH=OG,∴OH、OG都为圆的半径,即DC是⊙O的切线;②∵AC=4MC且AC=8,∴OC=2MC=4,MC=OM=2,∴OH=2,在直角三角形OHC中,HO=CO,∴∠OCH=30°,∠COH=60°,∴HC=,S阴影=S△OCH-S扇形OHM=CH•OH-OH2=2-;③作M关于BD的对称点N,连接HN交BD于点P,∵PM=NP,∴PH+PM=PH+PN=HN,此时PH+PM最小,∵ON=OM=OH,∠MOH=60°,∴∠MNH=30°,∴∠MNH=∠HCM,∴HN=HC=2,即:PH+PM的最小值为2,在Rt△NPO中,OP=ON tan30°=,在Rt△COD中,OD=OC tan30°=,则PD=OP+OD=2.【解析】①作OH⊥BC,证明OH为圆的半径,即可求解;②利用S阴影=S△OCH-S扇形OHM=CH•OH-OH2,即可求解;③作M关于BD的对称点N,连接HN交BD于点P,PH+PM=PH+PN=HN,此时PH+PM最小,即可求解.本题为圆的综合运用题,涉及到圆切线的性质及应用、点的对称性、解直角三角形等知识,其中③,通过点的对称性确定PH+PM最小,是本题的难点和关键.26.【答案】解:①∵点B、C在直线为y=x+n上,∴B(-n,0)、C(0,n),∵点A(1,0)在抛物线上,∴ ,∴a=-1,b=6,∴抛物线解析式:y=-x2+6x-5;②由题意,得,PB=4-t,BE=2t,由①知,∠OBC=45°,∴点P到BC的高h为BP sin45°=(4-t),∴S△PBE=BE•h==,当t=2时,△PBE的面积最大,最大值为2;③由①知,BC所在直线为:y=x-5,∴点A到直线BC的距离d=2,过点N作x轴的垂线交直线BC于点P,交x轴于点H.设N(m,-m2+6m-5),则H(m,0)、P(m,m-5),易证△PQN为等腰直角三角形,即NQ=PQ=2,∴PN=4,Ⅰ.NH+HP=4,∴-m2+6m-5-(m-5)=4解得m1=1,m2=4,∵点A、M、N、Q为顶点的四边形是平行四边形,∴m=4;Ⅱ.NH+HP=4,∴m-5-(-m2+6m-5)=4解得m1=,m2=,∵点A、M、N、Q为顶点的四边形是平行四边形,m>5,∴m=,Ⅲ.NH-HP=4,∴-(-m2+6m-5)-[-(m-5)]=4,解得m1=,m2=,∵点A、M、N、Q为顶点的四边形是平行四边形,m<0,∴m=,综上所述,若点A、M、N、Q为顶点的四边形是平行四边形,点N的横坐标为:4或或.【解析】①点B、C在直线为y=x+n上,则B(-n,0)、C(0,n),点A(1,0)在抛物线上,所以,解得a=-1,b=6,因此抛物线解析式:y=-x2+6x-5;②先求出点P到BC的高h为BPsin45°=(4-t),于是S△PBE=BE•h==,当t=2时,△PBE的面积最大,最大值为2;③由①知,BC所在直线为:y=x-5,所以点A到直线BC的距离d=2,过点N作x轴的垂线交直线BC于点P,交x轴于点H.设N(m,-m2+6m-5),则H (m,0)、P(m,m-5),易证△PQN为等腰直角三角形,即NQ=PQ=2,PN=4,Ⅰ.NH+HP=4,所以-m2+6m-5-(m-5)=4解得m1=1(舍去),m2=4,Ⅱ.NH+HP=4,m-5-(-m2+6m-5)=4解得m1=,m2=(舍去),第21页,共22页Ⅲ.NH-HP=4,-(-m2+6m-5)-[-(m-5)]=4,解得m1=(舍去),m2=.本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.第22页,共22页。

四川省巴中市2019-2020学年中考数学一模考试卷含解析

四川省巴中市2019-2020学年中考数学一模考试卷含解析

四川省巴中市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A.22B.4 C.32D.422.直线y=3x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.实数6的相反数是()A.-6B.6C.16D.6-4.实数a,b,c在数轴上对应点的位置如图所示,则下列结论中正确的是()A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c5.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )A.6 B.8 C.10 D.126.一次函数112y x=-+的图像不经过的象限是:()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等边三角形D.△BEF是等腰三角形8.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.99.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A.(1,4) B.(7,4) C.(6,4) D.(8,3)10.如图,在矩形ABCD 中,AB=2a,AD=a,矩形边上一动点P 沿A→B→C→D 的路径移动.设点P 经过的路径长为x,PD2=y,则下列能大致反映y 与x 的函数关系的图象是()A.B.C.D.OE ,11.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18, 1.5则四边形EFCD的周长为()A.14 B.13 C.12 D.1012.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为( )A.6 B.7 C.8 D.9二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)k y x x=>的图象经过点D ,交BC 边于点E.若△BDE 的面积为1,则k =________14.若一个多边形每个内角为140°,则这个多边形的边数是________.15.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知DE ⊥EA ,斜坡CD 的长度为30m ,DE 的长为15m ,则树AB 的高度是_____m .16.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m 的点B 处,用高为0.8m 的测角仪测得筒仓顶点C 的仰角为63°,则筒仓CD 的高约为______m .(精确到0.1m ,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)17.如图,正方形ABCD 和正方形OEFG 中, 点A 和点F 的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.18.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.求11月份这两种水果的进价分别为每千克多少元?时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了12m%,香橙每千克的进价在11月份的基础上下降了m%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了5m8%,香橙购进的数量比11月份增加了2m%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求m的值.20.(6分)4件同型号的产品中,有1件不合格品和3件合格品.从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?21.(6分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率.22.(8分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C 作CE⊥AD于点E.(1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;(2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.23.(8分)已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.24.(10分)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC DF AE ⊥=,,垂足为F.(1)求证:AF BE =;(2)如果21BE EC :=:,求CDF ∠的余切值. 25.(10分)近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A 组50~60;B 组60~70;C 组70~80;D 组80~90;E 组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.抽取学生的总人数是 人,扇形C 的圆心角是 °;补全频数直方图;该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?26.(12分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为 ;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为 度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?27.(12分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y 轴,垂足为点C,连结AB,AC.求该反比例函数的解析式;若△ABC的面积为6,求直线AB的表达式.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.2.D【解析】【分析】利用两点法可画出函数图象,则可求得答案.【详解】在y=3x+1中,令y=0可得x=-13,令x=0可得y=1,∴直线与x轴交于点(-13,0),与y轴交于点(0,1),其函数图象如图所示,∴函数图象不过第四象限,故选:D.【点睛】本题主要考查一次函数的性质,正确画出函数图象是解题的关键.3.A【解析】【分析】根据相反数的定义即可判断.【详解】6的相反数是6故选A.【点睛】此题主要考查相反数的定义,解题的关键是熟知相反数的定义即可求解. 4.D【解析】分析:根据图示,可得:c<b<0<a,c a b>>,据此逐项判定即可.详解:∵c<0<a,|c|>|a|,∴a+c<0,∴选项A不符合题意;∵c<b<0,∴b+c<0,∴选项B不符合题意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴选项C不符合题意;∵a>b,∴a﹣c>b﹣c,∴选项D符合题意.故选D.点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数.5.C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,DE AD FC EF=,∴四边形BFED是平行四边形,∴BD=EF,∴563DE ADBD==,解得:DE=10.故选C.6.C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像7.D【解析】【分析】连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.【详解】连接BD,∵四边形ABCD是菱形,∴AD=AB,∠ADB=12∠ADC,AB∥CD,∵∠A=60°,∴∠ADC=120°,∠ADB=60°,同理:∠DBF=60°,即∠A=∠DBF,∴△ABD是等边三角形,∴AD=BD,∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,∴∠ADE=∠BDF,∵在△ADE和△BDF中,{ADE BDF AD BDA DBF∠=∠=∠=∠,∴△ADE≌△BDF(ASA),∴DE=DF,AE=BF,故A正确;∵∠EDF=60°,∴△EDF是等边三角形,∴C正确;∴∠DEF=60°,∴∠AED+∠BEF=120°,∵∠AED+∠ADE=180°-∠A=120°,∴∠ADE=∠BEF;故B 正确.∵△ADE ≌△BDF ,∴AE=BF ,同理:BE=CF ,但BE 不一定等于BF .故D 错误.故选D .【点睛】本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.8.A【解析】【详解】解:∵x ﹣2y=3,∴3﹣2x+4y=3﹣2(x ﹣2y )=3﹣2×3=﹣3;故选A .9.B【解析】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P 的坐标为(7,4).故选C .10.D【解析】解:(1)当0≤t≤2a 时,∵222PD AD AP =+,AP=x ,∴22y x a =+;(2)当2a <t≤3a 时,CP=2a+a ﹣x=3a ﹣x ,∵222PD CD CP =+,∴22(3)(2)y a x a =-+=22613x ax a -+;(3)当3a <t≤5a 时,PD=2a+a+2a ﹣x=5a ﹣x ,∵2PD =y ,∴2(5)y a x =-=2(5)x a -;综上,可得22225)2(02)613(23)((35)x a x a x a y x ax a a x a a x a -⎧+≤≤⎪=-+<≤⎨⎪<≤⎩n ,∴能大致反映y 与x 的函数关系的图象是选项D 中的图象.故选D . 11.C 【解析】 【详解】∵平行四边形ABCD ,∴AD ∥BC ,AD=BC ,AO=CO , ∴∠EAO=∠FCO , ∵在△AEO 和△CFO 中,AEO CFO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△CFO , ∴AE=CF ,EO=FO=1.5, ∵C 四边形ABCD =18,∴CD+AD=9,∴C 四边形CDEF =CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12. 故选C. 【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF 的周长进行转化. 12.A 【解析】试题分析:根据多边形的外角和是310°,即可求得多边形的内角的度数为720°,依据多边形的内角和公式列方程即可得(n ﹣2)180°=720°,解得:n=1. 故选A .考点:多边形的内角和定理以及多边形的外角和定理 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1 【解析】分析:设D (a ,k a ),利用点D 为矩形OABC 的AB 边的中点得到B (2a ,k a ),则E (2a ,2k a),然后利用三角形面积公式得到12•a•(k a -2ka)=1,最后解方程即可.详解:设D (a ,ka),∵点D 为矩形OABC 的AB 边的中点,∴B (2a ,k a ), ∴E (2a ,2ka),∵△BDE 的面积为1, ∴12•a•(k a -2k a)=1,解得k=1.故答案为1.点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k 的取值. 14.九 【解析】 【分析】根据多边形的内角和定理:180°•(n-2)进行求解即可. 【详解】由题意可得:180°⋅(n−2)=140°⋅n , 解得n=9, 故多边形是九边形. 故答案为9. 【点睛】本题考查了多边形的内角和定理,解题的关键是熟练的掌握多边形的内角和定理. 15.1 【解析】 【分析】先根据CD=20米,DE=10m 得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF ∥AE 可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论. 【详解】解:作DF ⊥AB 于F ,交BC 于G .则四边形DEAF 是矩形,∴DE=AF=15m,∵DF∥AE,∴∠BGF=∠BCA=60°,∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,∴∠GDB=∠GBD=30°,∴GD=GB,在Rt△DCE中,∵CD=2DE,∴∠DCE=30°,∴∠DCB=90°,∵∠DGC=∠BGF,∠DCG=∠BFG=90°∴△DGC≌△BGF,∴BF=DC=30m,∴AB=30+15=1(m),故答案为1.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.16.40.0【解析】【分析】首先过点A作AE∥BD,交CD于点E,易证得四边形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后Rt△ACE中,由三角函数的定义,而求得CE的长,继而求得筒仓CD的高.【详解】过点A作AE∥BD,交CD于点E,∵AB⊥BD,CD⊥BD,∴∠BAE=∠ABD=∠BDE=90°,∴四边形ABDE 是矩形,∴AE =BD =20m ,DE =AB =0.8m , 在Rt △ACE 中,∠CAE =63°, ∴CE =AE•tan63°=20×1.96≈39.2(m ), ∴CD =CE +DE =39.2+0.8=40.0(m ). 答:筒仓CD 的高约40.0m , 故答案为:40.0 【点睛】此题考查解直角三角形的应用−仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用. 17.(1,0);(﹣5,﹣2). 【解析】 【分析】本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E 和C 是对应顶点,G 和A 是对应顶点;另一种是A 和E 是对应顶点,C 和G 是对应顶点. 【详解】∵正方形ABCD 和正方形OEFG 中A 和点F 的坐标分别为(3,2),(-1,-1), ∴E (-1,0)、G (0,-1)、D (5,2)、B (3,0)、C (5,0),(1)当E 和C 是对应顶点,G 和A 是对应顶点时,位似中心就是EC 与AG 的交点, 设AG 所在直线的解析式为y=kx+b (k≠0),∴231k b b =+⎧⎨-=⎩,解得11b k =-⎧⎨=⎩.∴此函数的解析式为y=x-1,与EC 的交点坐标是(1,0);(2)当A 和E 是对应顶点,C 和G 是对应顶点时,位似中心就是AE 与CG 的交点, 设AE 所在直线的解析式为y=kx+b (k≠0),320k b k b +=⎧⎨-+=⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩, 故此一次函数的解析式为1122y x =+…①, 同理,设CG 所在直线的解析式为y=kx+b (k≠0),501k b b +=⎧⎨=-⎩,解得151k b ⎧=⎪⎨⎪=-⎩,故此直线的解析式为115y x=-…②联立①②得1122115y xy x⎧=+⎪⎪⎨⎪=-⎪⎩解得52xy=-⎧⎨=-⎩,故AE与CG的交点坐标是(-5,-2).故答案为:(1,0)、(-5,-2).18.【解析】已知BC=8,AD是中线,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根据相似三角形的性质可得AC CDBC AC=,即可得AC2=CD•BC=4×8=32,解得.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m的值为49.1.【解析】【详解】(1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,依题意有4006001520024x yy x+=⎧⎨=+⎩,解得820xy=⎧⎨=⎩,答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有:8(1﹣12m%)×400(1+58m%)+20(1﹣m%)×100(1+2m%)=15200,解得m1=0(舍去),m2=49.1,故m的值为49.1.20.(1)14;(2)12;(3)x=1.【解析】【分析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.【详解】解:(1)∵4件同型号的产品中,有1件不合格品,∴P(不合格品)=14;(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)=612=12;(3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴34xx++=0.95,解得:x=1.【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法.21.1 3【解析】【分析】根据列表法先画出列表,再求概率.【详解】解:列表如下:2 3 5 62 (2,3)(2,5)(2,6)3 (3,2)(3,5)(3,6)5 (5,2)(5,3)(5,6)6 (6,2)(6,3)(6,5)由表可知共有12种等可能结果,其中数字之和为偶数的有4种,所以P(数字之和都是偶数)13 =.【点睛】此题重点考查学生对概率的应用,掌握列表法是解题的关键.22.(1) 2﹣33;(2)见解析【解析】分析:(1)先求得:∠CAE=45°-15°=30°,根据直角三角形30°角的性质可得AC=2CE=2,再得∠ECD=90°-60°=30°,设ED=x,则CD=2x x=1,求得x的值,可得BD的长;(2)如图2,连接CM,先证明△ACE≌△BCF,则∠BFC=∠AEC=90°,证明C、M、B、F四点共圆,则∠BCM=∠MFB=45°,由等腰三角形三线合一的性质可得AM=BM.详解:(1)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵∠BAD=15°,∴∠CAE=45°﹣15°=30°,Rt△ACE中,CE=1,∴AC=2CE=2,Rt△CED中,∠ECD=90°﹣60°=30°,∴CD=2ED,设ED=x,则CD=2x,∴,,x=,3∴CD=2x=,3∴BD=BC﹣CD=AC﹣CD=2;(2)如图2,连接CM,∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵AC=BC,CE=CF,∴△ACE≌△BCF,∴∠BFC=∠AEC=90°,∵∠CFE=45°,∴∠MFB=45°,∵∠CFM=∠CBA=45°,∴C、M、B、F四点共圆,∴∠BCM=∠MFB=45°, ∴∠ACM=∠BCM=45°, ∵AC=BC , ∴AM=BM .点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30°角的性质和勾股定理,第二问有难度,构建辅助线,证明△ACE ≌△BCF 是关键. 23.证明见解析 【解析】试题分析:先利用等角的余角相等得到.DAE BAF ∠=∠根据有两组角对应相等,即可证明两三角形相似. 试题解析:∵四边形ABCD 为矩形,90,BAD D ∴∠=∠=o90DAE BAE ∴∠+∠=o ,BF AE ⊥Q 于点F ,90ABF BAE ∴∠+∠=o , DAE BAF ∴∠=∠,.ABF EAD ∴V V ∽点睛:两组角对应相等,两三角形相似. 24.(1)见解析;(2)25cot CDF ∠=. 【解析】 【分析】(1)矩形的性质得到AD BC AD BC =,∥,得到AD AE DAF AEB ∠∠=,=,根据AAS 定理证明ABE DFA V V ≌;(2)根据全等三角形的性质、勾股定理、余切的定义计算即可. 【详解】解:(1)证明:Q 四边形ABCD 是矩形,AD BC AD BC ∴=,∥, AD AE DAF AEB ∴∠∠=,=,在ABE △和DFA V 中,DAF AEB AFD EBA AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ABE DFA ∴V V ≌, AF BE ∴=;(2)ABE DFA QV V ≌,AD AE DAF AEB ∴∠∠=,=,设CE k =, 21BE EC Q :=:, 2BE k ∴=, 3AD AE k ∴==,225ABAE BE k ∴=-=,9090ADF CDF ADF DAF ∠+∠︒∠+∠︒Q =,=, CDF DAE ∴∠∠=, CDF AEB ∴∠∠=, 25cot cot 5BE CDF AEB AB k∴∠=∠===.【点睛】本题考查的是矩形的性质、勾股定理的运用、全等三角形的判定和性质以及余切的定义,掌握全等三角形的判定定理和性质定理是解题的关键.25.(1)300、144;(2)补全频数分布直方图见解析;(3)该校创新意识不强的学生约有528人. 【解析】 【分析】(1)由D 组频数及其所占比例可得总人数,用360°乘以C 组人数所占比例可得;(2)用总人数分别乘以A 、B 组的百分比求得其人数,再用总人数减去A 、B 、C 、D 的人数求得E 组的人数可得;(3)用总人数乘以样本中A 、B 组的百分比之和可得. 【详解】解:(1)抽取学生的总人数为78÷26%=300人,扇形C 的圆心角是360°×120300=144°,故答案为300、144;(2)A组人数为300×7%=21人,B组人数为300×17%=51人,则E组人数为300﹣(21+51+120+78)=30人,补全频数分布直方图如下:(3)该校创新意识不强的学生约有2200×(7%+17%)=528人.【点睛】考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.26.(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.【解析】试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360°乘以骑自行车的所占的百分比计算即可得解:样本中的总人数为:36÷45%=80人;开私家车的人数m=80×25%=20;扇形统计图中“骑自行车”的圆心角为.(2)求出骑自行车的人数,然后补全统计图即可.(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可.试题解析:解:(1)80,20,72.(2)骑自行车的人数为:80×20%=16人,补全统计图如图所示;(3)设原来开私家车的人中有x人改为骑自行车,由题意得,,解得x≥50.答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用.27.(1)y6x=;(2)y12=-x+1.【解析】【分析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.【详解】(1)由题意得:k=xy=2×3=6,∴反比例函数的解析式为y6x =;(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),∵反比例函数y6x=的图象经过点B(a,b),∴b6a =,∴AD=36a -,∴S△ABC12=BC•AD12=a(36a-)=6,解得a=6,∴b 6a==1, ∴B(6,1),设AB 的解析式为y =kx+b ,将A(2,3),B(6,1)代入函数解析式,得2361k b k b +=⎧⎨+=⎩,解得:124k b ⎧=-⎪⎨⎪=⎩, 所以直线AB 的解析式为y 12=-x+1. 【点睛】本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC ,AD 的长是解题的关键.。

巴中市恩阳区2019年中考数学模拟三试卷

巴中市恩阳区2019年中考数学模拟三试卷

巴中市恩阳区2019年中考数学模拟三试卷一、选择题:本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.下列各数中,最小的数是()A.B.2 C.﹣1 D.﹣2.净水机的核心部件就是水处理反渗透膜,水处理反渗透膜就像是一个筛子,它的孔径只有0.11纳米,水在压力的作用下一层层过滤,离子以上的杂质像抗生素、重金属、细菌等都能过滤掉,0.11纳米即0.00000000011米,将0.11纳米用科学记数法表示为()A.1.1×10﹣9米B.1.1×10﹣10米C.11×10﹣9米 D.0.11×10﹣9米3.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到黄球的概率为()A.B.C.D.14.如图,AF是∠BAC的平分线,EF∥AC交AB于点E.若∠1=25°,则∠BAF 的度数为()A.15°B.50°C.25°D.12.5°5.任何一个正整数n都可以进行这样的分解:n=p×q(p、q是正整数,且p≤q),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n 的最佳分解,并规定:F(n)=,例如18可以分解成1×18,2×9或3×6,则F(18)=,例如35可以分解成1×35,5×7,则F(35)=,则F(24)的值是()A.B.C.D.6.如图,下边每个大正方形网格,都是由边长为1的小正方形组成,图中阴影部分面积最大的是()A.B.C. D.7.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据如图提供的信息,捐款金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,308.如图,△POA1、△P2A1A都是等腰直角三角形,直角顶点P、P2在函数y=(x>0)的图象上,斜边OA1、A1A都在x轴上,则点A的坐标是()A.(4,0)B.(4,0)C.(2,0)D.(2,0)9.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,CD=6cm,AD=2cm,动点P、Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC 运动到C点停止,两点运动时的速度都是1cm/s,而当点P到达点A时,点Q正好到达点C.设P点运动的时间为t(s),△BPQ的面积为y(cm2).下图中能正确表示整个运动中y关于t的函数关系的大致图象是()A.B.C.D.10.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①abc>0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③6a﹣b+c<0;④a﹣am2>bm﹣b,且m﹣1≠0,其中正确的说法有()A.①②③B.②③④C.①②④D.②④二、填空题:本大题共6个小题,每小题3分,共18分,把最后答案直接填在题中的横线上.11.在函数y=中,自变量x的取值范围是.12.若m﹣n=2,则2m2﹣4mn+2n2﹣1=.13.命题“等腰三角形两底角的平分线相等”的逆命题是.14.如图,半圆O的直径AE=6,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD则图中阴影部分的面积为.15.定义新运算“*”,规则:a*b=,如1*2=2,*.若x2+x﹣1=0的两根为x1,x2,则x1*x2=.16.如图,半圆O的直径AB=10cm,D为上一点,C为上一点,把弓形沿直线AD翻折,C和直径AB上的点C′重合,若AC=6cm,则AD的长为.三、解答题:72分,解答时应写出必要的文字说明、证明过程或演算步骤.、(一)本题2个小题,共13分.17.(6分)计算:()﹣1×(﹣22).18.(7分)如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).19.(6分)先化简,再求值:,其中x=.20.(7分)李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有3名,D类男生有1名,将图1条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.21.(8分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?22.(9分)阅读理解:在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣,0),B为y轴上的一个动点.①若点B(0,3),则点A与点B的“非常距离”为;②若点A与点B的“非常距离”为2,则点B的坐标为;③直接写出点A与点B的“非常距离”的最小值;(2)已知点D(0,1),点C是直线y=x+3上的一个动点,如图2,求点C 与点D“非常距离”的最小值及相应的点C的坐标.23.(8分)如图,AB是⊙O的直径,BC为⊙O的切线,切点为B,OC平行于AD,OA=2.(1)求证:CD是⊙O的切线;(2)若AD+OC=9,求CD的长.(结果保留根号)24.(9分)如图,在△ABD中,AB=AD,AO平分∠BAD,过点D作AB的平行线交AO的延长线于点C,连接BC.(1)求证:四边形ABCD是菱形;(2)如果OA,OB(OA>OB)的长(单位:米)是一元二次方程x2﹣7x+12=0的两根,求AB的长以及菱形ABCD的面积;(3)若动点M从A出发,沿AC以2m/S的速度匀速直线运动到点C,动点N 从B出发,沿BD以1m/S的速度匀速直线运动到点D,当M运动到C点时运动停止.若M、N同时出发,问出发几秒钟后,△MON的面积为?25.(12分)如图,抛物线y=ax2+bx+4的图象经过A(﹣3,0),B(5,4),与y轴交于点C.(1)求抛物线的解析式;(2)线段AB在第一象限内的部分上有一动点P,过点P作y轴的平行线,交抛物线于点Q,是否存在点P使四边形BPCQ的面积最大?如果存在,请求出点P的坐标及面积的最大值;如果不存在,说明理由;(3)x轴正半轴上有一点D(1,0),线段AC上是否存在点M,使△AOM∽△ADC?如果存在,直接写出点M的坐标;如果不存在,说明理由.巴中市恩阳区2019年中考数学模拟试卷参考答案与试题解析一、选择题:本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.下列各数中,最小的数是()A.B.2 C.﹣1 D.﹣【考点】实数大小比较.【分析】根据实数的大小比较法则比较即可.【解答】解:∵﹣<﹣1<2<,∴最小的数是﹣,故选D.【点评】本题考查了实数的大小比较法则的应用,注意:正数都等于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.2.净水机的核心部件就是水处理反渗透膜,水处理反渗透膜就像是一个筛子,它的孔径只有0.11纳米,水在压力的作用下一层层过滤,离子以上的杂质像抗生素、重金属、细菌等都能过滤掉,0.11纳米即0.00000000011米,将0.11纳米用科学记数法表示为()A.1.1×10﹣9米B.1.1×10﹣10米C.11×10﹣9米 D.0.11×10﹣9米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000000011=1.1×10﹣10,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到黄球的概率为()A.B.C.D.1【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数为6;②符合条件的情况数目为2;二者的比值就是其发生的概率.【解答】解:∵黄球共有2个,球数共有3+2+1=6个,∴P(黄球)==,故选B.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.如图,AF是∠BAC的平分线,EF∥AC交AB于点E.若∠1=25°,则∠BAF 的度数为()A.15°B.50°C.25°D.12.5°【考点】平行线的性质;角平分线的定义.【分析】根据两直线平行,同位角相等求出∠2,再根据角平分线的定义解答.【解答】解:∵EF∥AC,∠1=25°,∴∠2=∠1=25°,∵AF是∠BAC的平分线,∴∠BAF=∠2=25°.故选:C.【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.5.任何一个正整数n都可以进行这样的分解:n=p×q(p、q是正整数,且p≤q),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n 的最佳分解,并规定:F(n)=,例如18可以分解成1×18,2×9或3×6,则F(18)=,例如35可以分解成1×35,5×7,则F(35)=,则F(24)的值是()A.B.C.D.【考点】有理数的混合运算.【分析】由24=1×24=2×12=3×8=4×6结合最佳分解的定义即可知F(24)=.【解答】解:∵24=1×24=2×12=3×8=4×6,∴F(24)==,故选:A.【点评】本题主要考查有理数的混合运算.理解题意掌握最佳分解的定义是解题的关键.6.如图,下边每个大正方形网格,都是由边长为1的小正方形组成,图中阴影部分面积最大的是()A.B.C. D.【考点】三角形的面积.【分析】根据正方形的性质把不规则图形的面积可以看成是规则图形的面积的和或差,从而可得到图中阴影部分面积最大的图形.【解答】解:图中阴影部分面积分别为:①的阴影部分的面积是:9﹣×(3×2+1×2+2×2),=9﹣×12,=9﹣6,=3;②的阴影部分的面积是:9﹣1.5×4,=9﹣6,=3;③的阴影部分的面积是:9﹣2﹣×(1×2+1×2+1×2)=4;④的阴影部分的面积是:9﹣×(2×1+2×2+1×3+2×1),=9﹣×11,=9﹣5.5,=3.5;阴影部分的面积最大的是第四选项.故选C.【点评】本题考查了三角形的面积.解答此题的关键是依据正方形的特点分别求出阴影部分的面积,即可比较面积的大小.7.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据如图提供的信息,捐款金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,30【考点】众数;中位数.【分析】由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数.【解答】解:根据右图提供的信息,捐款金额的众数和中位数分别是30,30.故选C.【点评】本题考查了众数和中位数的概念.解答这类题学生常常对中位数的计算方法掌握不好而错选.8.如图,△POA1、△P2A1A都是等腰直角三角形,直角顶点P、P2在函数y=(x>0)的图象上,斜边OA1、A1A都在x轴上,则点A的坐标是()A.(4,0)B.(4,0)C.(2,0)D.(2,0)【考点】反比例函数图象上点的坐标特征.【分析】过P作PB⊥x轴于B,根据等腰直角三角形的性质得到BP=BO=BA1,设OB=a,则P点坐标为(a,a),把它代入y=(x>0)可求得a的值,而OA1=2a,从而确定A点坐标;同理可设P2(a+b,b),求出b的值即可得出结论.【解答】解:过P作PB⊥x轴于B,如图∵△POA是等腰直角三角形,∴BP=BO=BA,设OB=a,则P点坐标为(a,a),∵点P在函数y=(x>0)的图象上,∴a2=4,∴a=2,∴OA=2a=4,∴A点坐标为(4,0).设P2(4+b,b),则b(4+b)=4,解得b1=﹣2﹣2(舍去),b2=﹣2+2,∴AA1=2b=﹣4+4,∴OA=4﹣4+4=4,∴A(4,0).故选B.【点评】本题考查了点在反比例函数图象上,则点的横纵坐标满足反比例的解析式.也考查了等腰直角三角形的性质.9.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,CD=6cm,AD=2cm,动点P、Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC 运动到C点停止,两点运动时的速度都是1cm/s,而当点P到达点A时,点Q 正好到达点C.设P点运动的时间为t(s),△BPQ的面积为y(cm2).下图中能正确表示整个运动中y关于t的函数关系的大致图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【解答】解:做AE⊥BC于E,根据已知可得,AB=BC,∴AB2=62+(AB﹣2)2,解之得,AB=BC=10cm.由图可知:P点由B到A,△BPQ的面积从小到大,且达到最大此时面积=×10×6=30cm2.当P点在AD上时,因为同底同高,所以面积保持不变;当P点从D到C时,面积又逐渐减小;又因为AB=10cm,AD=2cm,CD=6cm,速度为1cm/s,则在这三条线段上所用的时间分别为10s、2s、6s.故选B.【点评】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①abc>0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③6a﹣b+c<0;④a﹣am2>bm﹣b,且m﹣1≠0,其中正确的说法有()A.①②③B.②③④C.①②④D.②④【考点】二次函数图象与系数的关系.【分析】①由抛物线的开口向下,对称轴在y轴的右侧,判断a,b与0的关系,得到abc<0;故①错误;②由抛物线与x轴的交点坐标得到方程ax2+bx+c=0的根为x1=﹣1,x2=3;故②正确;③由a<0,x=﹣1时,得到﹣5a>0,y=a+b+c=0,得到a﹣b+c<﹣5a,故③正确;④由抛物线的顶点横坐标为1,且开口向下,得到当x=1时,对应的函数值最大,即a+b+c>am2+bm+c(m﹣1≠0),得到a+b>am2+bm,故④正确.【解答】解:∵抛物线的开口方向向下,∴a<0,∵对称轴在y轴的右边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故①错误;根据图象知道抛物线与x轴的交点的横坐标分别为x=﹣1或x=3,∴方程ax2+bx+c=0的根为x1=﹣1、x2=3,故②正确;③∵a<0,∴﹣5a>0当x=﹣1时,a﹣b+c=0,∴a﹣b+c<﹣5a,∴6a﹣b+c<0;故③正确;④∵抛物线的顶点横坐标为1,且开口向下,∴当x=1时,对应的函数值最大,即a+b+c>am2+bm+c(m﹣1≠0),∴a+b>am2+bm,∴a﹣am2>bm﹣b,本④正确;故选B.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题:本大题共6个小题,每小题3分,共18分,把最后答案直接填在题中的横线上.11.在函数y=中,自变量x的取值范围是x≥3.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≥0且x﹣2≠0,解得x≥3且x≠2,所以,x≥3.故答案为:x≥3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.若m﹣n=2,则2m2﹣4mn+2n2﹣1=7.【考点】因式分解的应用.【分析】首先把多项式的前三项分解因式,再代入m﹣n的值计算即可.【解答】解:∵m﹣n=2,∴2m2﹣4mn+2n2﹣1=2(m﹣n)2﹣1=2×22﹣1=7.故答案为:7.【点评】本题考查了因式分解的应用;熟练掌握提取公因式法和公式法因式分解是解决问题的关键.13.命题“等腰三角形两底角的平分线相等”的逆命题是有两条角平分线相等的三角形是等腰三角形.【考点】命题与定理.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题“等腰三角形两底角的平分线相等”的逆命题是“有两条角平分线相等的三角形是等腰三角形”.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.如图,半圆O的直径AE=6,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.【解答】解:∵AB=BC,CD=DE,∴,,∴,∴∠BOD=90°,=.∴S阴影=S扇形OBD故答案是:.【点评】本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.15.定义新运算“*”,规则:a*b=,如1*2=2,*.若x2+x﹣1=0的两根为x1,x2,则x1*x2=.【考点】根与系数的关系.【分析】根据公式法求得一元二次方程的两个根,然后根据新运算规则计算x1*x2的值则可.【解答】解:在x2+x﹣1=0中,a=1,b=1,c=﹣1,∴b2﹣4ac=5>0,所以x1=,x2=或x1=,x2=.∴x1*x2=*=.【点评】本题考查了运用公式法解一元二次方程,注意定义运算规则里的两种情况.16.如图,半圆O的直径AB=10cm,D为上一点,C为上一点,把弓形沿直线AD翻折,C和直径AB上的点C′重合,若AC=6cm,则AD的长为4cm.【考点】翻折变换(折叠问题).【分析】连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.【解答】解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(折叠的性质),∴=,∴点D是的中点.∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△OED,∴OE=AF=AC=AC'=3cm,在Rt△DOE中,DE==4cm,在Rt△ADE中,AD==4cm.故答案是:4cm.【点评】本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.三、解答题:72分,解答时应写出必要的文字说明、证明过程或演算步骤.、(一)本题2个小题,共13分.17.计算:()﹣1×(﹣22).【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=﹣3×(﹣4)﹣3+1+6×=12﹣3+1+3=13.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).【考点】解直角三角形的应用-坡度坡角问题.【分析】过点C作CE⊥AB于E,过点B作BF⊥CD于F,在Rt△BFD中,分别求出DF、BF的长度,在Rt△ACE中,求出AE、CE的长度,继而可求得AB 的长度.【解答】解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==,∵BD=6,∴DF=3,BF=3,∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=3,CF=BE=CD﹣DF=1,在Rt△ACE中,∠ACE=45°,∴AE=CE=3,∴AB=3+1.答:铁塔AB的高为(3+1)m.【点评】本题考查了解直角三角形的应用,解答本题的根据题目所给的坡角构造直角三角形,利用三角函数的知识求解.19.先化简,再求值:,其中x=.【考点】分式的化简求值.【分析】原式第一项利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=÷﹣=•﹣=﹣=﹣,当x==+1时,原式=﹣=﹣.【点评】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.20.李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有3名,D类男生有1名,将图1条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)根据B类的人数,男女共10人,所占的百分比是50%,即可求得总人数;(2)根据百分比的意义求得C类的人数,进而求得女生的人数,同法求得D类中男生的人数,即可补全直方图;(3)利用树状图法表示出出现的所有情况,进而利用概率公式求解.【解答】解:(1)(6+4)÷50%=20.所以李老师一共调查了20名学生.(2)C类女生有3名,D类男生有1名;补充条形统计图.(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.【点评】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验.22.阅读理解:在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣,0),B为y轴上的一个动点.①若点B(0,3),则点A与点B的“非常距离”为3;②若点A与点B的“非常距离”为2,则点B的坐标为(0,2)或(0,﹣2);③直接写出点A与点B的“非常距离”的最小值;(2)已知点D(0,1),点C是直线y=x+3上的一个动点,如图2,求点C 与点D“非常距离”的最小值及相应的点C的坐标.【考点】一次函数综合题.【分析】(1)①根据若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|解答即可;②根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;③设点B的坐标为(0,y).因为|﹣﹣0|≥|0﹣y|,所以点A与点B的“非常距离”最小值为|﹣﹣0|=;(2)设点C的坐标为(x0,x0+3).根据材料“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”知,C、D两点的“非常距离”的最小值为﹣x0= x0+2,据此可以求得点C的坐标.【解答】解:(1)∵|﹣﹣0|=,|0﹣3|=3,∴<3,∴点A与点B的“非常距离”为3.故答案为:3;②∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠2,∴|0﹣y|=2,解得,y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2),故答案为:(0,2)或(0,﹣2);③点A与点B的“非常距离”的最小值为.故答案为:;(2)如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”解答,此时|x1﹣x2|=|y1﹣y2|,即AC=AD,∵C是直线y=x+3上的一个动点,点D的坐标是(0,1),∴设点C的坐标为(x0,x0+3),∴﹣x0=x0+2,此时,x0=﹣,∴点C与点D的“非常距离”的最小值为:|x0|=,此时C(﹣,).【点评】本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的定义是正确解题的关键.23.如图,AB是⊙O的直径,BC为⊙O的切线,切点为B,OC平行于AD,OA=2.(1)求证:CD是⊙O的切线;(2)若AD+OC=9,求CD的长.(结果保留根号)【考点】切线的判定;勾股定理;相似三角形的判定与性质.【分析】(1)如图,连接OD,欲证明CD是⊙O的切线,只需证得∠ODC=90°,即OD⊥CD即可;(2)由△ADB∽△OBC的对应边成比例求得AD•OC=OB•AB=2×4=8,结合已知条件“AD+OC=9”,则AD、OC是关于x的方程x2﹣9x+8=0的两个根.据此求得OC、OD的值,所以在直角△OCD中,根据勾股定理来求线段CD的长度即可.【解答】证明:(1)连结OD.∵AD∥OC,∴∠1=∠2,∠A=∠3.∵OA=OD,∴∠A=∠1,∴∠2=∠3,∴在△ODC与△OBC中,,∴△ODC≌△OBC(SAS),∴∠ODC=∠OBC=90°,即OD⊥CD.又OD是圆O的半径,∴CD是⊙O的切线;(2)连结BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠OBC=90°,∴∠ADB=∠OBC又∠A=∠3,∴△ADB∽△OBC∴,AD•OC=OB•AB=2×4=8;又AD+OC=9,∴AD、OC是关于x的方程x2﹣9x+8=0的两个根.∵OC>OD,∴OC=8,AD=1,OD=2,∴CD=【点评】本题考查了切线的判定,相似三角形的判定和性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.24.如图,在△ABD中,AB=AD,AO平分∠BAD,过点D作AB的平行线交AO的延长线于点C,连接BC.(1)求证:四边形ABCD是菱形;(2)如果OA,OB(OA>OB)的长(单位:米)是一元二次方程x2﹣7x+12=0的两根,求AB的长以及菱形ABCD的面积;(3)若动点M从A出发,沿AC以2m/S的速度匀速直线运动到点C,动点N 从B出发,沿BD以1m/S的速度匀速直线运动到点D,当M运动到C点时运动停止.若M、N同时出发,问出发几秒钟后,△MON的面积为?【考点】菱形的判定;一元二次方程的应用;等腰三角形的性质.【分析】(1)根据题意,用“一组对边平行且相等的四边形是平行四边形”先判定平行四边形,再用邻边相等证明菱形;(2)解方程可得OA、OB的长,用勾股定理可求AB,根据“菱形的面积对应对角线积的一半”计算连线面积;(3)根据点M、N运动过程中与O点的位置关系,分三种情况分别讨论.【解答】(1)证明:∵AO平分∠BAD,AB∥CD∴∠DAC=∠BAC=∠DCA∴△ACD是等腰三角形,AD=DC又∵AB=AD∴AB=CD,∴四边形ABCD为平行四边形,。

四川省巴中市2019中考数学试卷(解析版)

四川省巴中市2019中考数学试卷(解析版)

2019年四川省巴中市中考数学试卷一、选择题(本大题共10小题,共40.0分)1. 下列四个算式中,正确的是( )A. a +a =2aB. a 5÷a 4=2aC. (a 5)4=a 9D. a 5−a 4=a2. 在平面直角坐标系中,已知点A (-4,3)与点B 关于原点对称,则点B 的坐标为( )A. (−4,−3)B. (4,3)C. (4,−3)D. (−4,3)3. 企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300万元用科学记数法表示为( )A. 93×108元B. 9.3×108元C. 9.3×107元D. 0.93×108元4. 如图是由一些小立方体与圆锥组合成的立体图形,它的主视图是( )A. B. C. D.5. 已知关于x 、y 的二元一次方程组{3x +by =4ax−y=4的解是{y =−2x=2,则a +b 的值是( ) A. 1 B. 2 C. −1 D. 06. 下列命题是真命题的是( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是矩形C. 对角线互相垂直的矩形是正方形D. 四边相等的平行四边形是正方形7. 如图所示,是巴中某校对学生到校方式的情况统计图.若该校骑自行车到校的学生有200人,则步行到校的学生有( )A. 120人B. 160人C. 125人D. 180人8. 如图▱ABCD ,F 为BC 中点,延长AD 至E ,使DE :AD =1:3,连结EF 交DC 于点G ,则S △DEG :S △CFG =( )A. 2:3B. 3:2C. 9:4D. 4:99. 如图,圆锥的底面半径r =6,高h =8,则圆锥的侧面积是( )A. 15πB. 30πC. 45πD. 60π10. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论①b 2>4ac ,②abc <0,③2a +b -c >0,④a +b +c <0.其中正确的是( )A. ①④B. ②④C. ②③D. ①②③④二、填空题(本大题共5小题,共20.0分)11. 函数y =√x−1x−3的自变量x 的取值范围______.12. 如果一组数据为4、a 、5、3、8,其平均数为a ,那么这组数据的方差为______.13. 如图,反比例函数y =k x (x >0)经过A 、B 两点,过点A 作AC ⊥y轴于点C ,过点B 作BD ⊥y 轴于点D ,过点B 作BE ⊥x 轴于点E ,连结AD ,已知AC =1、BE =1、S 矩形BDOE =4.则S △ACD =______.14. 若关于x 的分式方程x x−2+2m 2−x =2m 有增根,则m 的值为______.15. 如图,等边三角形ABC 内有一点P ,分別连结AP 、BP 、CP ,若AP =6,BP =8,CP =10.则S △ABP +S △BPC =______.三、解答题(本大题共11小题,共90.0分)16. 计算(-12)2+(3-π)0+|√3-2|+2sin60°-√8.17. 已知实数x 、y 满足√x −3+y 2-4y +4=0,求代数式x 2−y 2xy •1x 2−2xy+y 2÷xx 2y−xy 2的值.18. 如图,等腰直角三角板如图放置.直角顶点C 在直线m 上,分别过点A 、B 作AE ⊥直线m 于点E ,BD ⊥直线m 于点D .①求证:EC =BD ;②若设△AEC 三边分别为a 、b 、c ,利用此图证明勾股定理.19.△ABC在边长为l的正方形网格中如图所示.①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标.②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.③在②的条件下求出点B经过的路径长.20.在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?21.如图表示的是某班部分同学衣服上口袋的数目.①从图中给出的信息得到学生衣服上口袋数目的中位数为______,众数为______.②根据如图信息,在给出的图表中绘制频数条形统计图,由此估计该班学生衣服上口袋数目为5≤x<7的概率.22.已知关于x的一元二次方程x2+(2m+1)x+m2-1=0有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且x12+x22+x1x2-17=0,求m的值.23.某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)24.如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与(k2≠0,x>0)的图象交于点A(m,8)反比例函数y2=k2x与点B(4,2).①求一次函数与反比例函数的解析式.②根据图象说明,当x为何值时,k1x+b-k2<0.x25.如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.26.如图,抛物线y=ax2+bx-5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM 的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.答案和解析1.【答案】A【解析】解:A、a+a=2a,故本选项正确;B、a5÷a4=a,故本选项错误;C、(a5)4=a20,故本选项错误;D、a5-a4,不能合并,故本选项错误.故选:A.根据合并同类项法则,同底数幂的除法的性质,幂的乘方的性质对各选项分析判断后利用排除法求解.本题考查了合并同类项法则,同底数幂的除法,幂的乘方.理清指数的变化是解题的关键.2.【答案】C【解析】解:∵点A(-4,3),点A与点B关于原点对称,∴点B(4,-3).故选:C.根据关于原点的对称点,横、纵坐标都变成相反数解答.本题考查了关于原点对称的点的坐标,熟记“关于原点的对称点,横、纵坐标都变成相反数”是解题的关键.3.【答案】C【解析】解:将9300万元用科学记数法表示为:9.3×107元.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:如图所示,它的主视图是:.故选:C.根据实物的特点以及主视图的定义判断即可.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.5.【答案】B【解析】解:将代入得:,∴a+b=2;故选:B.将代入即可求出a与b的值;本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.6.【答案】C【解析】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线相等的平行四边形是矩形,所以B选项错误;C、对角线互相垂直的矩形是正方形,所以C选项正确;D、四边相等的菱形是正方形,所以D选项错误.故选:C.根据矩形的判定方法对A、B矩形判断;根据正方形的判定方法对C、D矩形判断.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.【答案】B【解析】解:学生总数:200÷25%=800(人),步行到校的学生:800×20%=160(人),故选:B.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.8.【答案】D【解析】解:设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.先设出DE=x,进而得出AD=3x,再用平行四边形的性质得出BC=3x,进而求出CF,最后用相似三角形的性质即可得出结论.此题主要考查了相似三角形的判定和性质,平行四边形的性质,中点的定义,表示出CF是解本题的关键.9.【答案】D【解析】解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π,故选:D.圆锥的侧面积:S侧=•2πr•l=πrl,求出圆锥的母线l即可解决问题.本题考查圆锥的侧面积,勾股定理等知识,解题的关键是记住圆锥的圆锥的侧面积公式.10.【答案】A【解析】解:①∵抛物线与x轴由两个交点,∴b2-4ac>0,即b2>4ac,所以①正确;②由二次函数图象可知,a<0,b<0,c>0,∴abc>0,故②错误;③∵对称轴:直线x=-=-1,∴b=2a,∴2a+b-c=4a-c,∵a<0,4a<0,c>0,-c<0,∴2a+b-c=4a-c<0,故③错误;④∵对称轴为直线x=-1,抛物线与x轴一个交点-3<x1<-2,∴抛物线与x轴另一个交点0<x2<1,当x=1时,y=a+b+c<0,故④正确.故选:A.①抛物线与x轴由两个交点,则b2-4ac>0,即b2>4ac,所以①正确;②由二次函数图象可知,a<0,b<0,c>0,所以abc>0,故②错误;③对称轴:直线x=-=-1,b=2a,所以2a+b-c=4a-c,2a+b-c=4a-c<0,故③错误;④对称轴为直线x=-1,抛物线与x轴一个交点-3<x1<-2,则抛物线与x轴另一个交点0<x2<1,当x=1时,y=a+b+c<0,故④正确.本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.11.【答案】x≥1,且x≠3【解析】解:根据题意得:解得x≥1,且x≠3,即:自变量x取值范围是x≥1,且x≠3.本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x-1≥0;根据分式有意义的条件,x-3≠0,则函数的自变量x取值范围就可以求出.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.【答案】145【解析】解:根据题意,得:=a,解得:a=5,则这组数据为4、5、5、3、8,其平均数是5,所以这组数据的方差为×[(4-5)2+(5-5)2+(5-5)2+(3-5)2+(8-5)2]=,故答案为:.先根据平均数的定义确定出a的值,再根据方差公式进行计算即可求出答案.此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.13.【答案】32【解析】解:过点A作AH⊥x轴于点H,交BD于点F,则四边形ACOH和四边形ACDF 均为矩形,如图:∵S矩形BDOE=4,反比例函数y=(x>0)经过B点∴k=4∴S矩形ACOH=4,∵AC=1∴OC=4÷1=4∴CD=OC-OD=OC-BE=4-1=3∴S矩形ACDF=1×3=3∴S△ACD=故答案为:.过点A作AH⊥x轴于点H,交BD于点F,则四边形ACOH和四边形ACDF均为矩形,根据S矩形BDOE=4,可得k的值,即可得到矩形ACOH和矩形ACDF的面积,进而可求出S△ACD.此题主要考查的知识有:反比例函数系数k的几何意义和性质,通过矩形的面积求出k的值是解本题的关键.14.【答案】1【解析】解:方程两边都乘x-2,得x-2m=2m(x-2)∵原方程有增根,∴最简公分母x-2=0,解得x=2,当x=2时,m=1故m的值是1,故答案为1增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入化为整式方程的方程算出m 的值.本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.【答案】24+16√3【解析】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=BP2+×PP'×AP=24+16故答案为:24+16将△BPC 绕点B 逆时针旋转60°后得△AP'B ,根据旋转的性质可得∠PBP′=∠CAB=60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.本题考查了旋转的性质,等边三角形的性质,勾股定理,作辅助线构造出等边三角形和直角三角形是解题的关键,也是本题的难点.16.【答案】解:原式=14+1+2−√3+2×√32−2√2=134−2√2. 【解析】分别根据幂的定义、零指数幂、绝对值的性质、特殊角的三角函数值以及二次根式的性质化简即可.本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握二次根式的性质、绝对值的性质以及特殊角的三角函数值等知识.17.【答案】解:x 2−y 2xy •1x 2−2xy+y 2÷x x 2y−xy 2 =(x+y)(x−y)xy •1(x−y)2•xy(x−y)x =x+y x ,∵√x −3+y 2-4y +4=0,∴√x −3+(y -2)2=0,∴x =3,y =2,∴原式=3+23=53. 【解析】根据分式的乘除法法则把原式化简,根据非负数的性质分别求出x 、y ,代入计算即可.本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.18.【答案】①证明:∵∠ACB =90°, ∴∠ACE +∠BCD =90°.∵∠ACE +∠CAE =90°,∴∠CAE =∠BCD .在△AEC 与△BCD 中,{∠CEA =∠BDC ∠CAE =∠BCD AC =CB∴△CAE ≌△BCD (AAS ).∴EC =BD ;②解:由①知:BD =CE =aCD =AE =b∴S 梯形AEDB =12(a +b )(a +b )=12a 2+ab +12b 2.又∵S 梯形AEDB =S △AEC +S △BCD +S △ABC=12ab +12ab +12c 2=ab +12c 2. ∴12a 2+ab +12b 2=ab +12c 2.整理,得a 2+b 2=c 2.【解析】①通过AAS 证得△CAE ≌△BCD ,根据全等三角形的对应边相等证得结论; ②利用等面积法证得勾股定理.主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明,解本题的关键是判断两三角形全等.19.【答案】解:①如图,△A 1B 1C 为所作,点A 1的坐标为(3,-3);②如图,△A 2B 2C 为所作;③OB =√12+42=√17,点B 经过的路径长=90⋅π⋅√17180=√172π. 【解析】①延长AC 到A 1使A 1C=2AC ,延长BC 到B 1使B 1C=2BC ,则△A 1B 1C 满足条件;②利用网格特点和旋转的性质画出A 、B 的对应点A 2、B 2,从而得到△A 2B 2C . ③先计算出OB 的长,然后根据弧长公式计算点B 经过的路径长.本题考查了作图-位似变换:画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.20.【答案】解:①设乙种物品单价为x 元,则甲种物品单价为(x +10)元,由题意得: 500x+10=450x解得x =90经检验,x =90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y 件,则乙种物品购进(55-y )件由题意得:5000≤100y +90(55-y )≤5050解得5≤y ≤10∴共有6种选购方案.【解析】①设乙种物品单价为x 元,则甲种物品单价为(x+10)元,由题意得分式方程,解之即可;②设购买甲种物品y 件,则乙种物品购进(55-y )件,由题意得不等式,从而得解.本题考查了分式方程的应用以及一元一次不等式的整数解的问题.本题中等难度.21.【答案】4 4【解析】解:①由图可知,学生衣服上口袋的数目分别为:3,4,2,6,5,5,3,1,4,2,4,6,10,7,1,4,5,6,2,10,3.按从小到大的顺序排列为:1,1,2,2,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,10,10.故中位数为4,众数为4,故答案为4,4.(2)条形图如图所示:估计该班学生衣服上口袋数目为5≤x<7的概率==.①根据中位数、众数的概念分别求得学生衣服上口袋数目的中位数、众数;②根据图中得出的数据绘制频数条形统计图,用衣服上口袋数目为5≤x<7的人数除以总人数21即可.本题考查条形统计图,样本估计总体,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:①根据题意得:△=(2m+1)2-4(m2-1)>0,解得:m>−5,4②根据题意得:x1+x2=-(2m+1),x1x2=m2-1,x12+x22+x1x2-17=(x1+x2)2-x1x2-17=(2m+1)2-(m2-1)-17=0,,m2=-3(不合题意,舍去),解得:m1=53∴m的值为5.3【解析】①根据“关于x的一元二次方程x2+(2m+1)x+m2-1=0有两不相等的实数根”,结合判别式公式,得到关于m的不等式,解之即可,②根据“x1,x2是方程的两根且x12+x22+x1x2-17=0”,结合根与系数的关系,列出关于m的一元二次方程,解之,结合(1)的结果,即可得到答案.本题考查了根与系数的关系,根的判别式,解题的关键:①正确掌握判别式公式,②正确掌握根与系数的关系.23.【答案】解:如图,过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD 是矩形,设DE=x,在Rt△ADE中,∠AED=90°,∵tan∠DAE=DEAE,∴AE=DEtan∠DAE =x2.14,∴BE=300-x2.14,又BF=DE=x,∴CF=414-x,在Rt△CDF中,∠DFC=90°,∠DCF=45°,∴DF=CF=414-x,又BE=CF,即:300-x2.14=414-x,解得:x=214,故:点D到AB的距离是214m.【解析】过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,根据BE=DF=CF,列方程可得结论.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确根据三角函数列方程是解题的关键.24.【答案】解:①把点B(4,2)代入反比例函数y2=k2x(k2≠0,x>0)得,k2=4×2=8,∴反比例函数的解析式为y2=8x,将点A(m,8)代入y2得,8=8m,解得m=1,∴A (1,8),将A 、B 的坐标代入y 1=k 1x +b (k 1、b 为常数,k 1≠0)得{4k 1+b =2k 1+b=8, 解得{b =10k 1=−2,∴一次函数的解析式为y 1=-2x +10;②由图象可知:当0<x <1或x >4时,y 1<y 2,即k 1x +b -k 2x <0.【解析】①把B 点坐标代入反比例函数解析式可求得k 2的值,把点A (m ,8)代入求得的反比例函数的解析式求得m ,然后利用待定系数法即可求得一次函数的解析式;②直接由A 、B 的坐标可求得答案.本题考查了一次函数和反比例函数的交点,待定系数法求一次函数和反比例函数的解析式,熟练掌握待定系数法是解题的关键.25.【答案】解:①过点O 作OG ⊥CD ,垂足为G ,在菱形ABCD 中,AC 是对角线,则AC 平分∠BCD ,∵OH ⊥BC ,OG ⊥CD ,∴OH =OG ,∴OH 、OG 都为圆的半径,即DC 是⊙O 的切线;②∵AC =4MC 且AC =8,∴OC =2MC =4,MC =OM =2,∴OH =2,在直角三角形OHC 中,HO =12CO ,∴∠OCH =30°,∠COH =60°,∴HC =√CO 2−OH 2=2√3,S 阴影=S △OCH -S 扇形OHM =12CH •OH -60360π⋅OH 2=2√3-2π3;③作M 关于BD 的对称点N ,连接HN 交BD 于点P ,∵PM =NP ,∴PH +PM =PH +PN =HN ,此时PH +PM 最小,∵ON =OM =OH ,∠MOH =60°,∴∠MNH =30°,∴∠MNH =∠HCM , ∴HN =HC =2√3, 即:PH +PM 的最小值为2√3,在Rt △NPO 中,OP =ON tan30°=2√33, 在Rt △COD 中,OD =OC tan30°=4√33, 则PD =OP +OD =2√3.【解析】①作OH ⊥BC ,证明OH 为圆的半径,即可求解;②利用S 阴影=S △OCH -S 扇形OHM =CH•OH -OH 2,即可求解; ③作M 关于BD 的对称点N ,连接HN 交BD 于点P ,PH+PM=PH+PN=HN ,此时PH+PM 最小,即可求解.本题为圆的综合运用题,涉及到圆切线的性质及应用、点的对称性、解直角三角形等知识,其中③,通过点的对称性确定PH+PM 最小,是本题的难点和关键.26.【答案】解:①∵点B 、C 在直线为y =x +n 上,∴B (-n ,0)、C (0,n ),∵点A (1,0)在抛物线上,∴{a +b −5=0an 2+bn −5=0n =−5,∴a =-1,b =6,∴抛物线解析式:y =-x 2+6x -5;②由题意,得,PB =4-t ,BE =2t ,由①知,∠OBC =45°,∴点P 到BC 的高h 为BP sin45°=√22(4-t ), ∴S △PBE =12BE •h =12×√22(4−t)×2t =√22(t −2)2+2√2, 当t =2时,△PBE 的面积最大,最大值为2√2;③由①知,BC 所在直线为:y =x -5,∴点A 到直线BC 的距离d =2√2,过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设N (m ,-m 2+6m -5),则H (m ,0)、P (m ,m -5),易证△PQN 为等腰直角三角形,即NQ =PQ =2√2,∴PN =4,Ⅰ.NH +HP =4,∴-m 2+6m -5-(m -5)=4解得m 1=1,m 2=4,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,∴m =4;Ⅱ.NH +HP =4,∴m -5-(-m 2+6m -5)=4解得m 1=5+√412,m 2=5−√412, ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,m >5,∴m =5+√412, Ⅲ.NH -HP =4,∴-(-m 2+6m -5)-[-(m -5)]=4,解得m 1=5+√412,m 2=5−√412, ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,m <0,∴m =5−√412, 综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或5+√412或5−√412.【解析】①点B 、C 在直线为y=x+n 上,则B (-n ,0)、C (0,n ),点A (1,0)在抛物线上,所以,解得a=-1,b=6,因此抛物线解析式:y=-x 2+6x-5;②先求出点P 到BC 的高h 为BPsin45°=(4-t ),于是S △PBE =BE•h==,当t=2时,△PBE 的面积最大,最大值为2; ③由①知,BC 所在直线为:y=x-5,所以点A 到直线BC 的距离d=2,过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设N (m ,-m 2+6m-5),则H (m ,0)、P (m ,m-5),易证△PQN 为等腰直角三角形,即NQ=PQ=2,PN=4,Ⅰ.NH+HP=4,所以-m 2+6m-5-(m-5)=4解得m 1=1(舍去),m 2=4,Ⅱ.NH+HP=4,m-5-(-m 2+6m-5)=4解得m 1=,m 2=(舍去),Ⅲ.NH-HP=4,-(-m2+6m-5)-[-(m-5)]=4,解得m1=(舍去),m2=.本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.。

四川省巴中市2019中考数学试卷(解析版)

四川省巴中市2019中考数学试卷(解析版)

2019年四川省巴中市中考数学试卷一、选择题(本大题共10小题,共40.0分)1. 下列四个算式中,正确的是( )A. a +a =2aB. a 5÷a 4=2aC. (a 5)4=a 9D. a 5−a 4=a2. 在平面直角坐标系中,已知点A (-4,3)与点B 关于原点对称,则点B 的坐标为( )A. (−4,−3)B. (4,3)C. (4,−3)D. (−4,3)3. 企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300万元用科学记数法表示为( )A. 93×108元B. 9.3×108元C. 9.3×107元D. 0.93×108元4. 如图是由一些小立方体与圆锥组合成的立体图形,它的主视图是( )A. B. C. D.5. 已知关于x 、y 的二元一次方程组{3x +by =4ax−y=4的解是{y =−2x=2,则a +b 的值是( ) A. 1 B. 2 C. −1 D. 06. 下列命题是真命题的是( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是矩形C. 对角线互相垂直的矩形是正方形D. 四边相等的平行四边形是正方形7. 如图所示,是巴中某校对学生到校方式的情况统计图.若该校骑自行车到校的学生有200人,则步行到校的学生有( )A. 120人B. 160人C. 125人D. 180人8. 如图▱ABCD ,F 为BC 中点,延长AD 至E ,使DE :AD =1:3,连结EF 交DC 于点G ,则S △DEG :S △CFG =( )A. 2:3B. 3:2C. 9:4D. 4:99. 如图,圆锥的底面半径r =6,高h =8,则圆锥的侧面积是( )A. 15πB. 30πC. 45πD. 60π10. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论①b 2>4ac ,②abc <0,③2a +b -c >0,④a +b +c <0.其中正确的是( )A. ①④B. ②④C. ②③D. ①②③④二、填空题(本大题共5小题,共20.0分)11. 函数y =√x−1x−3的自变量x 的取值范围______.12. 如果一组数据为4、a 、5、3、8,其平均数为a ,那么这组数据的方差为______.13. 如图,反比例函数y =k x (x >0)经过A 、B 两点,过点A 作AC ⊥y轴于点C ,过点B 作BD ⊥y 轴于点D ,过点B 作BE ⊥x 轴于点E ,连结AD ,已知AC =1、BE =1、S 矩形BDOE =4.则S △ACD =______.14. 若关于x 的分式方程x x−2+2m 2−x =2m 有增根,则m 的值为______.15. 如图,等边三角形ABC 内有一点P ,分別连结AP 、BP 、CP ,若AP =6,BP =8,CP =10.则S △ABP +S △BPC =______.三、解答题(本大题共11小题,共90.0分)16. 计算(-12)2+(3-π)0+|√3-2|+2sin60°-√8.17. 已知实数x 、y 满足√x −3+y 2-4y +4=0,求代数式x 2−y 2xy •1x 2−2xy+y 2÷xx 2y−xy 2的值.18. 如图,等腰直角三角板如图放置.直角顶点C 在直线m 上,分别过点A 、B 作AE ⊥直线m 于点E ,BD ⊥直线m 于点D .①求证:EC =BD ;②若设△AEC 三边分别为a 、b 、c ,利用此图证明勾股定理.19.△ABC在边长为l的正方形网格中如图所示.①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标.②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.③在②的条件下求出点B经过的路径长.20.在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?21.如图表示的是某班部分同学衣服上口袋的数目.①从图中给出的信息得到学生衣服上口袋数目的中位数为______,众数为______.②根据如图信息,在给出的图表中绘制频数条形统计图,由此估计该班学生衣服上口袋数目为5≤x<7的概率.22.已知关于x的一元二次方程x2+(2m+1)x+m2-1=0有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且x12+x22+x1x2-17=0,求m的值.23.某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)24.如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与(k2≠0,x>0)的图象交于点A(m,8)反比例函数y2=k2x与点B(4,2).①求一次函数与反比例函数的解析式.②根据图象说明,当x为何值时,k1x+b-k2<0.x25.如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.26.如图,抛物线y=ax2+bx-5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM 的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.答案和解析1.【答案】A【解析】解:A、a+a=2a,故本选项正确;B、a5÷a4=a,故本选项错误;C、(a5)4=a20,故本选项错误;D、a5-a4,不能合并,故本选项错误.故选:A.根据合并同类项法则,同底数幂的除法的性质,幂的乘方的性质对各选项分析判断后利用排除法求解.本题考查了合并同类项法则,同底数幂的除法,幂的乘方.理清指数的变化是解题的关键.2.【答案】C【解析】解:∵点A(-4,3),点A与点B关于原点对称,∴点B(4,-3).故选:C.根据关于原点的对称点,横、纵坐标都变成相反数解答.本题考查了关于原点对称的点的坐标,熟记“关于原点的对称点,横、纵坐标都变成相反数”是解题的关键.3.【答案】C【解析】解:将9300万元用科学记数法表示为:9.3×107元.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:如图所示,它的主视图是:.故选:C.根据实物的特点以及主视图的定义判断即可.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.5.【答案】B【解析】解:将代入得:,∴a+b=2;故选:B.将代入即可求出a与b的值;本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.6.【答案】C【解析】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线相等的平行四边形是矩形,所以B选项错误;C、对角线互相垂直的矩形是正方形,所以C选项正确;D、四边相等的菱形是正方形,所以D选项错误.故选:C.根据矩形的判定方法对A、B矩形判断;根据正方形的判定方法对C、D矩形判断.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.【答案】B【解析】解:学生总数:200÷25%=800(人),步行到校的学生:800×20%=160(人),故选:B.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.8.【答案】D【解析】解:设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.先设出DE=x,进而得出AD=3x,再用平行四边形的性质得出BC=3x,进而求出CF,最后用相似三角形的性质即可得出结论.此题主要考查了相似三角形的判定和性质,平行四边形的性质,中点的定义,表示出CF是解本题的关键.9.【答案】D【解析】解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π,故选:D.圆锥的侧面积:S侧=•2πr•l=πrl,求出圆锥的母线l即可解决问题.本题考查圆锥的侧面积,勾股定理等知识,解题的关键是记住圆锥的圆锥的侧面积公式.10.【答案】A【解析】解:①∵抛物线与x轴由两个交点,∴b2-4ac>0,即b2>4ac,所以①正确;②由二次函数图象可知,a<0,b<0,c>0,∴abc>0,故②错误;③∵对称轴:直线x=-=-1,∴b=2a,∴2a+b-c=4a-c,∵a<0,4a<0,c>0,-c<0,∴2a+b-c=4a-c<0,故③错误;④∵对称轴为直线x=-1,抛物线与x轴一个交点-3<x1<-2,∴抛物线与x轴另一个交点0<x2<1,当x=1时,y=a+b+c<0,故④正确.故选:A.①抛物线与x轴由两个交点,则b2-4ac>0,即b2>4ac,所以①正确;②由二次函数图象可知,a<0,b<0,c>0,所以abc>0,故②错误;③对称轴:直线x=-=-1,b=2a,所以2a+b-c=4a-c,2a+b-c=4a-c<0,故③错误;④对称轴为直线x=-1,抛物线与x轴一个交点-3<x1<-2,则抛物线与x轴另一个交点0<x2<1,当x=1时,y=a+b+c<0,故④正确.本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.11.【答案】x≥1,且x≠3【解析】解:根据题意得:解得x≥1,且x≠3,即:自变量x取值范围是x≥1,且x≠3.本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x-1≥0;根据分式有意义的条件,x-3≠0,则函数的自变量x取值范围就可以求出.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.【答案】145【解析】解:根据题意,得:=a,解得:a=5,则这组数据为4、5、5、3、8,其平均数是5,所以这组数据的方差为×[(4-5)2+(5-5)2+(5-5)2+(3-5)2+(8-5)2]=,故答案为:.先根据平均数的定义确定出a的值,再根据方差公式进行计算即可求出答案.此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.13.【答案】32【解析】解:过点A作AH⊥x轴于点H,交BD于点F,则四边形ACOH和四边形ACDF 均为矩形,如图:∵S矩形BDOE=4,反比例函数y=(x>0)经过B点∴k=4∴S矩形ACOH=4,∵AC=1∴OC=4÷1=4∴CD=OC-OD=OC-BE=4-1=3∴S矩形ACDF=1×3=3∴S△ACD=故答案为:.过点A作AH⊥x轴于点H,交BD于点F,则四边形ACOH和四边形ACDF均为矩形,根据S矩形BDOE=4,可得k的值,即可得到矩形ACOH和矩形ACDF的面积,进而可求出S△ACD.此题主要考查的知识有:反比例函数系数k的几何意义和性质,通过矩形的面积求出k的值是解本题的关键.14.【答案】1【解析】解:方程两边都乘x-2,得x-2m=2m(x-2)∵原方程有增根,∴最简公分母x-2=0,解得x=2,当x=2时,m=1故m的值是1,故答案为1增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入化为整式方程的方程算出m 的值.本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.【答案】24+16√3【解析】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=BP2+×PP'×AP=24+16故答案为:24+16将△BPC 绕点B 逆时针旋转60°后得△AP'B ,根据旋转的性质可得∠PBP′=∠CAB=60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.本题考查了旋转的性质,等边三角形的性质,勾股定理,作辅助线构造出等边三角形和直角三角形是解题的关键,也是本题的难点.16.【答案】解:原式=14+1+2−√3+2×√32−2√2=134−2√2. 【解析】分别根据幂的定义、零指数幂、绝对值的性质、特殊角的三角函数值以及二次根式的性质化简即可.本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握二次根式的性质、绝对值的性质以及特殊角的三角函数值等知识.17.【答案】解:x 2−y 2xy •1x 2−2xy+y 2÷x x 2y−xy 2 =(x+y)(x−y)xy •1(x−y)2•xy(x−y)x =x+y x ,∵√x −3+y 2-4y +4=0,∴√x −3+(y -2)2=0,∴x =3,y =2,∴原式=3+23=53. 【解析】根据分式的乘除法法则把原式化简,根据非负数的性质分别求出x 、y ,代入计算即可.本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.18.【答案】①证明:∵∠ACB =90°, ∴∠ACE +∠BCD =90°.∵∠ACE +∠CAE =90°,∴∠CAE =∠BCD .在△AEC 与△BCD 中,{∠CEA =∠BDC ∠CAE =∠BCD AC =CB∴△CAE ≌△BCD (AAS ).∴EC =BD ;②解:由①知:BD =CE =aCD =AE =b∴S 梯形AEDB =12(a +b )(a +b )=12a 2+ab +12b 2.又∵S 梯形AEDB =S △AEC +S △BCD +S △ABC=12ab +12ab +12c 2=ab +12c 2. ∴12a 2+ab +12b 2=ab +12c 2.整理,得a 2+b 2=c 2.【解析】①通过AAS 证得△CAE ≌△BCD ,根据全等三角形的对应边相等证得结论; ②利用等面积法证得勾股定理.主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明,解本题的关键是判断两三角形全等.19.【答案】解:①如图,△A 1B 1C 为所作,点A 1的坐标为(3,-3);②如图,△A 2B 2C 为所作;③OB =√12+42=√17,点B 经过的路径长=90⋅π⋅√17180=√172π. 【解析】①延长AC 到A 1使A 1C=2AC ,延长BC 到B 1使B 1C=2BC ,则△A 1B 1C 满足条件;②利用网格特点和旋转的性质画出A 、B 的对应点A 2、B 2,从而得到△A 2B 2C . ③先计算出OB 的长,然后根据弧长公式计算点B 经过的路径长.本题考查了作图-位似变换:画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.20.【答案】解:①设乙种物品单价为x 元,则甲种物品单价为(x +10)元,由题意得: 500x+10=450x解得x =90经检验,x =90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y 件,则乙种物品购进(55-y )件由题意得:5000≤100y +90(55-y )≤5050解得5≤y ≤10∴共有6种选购方案.【解析】①设乙种物品单价为x 元,则甲种物品单价为(x+10)元,由题意得分式方程,解之即可;②设购买甲种物品y 件,则乙种物品购进(55-y )件,由题意得不等式,从而得解.本题考查了分式方程的应用以及一元一次不等式的整数解的问题.本题中等难度.21.【答案】4 4【解析】解:①由图可知,学生衣服上口袋的数目分别为:3,4,2,6,5,5,3,1,4,2,4,6,10,7,1,4,5,6,2,10,3.按从小到大的顺序排列为:1,1,2,2,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,10,10.故中位数为4,众数为4,故答案为4,4.(2)条形图如图所示:估计该班学生衣服上口袋数目为5≤x<7的概率==.①根据中位数、众数的概念分别求得学生衣服上口袋数目的中位数、众数;②根据图中得出的数据绘制频数条形统计图,用衣服上口袋数目为5≤x<7的人数除以总人数21即可.本题考查条形统计图,样本估计总体,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:①根据题意得:△=(2m+1)2-4(m2-1)>0,解得:m>−5,4②根据题意得:x1+x2=-(2m+1),x1x2=m2-1,x12+x22+x1x2-17=(x1+x2)2-x1x2-17=(2m+1)2-(m2-1)-17=0,,m2=-3(不合题意,舍去),解得:m1=53∴m的值为5.3【解析】①根据“关于x的一元二次方程x2+(2m+1)x+m2-1=0有两不相等的实数根”,结合判别式公式,得到关于m的不等式,解之即可,②根据“x1,x2是方程的两根且x12+x22+x1x2-17=0”,结合根与系数的关系,列出关于m的一元二次方程,解之,结合(1)的结果,即可得到答案.本题考查了根与系数的关系,根的判别式,解题的关键:①正确掌握判别式公式,②正确掌握根与系数的关系.23.【答案】解:如图,过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD 是矩形,设DE=x,在Rt△ADE中,∠AED=90°,∵tan∠DAE=DEAE,∴AE=DEtan∠DAE =x2.14,∴BE=300-x2.14,又BF=DE=x,∴CF=414-x,在Rt△CDF中,∠DFC=90°,∠DCF=45°,∴DF=CF=414-x,又BE=CF,即:300-x2.14=414-x,解得:x=214,故:点D到AB的距离是214m.【解析】过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,根据BE=DF=CF,列方程可得结论.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确根据三角函数列方程是解题的关键.24.【答案】解:①把点B(4,2)代入反比例函数y2=k2x(k2≠0,x>0)得,k2=4×2=8,∴反比例函数的解析式为y2=8x,将点A(m,8)代入y2得,8=8m,解得m=1,∴A (1,8),将A 、B 的坐标代入y 1=k 1x +b (k 1、b 为常数,k 1≠0)得{4k 1+b =2k 1+b=8, 解得{b =10k 1=−2,∴一次函数的解析式为y 1=-2x +10;②由图象可知:当0<x <1或x >4时,y 1<y 2,即k 1x +b -k 2x <0.【解析】①把B 点坐标代入反比例函数解析式可求得k 2的值,把点A (m ,8)代入求得的反比例函数的解析式求得m ,然后利用待定系数法即可求得一次函数的解析式;②直接由A 、B 的坐标可求得答案.本题考查了一次函数和反比例函数的交点,待定系数法求一次函数和反比例函数的解析式,熟练掌握待定系数法是解题的关键.25.【答案】解:①过点O 作OG ⊥CD ,垂足为G ,在菱形ABCD 中,AC 是对角线,则AC 平分∠BCD ,∵OH ⊥BC ,OG ⊥CD ,∴OH =OG ,∴OH 、OG 都为圆的半径,即DC 是⊙O 的切线;②∵AC =4MC 且AC =8,∴OC =2MC =4,MC =OM =2,∴OH =2,在直角三角形OHC 中,HO =12CO ,∴∠OCH =30°,∠COH =60°,∴HC =√CO 2−OH 2=2√3,S 阴影=S △OCH -S 扇形OHM =12CH •OH -60360π⋅OH 2=2√3-2π3;③作M 关于BD 的对称点N ,连接HN 交BD 于点P ,∵PM =NP ,∴PH +PM =PH +PN =HN ,此时PH +PM 最小,∵ON =OM =OH ,∠MOH =60°,∴∠MNH =30°,∴∠MNH =∠HCM , ∴HN =HC =2√3, 即:PH +PM 的最小值为2√3,在Rt △NPO 中,OP =ON tan30°=2√33, 在Rt △COD 中,OD =OC tan30°=4√33, 则PD =OP +OD =2√3.【解析】①作OH ⊥BC ,证明OH 为圆的半径,即可求解;②利用S 阴影=S △OCH -S 扇形OHM =CH•OH -OH 2,即可求解; ③作M 关于BD 的对称点N ,连接HN 交BD 于点P ,PH+PM=PH+PN=HN ,此时PH+PM 最小,即可求解.本题为圆的综合运用题,涉及到圆切线的性质及应用、点的对称性、解直角三角形等知识,其中③,通过点的对称性确定PH+PM 最小,是本题的难点和关键.26.【答案】解:①∵点B 、C 在直线为y =x +n 上,∴B (-n ,0)、C (0,n ),∵点A (1,0)在抛物线上,∴{a +b −5=0an 2+bn −5=0n =−5,∴a =-1,b =6,∴抛物线解析式:y =-x 2+6x -5;②由题意,得,PB =4-t ,BE =2t ,由①知,∠OBC =45°,∴点P 到BC 的高h 为BP sin45°=√22(4-t ), ∴S △PBE =12BE •h =12×√22(4−t)×2t =√22(t −2)2+2√2, 当t =2时,△PBE 的面积最大,最大值为2√2;③由①知,BC 所在直线为:y =x -5,∴点A 到直线BC 的距离d =2√2,过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设N (m ,-m 2+6m -5),则H (m ,0)、P (m ,m -5),易证△PQN 为等腰直角三角形,即NQ =PQ =2√2,∴PN =4,Ⅰ.NH +HP =4,∴-m 2+6m -5-(m -5)=4解得m 1=1,m 2=4,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,∴m =4;Ⅱ.NH +HP =4,∴m -5-(-m 2+6m -5)=4解得m 1=5+√412,m 2=5−√412, ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,m >5,∴m =5+√412, Ⅲ.NH -HP =4,∴-(-m 2+6m -5)-[-(m -5)]=4,解得m 1=5+√412,m 2=5−√412, ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,m <0,∴m =5−√412, 综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或5+√412或5−√412.【解析】①点B 、C 在直线为y=x+n 上,则B (-n ,0)、C (0,n ),点A (1,0)在抛物线上,所以,解得a=-1,b=6,因此抛物线解析式:y=-x 2+6x-5;②先求出点P 到BC 的高h 为BPsin45°=(4-t ),于是S △PBE =BE•h==,当t=2时,△PBE 的面积最大,最大值为2; ③由①知,BC 所在直线为:y=x-5,所以点A 到直线BC 的距离d=2,过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设N (m ,-m 2+6m-5),则H (m ,0)、P (m ,m-5),易证△PQN 为等腰直角三角形,即NQ=PQ=2,PN=4,Ⅰ.NH+HP=4,所以-m 2+6m-5-(m-5)=4解得m 1=1(舍去),m 2=4,Ⅱ.NH+HP=4,m-5-(-m 2+6m-5)=4解得m 1=,m 2=(舍去),Ⅲ.NH-HP=4,-(-m2+6m-5)-[-(m-5)]=4,解得m1=(舍去),m2=.本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.。

四川省巴中市2019年中考数学试卷(Word解析版)

四川省巴中市2019年中考数学试卷(Word解析版)

2019年四川省巴中市中考数学试卷一、选择题(本大题共10小题,共40.0分)1.下列四个算式中,正确的是()A. B. C. D.2.在平面直角坐标系中,已知点A(-4,3)与点B关于原点对称,则点B的坐标为()A. B. C. D.3.企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300万元用科学记数法表示为()A. 元B. 元C. 元D. 元4.如图是由一些小立方体与圆锥组合成的立体图形,它的主视图是()A. B. C. D.5.已知关于x、y的二元一次方程组的解是,则a+b的值是()A. 1B. 2C.D. 06.下列命题是真命题的是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是矩形C. 对角线互相垂直的矩形是正方形D. 四边相等的平行四边形是正方形7.如图所示,是巴中某校对学生到校方式的情况统计图.若该校骑自行车到校的学生有200人,则步行到校的学生有()A. 120人B. 160人C. 125人D. 180人8.如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A. 2:3B. 3:2C. 9:4D. 4:99.如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()A.B.C.D.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b-c>0,④a+b+c<0.其中正确的是()A.B.C.D.二、填空题(本大题共5小题,共20.0分)11.函数y=的自变量x的取值范围______.12.如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为______.13.如图,反比例函数y=(x>0)经过A、B两点,过点A作AC⊥y轴于点C,过点B作BD⊥y轴于点D,过点B作BE⊥x轴于点E,连结AD,已知AC=1、BE=1、S矩形BDOE=4.则S△ACD=______.14.若关于x的分式方程+=2m有增根,则m的值为______.15.如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=______.三、解答题(本大题共11小题,共90.0分)16.计算(-)2+(3-π)0+|-2|+2sin60°-.17.已知实数x、y满足+y2-4y+4=0,求代数式•÷的值.18.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.19.△ABC在边长为l的正方形网格中如图所示.①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标.②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.20.在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?21.如图表示的是某班部分同学衣服上口袋的数目.②根据如图信息,在给出的图表中绘制频数条形统计图,由此估计该班学生衣服上口袋数目为5≤x<7的概率.22.已知关于x的一元二次方程x2+(2m+1)x+m2-1=0有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且x12+x22+x1x2-17=0,求m的值.23.某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)24.如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0,x>0)的图象交于点A(m,8)与点B(4,2).①求一次函数与反比例函数的解析式.②根据图象说明,当x为何值时,k1x+b-<0.25.如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.26.如图,抛物线y=ax2+bx-5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.答案和解析1.【答案】A【解析】解:A、a+a=2a,故本选项正确;B、a5÷a4=a,故本选项错误;C、(a5)4=a20,故本选项错误;D、a5-a4,不能合并,故本选项错误.故选:A.根据合并同类项法则,同底数幂的除法的性质,幂的乘方的性质对各选项分析判断后利用排除法求解.本题考查了合并同类项法则,同底数幂的除法,幂的乘方.理清指数的变化是解题的关键.2.【答案】C【解析】解:∵点A(-4,3),点A与点B关于原点对称,∴点B(4,-3).故选:C.根据关于原点的对称点,横、纵坐标都变成相反数解答.本题考查了关于原点对称的点的坐标,熟记“关于原点的对称点,横、纵坐标都变成相反数”是解题的关键.3.【答案】C【解析】解:将9300万元用科学记数法表示为:9.3×107元.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:如图所示,它的主视图是:.故选:C.根据实物的特点以及主视图的定义判断即可.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.5.【答案】B【解析】解:将代入得:,∴a+b=2;故选:B.将代入即可求出a与b的值;本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.6.【答案】C【解析】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线相等的平行四边形是矩形,所以B选项错误;C、对角线互相垂直的矩形是正方形,所以C选项正确;D、四边相等的菱形是正方形,所以D选项错误.选根据矩形的判定方法对A、B矩形判断;根据正方形的判定方法对C、D矩形判断.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.【答案】B【解析】解:学生总数:200÷25%=800(人),步行到校的学生:800×20%=160(人),故选:B.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.8.【答案】D【解析】解:设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.先设出DE=x,进而得出AD=3x,再用平行四边形的性质得出BC=3x,进而求出CF,最后用相似三角形的性质即可得出结论.此题主要考查了相似三角形的判定和性质,平行四边形的性质,中点的定义,表示出CF是解本题的关键.9.【答案】D【解析】解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π,故选:D.圆锥的侧面积:S侧=•2πr•l=πrl,求出圆锥的母线l即可解决问题.本题考查圆锥的侧面积,勾股定理等知识,解题的关键是记住圆锥的圆锥的侧面积公式.10.【答案】A【解析】解: ∵抛物线与x轴由两个交点,∴b2-4ac>0,即b2>4ac,所以正确;由二次函数图象可知,a<0,b<0,c>0,∴abc>0,故错误;∵对称轴:直线x=-=-1,∴b=2a,∴2a+b-c=4a-c,∵a<0,4a<0,c>0,-c<0,∴2a+b-c=4a-c<0,故错误;∵对称轴为直线x=-1,抛物线与x轴一个交点-3<x1<-2,∴抛物线与x轴另一个交点0<x2<1,当x=1时,y=a+b+c<0,故正确.故选:A.抛物线与x轴由两个交点,则b2-4ac>0,即b2>4ac,所以正确;由二次函数图象可知,a<0,b<0,c>0,所以abc>0,故错误;对称轴:直线x=-=-1,b=2a,所以2a+b-c=4a-c,2a+b-c=4a-c<0,故错误;对称轴为直线x=-1,抛物线与x轴一个交点-3<x1<-2,则抛物线与x轴另一个交点0<x2<1,当x=1时,y=a+b+c<0,故正确.本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.11.【答案】x≥1,且x≠3【解析】解:根据题意得:解得x≥1,且x≠3,即:自变量x取值范围是x≥1,且x≠3.本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x-1≥0;根据分式有意义的条件,x-3≠0,则函数的自变量x取值范围就可以求出.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.【答案】【解析】解:根据题意,得:=a,解得:a=5,则这组数据为4、5、5、3、8,其平均数是5,所以这组数据的方差为×[(4-5)2+(5-5)2+(5-5)2+(3-5)2+(8-5)2]=,故答案为:.先根据平均数的定义确定出a的值,再根据方差公式进行计算即可求出答案.此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.13.【答案】【解析】解:过点A作AH⊥x轴于点H,交BD于点F,则四边形ACOH和四边形ACDF 均为矩形,如图:∵S=4,反比例函数y=(x>0)经过B点矩形BDOE∴k=4∴S=4,矩形ACOH∵AC=1∴OC=4÷1=4∴CD=OC-OD=OC-BE=4-1=3∴S=1×3=3矩形ACDF∴S△ACD=故答案为:.过点A作AH⊥x轴于点H,交BD于点F,则四边形ACOH和四边形ACDF=4,可得k的值,即可得到矩形ACOH和矩形均为矩形,根据S矩形BDOEACDF的面积,进而可求出S△ACD.此题主要考查的知识有:反比例函数系数k的几何意义和性质,通过矩形的面积求出k的值是解本题的关键.14.【答案】1【解析】解:方程两边都乘x-2,得x-2m=2m(x-2)∵原方程有增根,∴最简公分母x-2=0,解得x=2,当x=2时,m=1故m的值是1,故答案为1增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入化为整式方程的方程算出m 的值.本题考查了分式方程的增根.增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.15.【答案】24+16【解析】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S=S△BP'B+S△AP'P=BP2+×PP'×AP=24+16四边形AP'BP故答案为:24+16将△BPC绕点B逆时针旋转60°后得△AP'B,根据旋转的性质可得∠PBP′=∠CAB=60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.本题考查了旋转的性质,等边三角形的性质,勾股定理,作辅助线构造出等边三角形和直角三角形是解题的关键,也是本题的难点.16.【答案】解:原式=.【解析】分别根据幂的定义、零指数幂、绝对值的性质、特殊角的三角函数值以及二次根式的性质化简即可.本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握二次根式的性质、绝对值的性质以及特殊角的三角函数值等知识.17.【答案】解:•÷=••=,∵+y2-4y+4=0,∴+(y-2)2=0,∴x=3,y=2,∴原式==.【解析】根据分式的乘除法法则把原式化简,根据非负数的性质分别求出x、y,代入计算即可.本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.18.【答案】①证明:∵∠ACB=90°,∴∠ACE+∠BCD=90°.∵∠ACE+∠CAE=90°,∴∠CAE=∠BCD.在△AEC与△BCD中,∠ ∠∠ ∠∴△CAE≌△BCD(AAS).∴EC=BD;②解:由①知:BD=CE=aCD=AE=b∴S梯形AEDB=(a+b)(a+b)=a2+ab+b2.又∵S梯形AEDB=S△AEC+S△BCD+S△ABC=ab+ab+c2=ab+c2.∴a2+ab+b2=ab+c2.整理,得a2+b2=c2.【解析】通过AAS证得△CAE≌△BCD,根据全等三角形的对应边相等证得结论;利用等面积法证得勾股定理.主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明,解本题的关键是判断两三角形全等.19.【答案】解:①如图,△A1B1C为所作,点A1的坐标为(3,-3);②如图,△A2B2C为所作;③OB==,点B经过的路径长==π.【解析】延长AC到A1使A1C=2AC,延长BC到B1使B1C=2BC,则△A1B1C满足条件;利用网格特点和旋转的性质画出A、B的对应点A2、B2,从而得到△A2B2C.先计算出OB的长,然后根据弧长公式计算点B经过的路径长.本题考查了作图-位似变换:画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和能代表原图的关键点;根据位似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.20.【答案】解:①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得:=解得x=90经检验,x=90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y件,则乙种物品购进(55-y)件由题意得:5000≤100y+90(55-y)≤5050解得5≤y≤10∴共有6种选购方案.【解析】设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得分式方程,解之即可;设购买甲种物品y件,则乙种物品购进(55-y)件,由题意得不等式,从而得解.本题考查了分式方程的应用以及一元一次不等式的整数解的问题.本题中等难度.21.【答案】4 4【解析】解:由图可知,学生衣服上口袋的数目分别为:3,4,2,6,5,5,3,1,4,2,4,6,10,7,1,4,5,6,2,10,3.按从小到大的顺序排列为:1,1,2,2,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,10,10.故中位数为4,众数为4,故答案为4,4.(2)条形图如图所示:估计该班学生衣服上口袋数目为5≤x<7的概率==.根据中位数、众数的概念分别求得学生衣服上口袋数目的中位数、众数;根据图中得出的数据绘制频数条形统计图,用衣服上口袋数目为5≤x<7的人数除以总人数21即可.本题考查条形统计图,样本估计总体,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:①根据题意得:△=(2m+1)2-4(m2-1)>0,解得:m>,②根据题意得:x1+x2=-(2m+1),x1x2=m2-1,x12+x22+x1x2-17=-x1x2-17=(2m+1)2-(m2-1)-17=0,解得:m1=,m2=-3(不合题意,舍去),∴m的值为.【解析】根据“关于x的一元二次方程x2+(2m+1)x+m2-1=0有两不相等的实数根”,结合判别式公式,得到关于m的不等式,解之即可,根据“x1,x2是方程的两根且x12+x22+x1x2-17=0”,结合根与系数的关系,列出关于m的一元二次方程,解之,结合(1)的结果,即可得到答案.本题考查了根与系数的关系,根的判别式,解题的关键:正确掌握判别式公式,正确掌握根与系数的关系.23.【答案】解:如图,过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD 是矩形,设DE=x,在Rt△ADE中,∠AED=90°,∵tan∠DAE=,∴AE==,∠∴BE=300-,又BF=DE=x,∴CF=414-x,在Rt△CDF中,∠DFC=90°,∠DCF=45°,∴DF=CF=414-x,又BE=CF,即:300-=414-x,解得:x=214,故:点D到AB的距离是214m.【解析】过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,根据BE=DF=CF,列方程可得结论.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确根据三角函数列方程是解题的关键.24.【答案】解:①把点B(4,2)代入反比例函数y2=(k2≠0,x>0)得,k2=4×2=8,∴反比例函数的解析式为y2=,将点A(m,8)代入y2得,8=,解得m=1,∴A(1,8),将A、B的坐标代入y1=k1x+b(k1、b为常数,k1≠0)得,解得,∴一次函数的解析式为y1=-2x+10;②由图象可知:当0<x<1或x>4时,y1<y2,即k1x+b-<0.【解析】把B点坐标代入反比例函数解析式可求得k2的值,把点A(m,8)代入求得的反比例函数的解析式求得m,然后利用待定系数法即可求得一次函数的解析式;直接由A、B的坐标可求得答案.本题考查了一次函数和反比例函数的交点,待定系数法求一次函数和反比例函数的解析式,熟练掌握待定系数法是解题的关键.25.【答案】解:①过点O 作OG ⊥CD ,垂足为G ,在菱形ABCD 中,AC 是对角线,则AC 平分∠BCD ,∵OH ⊥BC ,OG ⊥CD ,∴OH =OG ,∴OH 、OG 都为圆的半径,即DC 是⊙O 的切线;②∵AC =4MC 且AC =8,∴OC =2MC =4,MC =OM =2,∴OH =2,在直角三角形OHC 中,HO = CO ,∴∠OCH =30°,∠COH =60°,∴HC = ,S 阴影=S △OCH -S 扇形OHM = CH •OH - OH 2=2 - ;③作M 关于BD 的对称点N ,连接HN 交BD 于点P ,∵PM =NP ,∴PH +PM =PH +PN =HN ,此时PH +PM 最小,∵ON =OM =OH ,∠MOH =60°,∴∠MNH =30°,∴∠MNH =∠HCM ,∴HN =HC =2 ,即:PH +PM 的最小值为2 ,在Rt △NPO 中,OP =ON tan30°= , 在Rt △COD 中,OD =OC tan30°=, 则PD =OP +OD =2 .【解析】作OH ⊥BC ,证明OH 为圆的半径,即可求解;利用S 阴影=S △OCH -S 扇形OHM =CH•OH -OH 2,即可求解; 作M 关于BD 的对称点N ,连接HN 交BD 于点P ,PH+PM=PH+PN=HN ,此时PH+PM最小,即可求解.本题为圆的综合运用题,涉及到圆切线的性质及应用、点的对称性、解直角三角形等知识,其中,通过点的对称性确定PH+PM最小,是本题的难点和关键.26.【答案】解:①∵点B、C在直线为y=x+n上,∴B(-n,0)、C(0,n),∵点A(1,0)在抛物线上,∴ ,∴a=-1,b=6,∴抛物线解析式:y=-x2+6x-5;②由题意,得,PB=4-t,BE=2t,由①知,∠OBC=45°,∴点P到BC的高h为BP sin45°=(4-t),∴S△PBE=BE•h==,当t=2时,△PBE的面积最大,最大值为2;③由①知,BC所在直线为:y=x-5,∴点A到直线BC的距离d=2,过点N作x轴的垂线交直线BC于点P,交x轴于点H.设N(m,-m2+6m-5),则H(m,0)、P(m,m-5),易证△PQN为等腰直角三角形,即NQ=PQ=2,∴PN=4,Ⅰ.NH+HP=4,∴-m2+6m-5-(m-5)=4解得m1=1,m2=4,∵点A、M、N、Q为顶点的四边形是平行四边形,∴m=4;Ⅱ.NH+HP=4,∴m-5-(-m2+6m-5)=4解得m1=,m2=,∵点A、M、N、Q为顶点的四边形是平行四边形,m>5,∴m=,Ⅲ.NH-HP=4,∴-(-m2+6m-5)-[-(m-5)]=4,解得m1=,m2=,∵点A、M、N、Q为顶点的四边形是平行四边形,m<0,∴m=,综上所述,若点A、M、N、Q为顶点的四边形是平行四边形,点N的横坐标为:4或或.【解析】点B、C在直线为y=x+n上,则B(-n,0)、C(0,n),点A(1,0)在抛物线上,所以,解得a=-1,b=6,因此抛物线解析式:y=-x2+6x-5;先求出点P到BC的高h为BPsin45°=(4-t),于是S△PBE=BE•h==,当t=2时,△PBE的面积最大,最大值为2;由知,BC所在直线为:y=x-5,所以点A到直线BC的距离d=2,过点N作x轴的垂线交直线BC于点P,交x轴于点H.设N(m,-m2+6m-5),则H(m,0)、P(m,m-5),易证△PQN为等腰直角三角形,即NQ=PQ=2,PN=4,Ⅰ.NH+HP=4,所以-m2+6m-5-(m-5)=4解得m1=1(舍去),m2=4,Ⅱ.NH+HP=4,m-5-(-m2+6m-5)=4解得m1=,m2=(舍去),Ⅲ.NH-HP=4,-(-m2+6m-5)-[-(m-5)]=4,解得m1=(舍去),m2=.本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.。

四川省巴中市2019中考数学试卷(解析版)[真题试卷]

四川省巴中市2019中考数学试卷(解析版)[真题试卷]

2019年四川省巴中市中考数学试卷一、选择题(本大题共10小题,共40.0分)1. 下列四个算式中,正确的是( )A. a +a =2aB. a 5÷a 4=2aC. (a 5)4=a 9D. a 5−a 4=a2. 在平面直角坐标系中,已知点A (-4,3)与点B 关于原点对称,则点B 的坐标为( )A. (−4,−3)B. (4,3)C. (4,−3)D. (−4,3)3. 企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300万元用科学记数法表示为( )A. 93×108元B. 9.3×108元C. 9.3×107元D. 0.93×108元4. 如图是由一些小立方体与圆锥组合成的立体图形,它的主视图是( )A. B. C. D.5. 已知关于x 、y 的二元一次方程组{3x +by =4ax−y=4的解是{y =−2x=2,则a +b 的值是( ) A. 1 B. 2 C. −1 D. 06. 下列命题是真命题的是( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是矩形C. 对角线互相垂直的矩形是正方形D. 四边相等的平行四边形是正方形7. 如图所示,是巴中某校对学生到校方式的情况统计图.若该校骑自行车到校的学生有200人,则步行到校的学生有( )A. 120人B. 160人C. 125人D. 180人8. 如图▱ABCD ,F 为BC 中点,延长AD 至E ,使DE :AD =1:3,连结EF 交DC 于点G ,则S △DEG :S △CFG =( )A. 2:3B. 3:2C. 9:4D. 4:99. 如图,圆锥的底面半径r =6,高h =8,则圆锥的侧面积是( )A. 15πB. 30πC. 45πD. 60π10. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论①b 2>4ac ,②abc <0,③2a +b -c >0,④a +b +c <0.其中正确的是( )A. ①④B. ②④C. ②③D. ①②③④二、填空题(本大题共5小题,共20.0分)11. 函数y =√x−1x−3的自变量x 的取值范围______.12. 如果一组数据为4、a 、5、3、8,其平均数为a ,那么这组数据的方差为______.13. 如图,反比例函数y =k x (x >0)经过A 、B 两点,过点A 作AC ⊥y轴于点C ,过点B 作BD ⊥y 轴于点D ,过点B 作BE ⊥x 轴于点E ,连结AD ,已知AC =1、BE =1、S 矩形BDOE =4.则S △ACD =______.14. 若关于x 的分式方程x x−2+2m 2−x =2m 有增根,则m 的值为______.15. 如图,等边三角形ABC 内有一点P ,分別连结AP 、BP 、CP ,若AP =6,BP =8,CP =10.则S △ABP +S △BPC =______.三、解答题(本大题共11小题,共90.0分)16. 计算(-12)2+(3-π)0+|√3-2|+2sin60°-√8.17. 已知实数x 、y 满足√x −3+y 2-4y +4=0,求代数式x 2−y 2xy •1x 2−2xy+y 2÷xx 2y−xy 2的值.18. 如图,等腰直角三角板如图放置.直角顶点C 在直线m 上,分别过点A 、B 作AE ⊥直线m 于点E ,BD ⊥直线m 于点D .①求证:EC =BD ;②若设△AEC 三边分别为a 、b 、c ,利用此图证明勾股定理.19.△ABC在边长为l的正方形网格中如图所示.①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标.②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.③在②的条件下求出点B经过的路径长.20.在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?21.如图表示的是某班部分同学衣服上口袋的数目.①从图中给出的信息得到学生衣服上口袋数目的中位数为______,众数为______.②根据如图信息,在给出的图表中绘制频数条形统计图,由此估计该班学生衣服上口袋数目为5≤x<7的概率.22.已知关于x的一元二次方程x2+(2m+1)x+m2-1=0有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且x12+x22+x1x2-17=0,求m的值.23.某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)24.如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与(k2≠0,x>0)的图象交于点A(m,8)反比例函数y2=k2x与点B(4,2).①求一次函数与反比例函数的解析式.②根据图象说明,当x为何值时,k1x+b-k2<0.x25.如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.26.如图,抛物线y=ax2+bx-5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM 的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.答案和解析1.【答案】A【解析】解:A、a+a=2a,故本选项正确;B、a5÷a4=a,故本选项错误;C、(a5)4=a20,故本选项错误;D、a5-a4,不能合并,故本选项错误.故选:A.根据合并同类项法则,同底数幂的除法的性质,幂的乘方的性质对各选项分析判断后利用排除法求解.本题考查了合并同类项法则,同底数幂的除法,幂的乘方.理清指数的变化是解题的关键.2.【答案】C【解析】解:∵点A(-4,3),点A与点B关于原点对称,∴点B(4,-3).故选:C.根据关于原点的对称点,横、纵坐标都变成相反数解答.本题考查了关于原点对称的点的坐标,熟记“关于原点的对称点,横、纵坐标都变成相反数”是解题的关键.3.【答案】C【解析】解:将9300万元用科学记数法表示为:9.3×107元.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:如图所示,它的主视图是:.故选:C.根据实物的特点以及主视图的定义判断即可.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.5.【答案】B【解析】解:将代入得:,∴a+b=2;故选:B.将代入即可求出a与b的值;本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.6.【答案】C【解析】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线相等的平行四边形是矩形,所以B选项错误;C、对角线互相垂直的矩形是正方形,所以C选项正确;D、四边相等的菱形是正方形,所以D选项错误.故选:C.根据矩形的判定方法对A、B矩形判断;根据正方形的判定方法对C、D矩形判断.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.【答案】B【解析】解:学生总数:200÷25%=800(人),步行到校的学生:800×20%=160(人),故选:B.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.8.【答案】D【解析】解:设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.先设出DE=x,进而得出AD=3x,再用平行四边形的性质得出BC=3x,进而求出CF,最后用相似三角形的性质即可得出结论.此题主要考查了相似三角形的判定和性质,平行四边形的性质,中点的定义,表示出CF是解本题的关键.9.【答案】D【解析】解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π,故选:D.圆锥的侧面积:S侧=•2πr•l=πrl,求出圆锥的母线l即可解决问题.本题考查圆锥的侧面积,勾股定理等知识,解题的关键是记住圆锥的圆锥的侧面积公式.10.【答案】A【解析】解:①∵抛物线与x轴由两个交点,∴b2-4ac>0,即b2>4ac,所以①正确;②由二次函数图象可知,a<0,b<0,c>0,∴abc>0,故②错误;③∵对称轴:直线x=-=-1,∴b=2a,∴2a+b-c=4a-c,∵a<0,4a<0,c>0,-c<0,∴2a+b-c=4a-c<0,故③错误;④∵对称轴为直线x=-1,抛物线与x轴一个交点-3<x1<-2,∴抛物线与x轴另一个交点0<x2<1,当x=1时,y=a+b+c<0,故④正确.故选:A.①抛物线与x轴由两个交点,则b2-4ac>0,即b2>4ac,所以①正确;②由二次函数图象可知,a<0,b<0,c>0,所以abc>0,故②错误;③对称轴:直线x=-=-1,b=2a,所以2a+b-c=4a-c,2a+b-c=4a-c<0,故③错误;④对称轴为直线x=-1,抛物线与x轴一个交点-3<x1<-2,则抛物线与x轴另一个交点0<x2<1,当x=1时,y=a+b+c<0,故④正确.本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.11.【答案】x≥1,且x≠3【解析】解:根据题意得:解得x≥1,且x≠3,即:自变量x取值范围是x≥1,且x≠3.本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x-1≥0;根据分式有意义的条件,x-3≠0,则函数的自变量x取值范围就可以求出.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.【答案】145【解析】解:根据题意,得:=a,解得:a=5,则这组数据为4、5、5、3、8,其平均数是5,所以这组数据的方差为×[(4-5)2+(5-5)2+(5-5)2+(3-5)2+(8-5)2]=,故答案为:.先根据平均数的定义确定出a的值,再根据方差公式进行计算即可求出答案.此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.13.【答案】32【解析】解:过点A作AH⊥x轴于点H,交BD于点F,则四边形ACOH和四边形ACDF 均为矩形,如图:∵S矩形BDOE=4,反比例函数y=(x>0)经过B点∴k=4∴S矩形ACOH=4,∵AC=1∴OC=4÷1=4∴CD=OC-OD=OC-BE=4-1=3∴S矩形ACDF=1×3=3∴S△ACD=故答案为:.过点A作AH⊥x轴于点H,交BD于点F,则四边形ACOH和四边形ACDF均为矩形,根据S矩形BDOE=4,可得k的值,即可得到矩形ACOH和矩形ACDF的面积,进而可求出S△ACD.此题主要考查的知识有:反比例函数系数k的几何意义和性质,通过矩形的面积求出k的值是解本题的关键.14.【答案】1【解析】解:方程两边都乘x-2,得x-2m=2m(x-2)∵原方程有增根,∴最简公分母x-2=0,解得x=2,当x=2时,m=1故m的值是1,故答案为1增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入化为整式方程的方程算出m 的值.本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.【答案】24+16√3【解析】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=BP2+×PP'×AP=24+16故答案为:24+16将△BPC 绕点B 逆时针旋转60°后得△AP'B ,根据旋转的性质可得∠PBP′=∠CAB=60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.本题考查了旋转的性质,等边三角形的性质,勾股定理,作辅助线构造出等边三角形和直角三角形是解题的关键,也是本题的难点.16.【答案】解:原式=14+1+2−√3+2×√32−2√2=134−2√2. 【解析】分别根据幂的定义、零指数幂、绝对值的性质、特殊角的三角函数值以及二次根式的性质化简即可.本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握二次根式的性质、绝对值的性质以及特殊角的三角函数值等知识.17.【答案】解:x 2−y 2xy •1x 2−2xy+y 2÷x x 2y−xy 2 =(x+y)(x−y)xy •1(x−y)2•xy(x−y)x =x+y x ,∵√x −3+y 2-4y +4=0,∴√x −3+(y -2)2=0,∴x =3,y =2,∴原式=3+23=53. 【解析】根据分式的乘除法法则把原式化简,根据非负数的性质分别求出x 、y ,代入计算即可.本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.18.【答案】①证明:∵∠ACB =90°, ∴∠ACE +∠BCD =90°.∵∠ACE +∠CAE =90°,∴∠CAE =∠BCD .在△AEC 与△BCD 中,{∠CEA =∠BDC ∠CAE =∠BCD AC =CB∴△CAE ≌△BCD (AAS ).∴EC =BD ;②解:由①知:BD =CE =aCD =AE =b∴S 梯形AEDB =12(a +b )(a +b )=12a 2+ab +12b 2.又∵S 梯形AEDB =S △AEC +S △BCD +S △ABC=12ab +12ab +12c 2=ab +12c 2. ∴12a 2+ab +12b 2=ab +12c 2.整理,得a 2+b 2=c 2.【解析】①通过AAS 证得△CAE ≌△BCD ,根据全等三角形的对应边相等证得结论; ②利用等面积法证得勾股定理.主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明,解本题的关键是判断两三角形全等.19.【答案】解:①如图,△A 1B 1C 为所作,点A 1的坐标为(3,-3);②如图,△A 2B 2C 为所作;③OB =√12+42=√17,点B 经过的路径长=90⋅π⋅√17180=√172π. 【解析】①延长AC 到A 1使A 1C=2AC ,延长BC 到B 1使B 1C=2BC ,则△A 1B 1C 满足条件;②利用网格特点和旋转的性质画出A 、B 的对应点A 2、B 2,从而得到△A 2B 2C . ③先计算出OB 的长,然后根据弧长公式计算点B 经过的路径长.本题考查了作图-位似变换:画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.20.【答案】解:①设乙种物品单价为x 元,则甲种物品单价为(x +10)元,由题意得: 500x+10=450x解得x =90经检验,x =90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y 件,则乙种物品购进(55-y )件由题意得:5000≤100y +90(55-y )≤5050解得5≤y ≤10∴共有6种选购方案.【解析】①设乙种物品单价为x 元,则甲种物品单价为(x+10)元,由题意得分式方程,解之即可;②设购买甲种物品y 件,则乙种物品购进(55-y )件,由题意得不等式,从而得解.本题考查了分式方程的应用以及一元一次不等式的整数解的问题.本题中等难度.21.【答案】4 4【解析】解:①由图可知,学生衣服上口袋的数目分别为:3,4,2,6,5,5,3,1,4,2,4,6,10,7,1,4,5,6,2,10,3.按从小到大的顺序排列为:1,1,2,2,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,10,10.故中位数为4,众数为4,故答案为4,4.(2)条形图如图所示:估计该班学生衣服上口袋数目为5≤x<7的概率==.①根据中位数、众数的概念分别求得学生衣服上口袋数目的中位数、众数;②根据图中得出的数据绘制频数条形统计图,用衣服上口袋数目为5≤x<7的人数除以总人数21即可.本题考查条形统计图,样本估计总体,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:①根据题意得:△=(2m+1)2-4(m2-1)>0,解得:m>−5,4②根据题意得:x1+x2=-(2m+1),x1x2=m2-1,x12+x22+x1x2-17=(x1+x2)2-x1x2-17=(2m+1)2-(m2-1)-17=0,,m2=-3(不合题意,舍去),解得:m1=53∴m的值为5.3【解析】①根据“关于x的一元二次方程x2+(2m+1)x+m2-1=0有两不相等的实数根”,结合判别式公式,得到关于m的不等式,解之即可,②根据“x1,x2是方程的两根且x12+x22+x1x2-17=0”,结合根与系数的关系,列出关于m的一元二次方程,解之,结合(1)的结果,即可得到答案.本题考查了根与系数的关系,根的判别式,解题的关键:①正确掌握判别式公式,②正确掌握根与系数的关系.23.【答案】解:如图,过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD 是矩形,设DE=x,在Rt△ADE中,∠AED=90°,∵tan∠DAE=DEAE,∴AE=DEtan∠DAE =x2.14,∴BE=300-x2.14,又BF=DE=x,∴CF=414-x,在Rt△CDF中,∠DFC=90°,∠DCF=45°,∴DF=CF=414-x,又BE=CF,即:300-x2.14=414-x,解得:x=214,故:点D到AB的距离是214m.【解析】过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,根据BE=DF=CF,列方程可得结论.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确根据三角函数列方程是解题的关键.24.【答案】解:①把点B(4,2)代入反比例函数y2=k2x(k2≠0,x>0)得,k2=4×2=8,∴反比例函数的解析式为y2=8x,将点A(m,8)代入y2得,8=8m,解得m=1,∴A (1,8),将A 、B 的坐标代入y 1=k 1x +b (k 1、b 为常数,k 1≠0)得{4k 1+b =2k 1+b=8, 解得{b =10k 1=−2,∴一次函数的解析式为y 1=-2x +10;②由图象可知:当0<x <1或x >4时,y 1<y 2,即k 1x +b -k 2x <0.【解析】①把B 点坐标代入反比例函数解析式可求得k 2的值,把点A (m ,8)代入求得的反比例函数的解析式求得m ,然后利用待定系数法即可求得一次函数的解析式;②直接由A 、B 的坐标可求得答案.本题考查了一次函数和反比例函数的交点,待定系数法求一次函数和反比例函数的解析式,熟练掌握待定系数法是解题的关键.25.【答案】解:①过点O 作OG ⊥CD ,垂足为G ,在菱形ABCD 中,AC 是对角线,则AC 平分∠BCD ,∵OH ⊥BC ,OG ⊥CD ,∴OH =OG ,∴OH 、OG 都为圆的半径,即DC 是⊙O 的切线;②∵AC =4MC 且AC =8,∴OC =2MC =4,MC =OM =2,∴OH =2,在直角三角形OHC 中,HO =12CO ,∴∠OCH =30°,∠COH =60°,∴HC =√CO 2−OH 2=2√3,S 阴影=S △OCH -S 扇形OHM =12CH •OH -60360π⋅OH 2=2√3-2π3;③作M 关于BD 的对称点N ,连接HN 交BD 于点P ,∵PM =NP ,∴PH +PM =PH +PN =HN ,此时PH +PM 最小,∵ON =OM =OH ,∠MOH =60°,∴∠MNH =30°,∴∠MNH =∠HCM , ∴HN =HC =2√3, 即:PH +PM 的最小值为2√3,在Rt △NPO 中,OP =ON tan30°=2√33, 在Rt △COD 中,OD =OC tan30°=4√33, 则PD =OP +OD =2√3.【解析】①作OH ⊥BC ,证明OH 为圆的半径,即可求解;②利用S 阴影=S △OCH -S 扇形OHM =CH•OH -OH 2,即可求解; ③作M 关于BD 的对称点N ,连接HN 交BD 于点P ,PH+PM=PH+PN=HN ,此时PH+PM 最小,即可求解.本题为圆的综合运用题,涉及到圆切线的性质及应用、点的对称性、解直角三角形等知识,其中③,通过点的对称性确定PH+PM 最小,是本题的难点和关键.26.【答案】解:①∵点B 、C 在直线为y =x +n 上,∴B (-n ,0)、C (0,n ),∵点A (1,0)在抛物线上,∴{a +b −5=0an 2+bn −5=0n =−5,∴a =-1,b =6,∴抛物线解析式:y =-x 2+6x -5;②由题意,得,PB =4-t ,BE =2t ,由①知,∠OBC =45°,∴点P 到BC 的高h 为BP sin45°=√22(4-t ), ∴S △PBE =12BE •h =12×√22(4−t)×2t =√22(t −2)2+2√2, 当t =2时,△PBE 的面积最大,最大值为2√2;③由①知,BC 所在直线为:y =x -5,∴点A 到直线BC 的距离d =2√2,过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设N (m ,-m 2+6m -5),则H (m ,0)、P (m ,m -5),易证△PQN 为等腰直角三角形,即NQ =PQ =2√2,∴PN =4,Ⅰ.NH +HP =4,∴-m 2+6m -5-(m -5)=4解得m 1=1,m 2=4,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,∴m =4;Ⅱ.NH +HP =4,∴m -5-(-m 2+6m -5)=4解得m 1=5+√412,m 2=5−√412, ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,m >5,∴m =5+√412, Ⅲ.NH -HP =4,∴-(-m 2+6m -5)-[-(m -5)]=4,解得m 1=5+√412,m 2=5−√412, ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,m <0,∴m =5−√412, 综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或5+√412或5−√412.【解析】①点B 、C 在直线为y=x+n 上,则B (-n ,0)、C (0,n ),点A (1,0)在抛物线上,所以,解得a=-1,b=6,因此抛物线解析式:y=-x 2+6x-5;②先求出点P 到BC 的高h 为BPsin45°=(4-t ),于是S △PBE =BE•h==,当t=2时,△PBE 的面积最大,最大值为2; ③由①知,BC 所在直线为:y=x-5,所以点A 到直线BC 的距离d=2,过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设N (m ,-m 2+6m-5),则H (m ,0)、P (m ,m-5),易证△PQN 为等腰直角三角形,即NQ=PQ=2,PN=4,Ⅰ.NH+HP=4,所以-m 2+6m-5-(m-5)=4解得m 1=1(舍去),m 2=4,Ⅱ.NH+HP=4,m-5-(-m 2+6m-5)=4解得m 1=,m 2=(舍去),Ⅲ.NH-HP=4,-(-m2+6m-5)-[-(m-5)]=4,解得m1=(舍去),m2=.本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.。

2019年四川巴中中考数学试题(解析版)

2019年四川巴中中考数学试题(解析版)

四川省巴中市二〇一九年初中学业水平考试考试时间:120分钟满分:150分{题型:1-选择题}一、选择题:本大题共10个小题,每小题4 分,共40分.{题目}1.(2019年四川巴中T1)下列四个算式中,正确的是()A.a+a=2a B.a5÷a4=2a C.(a5)4=a9D.a5-a 4=a{答案}A{解析}本题考查了合并同类项与幂的运算,能正确识别同类项,熟记合并同类项的法则与幂的运算性质是解决该类问题的关键.合并同类项时是把系数相加作系数,字母和字母的指数不变,a+a=2a,故A正确;同底数幂相除,底数不变,指数相减,a5÷a4=a,故B错误;幂的乘方,底数不变,把指数相乘,(a5)4=a20,故C错误;a5与-a 4不是同类项不能合并,故D错误.{分值}4{章节:[1-15-2-3]整数指数幂}{考点:合并同类项}{考点:同底数幂的乘法}{考点:幂的乘方}{类别:常考题}{类别:易错题}{难度:1-最简单}{题目}2.(2019年四川巴中T2)在平面直角坐标系中,已知点A(-4,3)与点B关于原点对称,则点B的坐标为()A.(-4,-3) B.(4,3) C.(4,-3) D.(-4,3){答案}C{解析}本题考查了平面直角坐标系中关于原点对称的点的坐标特征,关于原点对称的两个点的横、纵坐标分别互为相反数,则点A(-4,3)关于原点对称的点B的坐标为(4,-3).{分值}4{章节:[1-23-2-3]关于原点对称的点的坐标}{考点:平面直角坐标系}{考点:点的坐标}{考点:中心对称}{类别:常考题}{难度:1-最简单}{题目}3.(2019年四川巴中T3)企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300万元用科学记数法表示为()A.93×108元B.9.3×108元C.9.3×107元D.0.93×108元{答案}C{解析}本题考查了科学记数法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.因此先将“9300万”改写成93 000 000,再根据科学记数法的要求表示为9. 3 107.{分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}4.(2019年四川巴中T4)如图是一些小立方体与圆锥组合的立体图形,它的主视图是(){答案}C{解析}本题考查了三视图,主视图是从正面看物体所得到的平面图形,图中各小正方体的主视图是正方形,圆锥的主视图是等腰三角形,故该组合立体图形的主视图是选项C 中的平面图形. {分值}4{章节:[1-29-2]三视图}{考点:简单组合体的三视图}{类别:常考题}{难度:1-最简单}{题目}5.(2019年四川巴中T5)已知关于x ,y 的二元一次方程组⎩⎨⎧=+=-43,4by x y ax 的解是⎩⎨⎧-==,2,2y x 则a +b 的值是( )A .1B .2C .-1D .0{答案}B{解析}本题考查了二元一次方程组的解,把x ,y 的值分别代入方程组中的两个方程,得2a -(-2)=4,3×2-2b=4,解得a=1,b=1,所以a +b =2.{分值}4{章节:[1-8-1]二元一次方程组}{考点:二元一次方程组的解}{类别:常考题}{难度:2-简单}{题目}6.(2019年四川巴中T6)下列命题是真命题的是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是矩形C .对角线互相垂直的矩形是正方形D .四边相等的平行四边形是正方形{答案}C{解析}本题考查了矩形与正方形的判定,对角线相等的平行四边形是矩形,故A 错误;对角线互相垂直与矩形没有判定没有关系,故B 错误;对角线互相垂直的矩形也是菱形,既为菱形也为矩形的四边形是正方形,故C 正确;四边相等的矩形才是正方形,故D 错误.{分值}4{章节:[1-18-2-3] 正方形}{考点:矩形的性质}{考点:正方形的判定}{类别:常考题}{类别:易错题}{难度:2-简单}{题目}7.(2019年四川巴中T7)如图所示,是巴中某校对学生到校方式的情况统计图,若该校骑自行车到校的学生有200人,则步行到校的学生有( )A .120人B .160人C .125人D .180人{答案}B{解析}本题考查了扇形统计图,扇形统计图表示部分与整体的百分比,由此可知步行到校的学生有200÷25%×20%=800×20%=160(人).{分值}4{章节:[1-10-1]统计调查}{考点:扇形统计图}{类别:常考题}{难度:2-简单}{题目}8.(2019年四川巴中T8)如图□ABCD ,F 为BC 中点,延长AD 至E ,使DE :AD =1:3,连结EF 交DC 于点G ,则S △DEG : S △CFG =( )A .2:3B .3:2C .9:4D .4:9{答案}D{解析}本题考查了平行四边形的性质,相似的判定与性质,平行四边形的对边平行且相等,两组角相等的两个三角形相似,相似三角形的面积比等于相似比的平方.在□ABCD 中,AD ∥BC ,AD =BC ,则△DEG ∽△CFG ,∵F 为BC 中点,DE :AD =1:3,∴DE :CF =2:3,∴S △DEG : S △CFG =4:9. {分值}4{章节:[1-27-1-2]相似三角形的性质}{考点:平行四边形边的性质}{考点:相似三角形的判定(两角相等)}{考点:相似三角形面积的性质}{类别:常考题}{难度:3-中等难度}{题目}9.(2019年四川巴中T9)如图,圆锥的底面半径r =6,高h =8,则圆锥的侧面积是( )A .15πB .30πC .45πD .60π{答案}D{解析}本题考查了勾股定理,圆锥的侧面积,直角三角形两直角边的平方和等于斜边的平方,圆锥的侧面积计算公式是πrl .该圆锥的母线长l =2286 =10,所以其侧面积为πrl =π·6×10=60π. {分值}4{章节:[1-24-4]弧长和扇形面积}{考点:圆锥侧面展开图} rhA B D CG EF40%骑自 行车 25% 15% 其他步行 20% 乘公共 汽车{考点:勾股定理}{类别:常考题}{难度:3-中等难度}{题目}10.(2019年四川巴中T10)二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,下列结论①b 2>4ac ,②abc <0,③2a +b -c >0,④a +b +c <0,其中正确的是( )A .①④B .②④C .②③D .①②③④{{解析}本题考查了二次函数图象与系数的关系,由图象可知抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点,则一元二次方程ax 2+bx +c =0(a ≠0)中,△= b 2-4ac >0,∴b 2>4ac ,故①正确;由图象可知抛物线y =ax 2+bx +c (a ≠0)的开口向下,对称轴x =ab 2-=-1,与y 轴交于正半轴,则a <0,b <0,c >0,b =2a ,∴abc >0,故②错误;2a +b -c =4a -c <0,故③错误;当x =1时,y =a +b +c ,(-3,0)关于对称轴x =-1的对称点坐标为(1,0),由抛物线的对称性可知点抛物线与x 轴右边的交点在(1,0)的左边,故抛物线上的点(1,a +b +c )在第四象限,∴a +b +c <0,故④正确.{分值}4{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质}{考点:二次函数的系数与图象的关系}{考点:抛物线与一元二次方程的关系}{考点:代数选择压轴}{类别:常考题}{难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共5个小题,每小题4分,共20分.{题目}11.(2019年四川巴中T11)函数y =31--x x 的自变量x 的取值范围 . {答案}x ≥1且x ≠3{解析}本题考查了函数自变量的取值范围的确定,由于二次根式被开方数为非负数及分母不能为零,可得x -1≥0且x -3≠0,解得x ≥1且x ≠3.{分值}4{章节:[1-19-1-1]变量与函数}{考点:函数自变量的取值范围}{类别:常考题}{难度:1-最简单}{题目}12.(2019年四川巴中T12)如果一组数据4、a 、5、3、8,其平均数为a ,那么这组数据的方差为 .{答案}514 {解析}本题考查了平均数与方差,平均数计算公式为)(1321n x x x x n x ++++=,则a =51(4+a +5+3+8),解得a =5,这组数据的方差S 2=51[(4-5)2+(5-5)2+(5-5)2+(3-5)2+(8-5)2]=51(1+4+9)=514. {分值}4 {章节:[1-20-2-1]方差}{考点:算术平均数}{考点:方差}{类别:常考题}{难度:2-简单}{题目}13.(2019年四川巴中T13)如图,反比例函数y =xk (x >0)经过A 、B 两点,过点A 作AC ⊥y 轴于点C ,过点B 作BD ⊥y 轴于点D ,过点B 作BE ⊥x 轴于点E ,连结AD ,已知AC =1,BE =1,S 矩形BDOE =4,则S △ACD = .{答案}2{解析}本题考查了反比例函数与面积的计算,由BE =1,S 矩形BDOE =4,可得OE =4,∴B (4,1),∴k=1×4=4,∴y =x 4,当x =1时,y =4,∴A (1,4),∴OC =4,CD =4-1=3,则S △ACD =21×3×1=23. {分值}4{章节:[1-26-1]反比例函数的图像和性质}{考点:反比例函数的图象}{考点:反比例函数的解析式}{考点:双曲线与几何图形的综合}{类别:常考题}{难度:3-中等难度}{题目}14.(2019年四川巴中T14)若关于x 的分式方程2-x x +xm -22=2m 有増根,则m 的值为 . {答案}1{解析}本题考查了分式方程的増根,它使原分式方程的分母为零,且是去分母后转化成的整式方程的解.原分式方程去分母,得x -2m =2m (x -2),原分式方程有増根,则x =2,把x =2代入x -2m =2m (x -2),解得m =1.{分值}4{章节:[1-15-3]分式方程}{考点:分式方程的增根}{类别:常考题}{难度:3-中等难度}{题目}15.(2019年四川巴中T15)如图,等边三角形ABC 内有一点P ,分别连结AP 、BP 、CP ,若AP =6,BP =8,CP =10,则S △ABP +S △BPC = .{答案}24+163{解析}本题考查了图形的旋转、等边三角形的判定与性质、勾股定理的逆定理、勾股定理(或特殊角的锐角三角函数值等知识,如图,把△ABP 绕点B 旋转60°到△CBP ′,则BP ′=BP =8,P ′C =P A =6,又∵PBP ′=60°,∴△PBP ′是等边三角形,∴PP ′=8.∵62+82=102,即P ′C 2+PP ′2=PC 2,∴△PP ′C 是直角三角形.于是S △ABP +S △BPC =S △CBP ′+S △BPC =S 四边形PBP ′C =S △BPP ′+S △P ′PC =21×8·sin60°×8+21×6×8=163+24. {分值}4{章节:[1-23-1]图形的旋转}{考点:等边三角形的判定与性质}{考点:勾股定理}{考点:勾股定理逆定理}{考点:特殊角的三角函数值}{考点:几何填空压轴}{类别:常考题}{难度:5-高难度}{题型:4-解答题}三、解答题:本大题共11个小题,共90分.{题目}16.(2019年四川巴中T16)计算(21 )2+(3-π)0+|3-2|+2sin60°-8. {解析}本题考查了实数的运算.先分别计算平方、零指数幂,与化简绝对值、二次根数,特殊角的锐角三角函数值,最后进行加减运算得最简结果.{答案}解:原式=41+1+2-3+2×23-22=413-22. {分值}5{章节:[1-6-3]实数}{考点:有理数加减乘除乘方混合运算}{考点:实数与绝对值、相反数}{考点:二次根式的定义}{考点:特殊角的三角函数值}{类别:常考题} AB P ′ PABC{难度:1-最简单}{题目}17.(2019年四川巴中T17)已知实数x 、y 满足3-x +y 2-4y +4=0,求代数式xy y x 22-·2221y xy x +-÷22xyy x x -的值. {解析}本题考查了算术平方根与完全平方式的非负性,以及分式的乘除混合运算与求值.先根据非负性质求得实数x 、y 的值,再化简分式,最后代入数值计算最终结果.{答案}解:∵3-x +y 2-4y +4=0,∴3-x +(y -2)2=0,又∵3-x ≥0,(y -2)2≥0,∴3-x =0,(y -2)2=0,即x -3=0,y -2=0,解得x =3,y =2.xy y x 22-·2221y xy x +-÷22xy y x x - =xy y x y x ))((-+·2)(1y x -·xy x xy )(- =xy x + =323+ =35. {分值}5{章节:[1-15-2-1]分式的乘除}{考点:非负数的性质-算术平方根}{考点:完全平方公式}{考点:分式的混合运算}{类别:常考题}{难度:2-简单}{题目}18.(2019年四川巴中T18)如图,等腰直角三角板如图放置,直角顶点C 在直线m 上,分别过点A 、B 作AE ⊥直线m 于点E ,BD ⊥直线m 于点D .①求证:EC =BD .②若设△AEC 三边分别为a 、b 、c ,利用此图证明勾股定理.{解析}本题考查了全等三角形的判定和性质,直角三角形的性质,勾股定理,能根据条件灵活选择全等三角形的判定方法是解决问题的关键.①欲证EC =BD ,可证明它们所在的△AEC 与△CDB 全等得到,利用直角三角形的性质与互为余角的性质,利用AAS 的条件判定两三角形全等;②利用梯形的面积公式,及该梯形面积等于三个三角形面积之和构建等式,化简即得a 2+b 2=c 2.{答案}解:①∵∠ACB=90°,∴∠ACE +∠BCD=90°.∵BD ⊥m ,AE ⊥m ,∴∠CDB=90°,∠AEC=90°,∴∠ACE +∠CAE=90°.∴∠CAE=∠BCD .在△AEC 和△CDB 中,∵∠AEC=∠CDB=90°,∠CAE=∠BCD ,AC=CB ,∴△AEC ≌△CDB(AAS),∴EC =BD .ABE D Cb ac m②由①知BD=CE=a ,CD=AE=b ,∴S 梯形ABDE =21(a+b)(a+b)=21a 2+ab+21b 2. 又∵S 梯形ABDE =S △AEC + S △BCD +S △ABC =21ab+21ab+21c 2=ab+21c 2, ∴21a 2+ab+21b 2=ab+21c 2,∴a 2+b 2=c 2. 即直角三角形两条直角边的平方和等于斜边的平方.{分值}8 {章节:[1-17-1]勾股定理}{考点:互余}{考点:全等三角形的判定ASA,AAS}{考点:全等三角形的性质}{考点:勾股定理的证明}{类别:常考题}{难度:2-简单}{题目}19.(2019年四川巴中T19)△ABC 在边长为1的正方形网格中如图所示.①以点C 为位似中心,作出△ABC 的位似图形△A 1B 1C ,使其位似比为1:2,且△A 1B 1C 位于点C 的异侧,并表示出A 1的坐标.②作出△ABC 绕点C 顺时针旋转90°后的图形△A 2B 2C .③在②的条件下求出点B 经过的路径长.{解析}本题考查了图形的位似,旋转及弧长计算.①把△ABC 的各边放大2倍,或者根据位似性质先的得到点A ,B 对应点的坐标(即横纵坐标分别乘-2) A 1,B 1,再连接得到△A 1B 1C ;②借助网格特征,分别把点A ,B 绕点C 顺时针旋转90°后得到对应点A 2,B 2,再连接得到△A 2B 2C ;③点B 经过的路径长,即以∠BCB 2为圆心角,以CB 为半径的扇形弧长.{答案}解:①如图所示;②如图所示;③根据勾股定理,得BC =2241+=17,点B 经过的路径长为1801790⋅π=217π.{分值}8{章节:[1-27-2-1]位似}{考点:作图-旋转}{考点:坐标系中的位似}{考点:勾股定理}{考点:弧长的计算}{类别:常考题}{难度:2-简单}{题目}20.(2019年四川巴中T20)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户,已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?{解析}本题考查了分式方程与一元一次不等式(组)的实际应用,能通过认真审题获得数量间的关系构建方程模型或不等式模型解决问题.①直接设元利用等量关系“用500元单独购买甲物品的数量=用450元单独购买乙物品的数量”列方程求解;②设出购买甲种物品(或乙种物品)的件数,根据“总费用不少于5000元且不超过5050元”列出不等式(组),通过求整数解获得选购方案的种数.{答案}解:①设乙种物品的单价为x 元,则甲种物品的单价为(x +10)元,根据题意,得xx 45010500=+. 解得x =90.经检验,x =90是原分式方程的解,且符合题意.90+10=100(元).答:甲、乙两种物品的单价各为100元,90元.②设购买甲种物品y 件,则乙种物品购买(55-y )件,由题意,得5000≤100y +90(55-y )≤5050,解得5≤y ≤10.又因为y 是正整数,所以y =5,6,7,8,9,10,即共有6种选购方案.{分值}8{章节:[1-15-3]分式方程}{考点:其他分式方程的应用}{考点:一元一次不等式组的应用}{考点:应用不等式组设计方案}{类别:常考题}{难度:3-中等难度}{题目}21.(2019年四川巴中T21)如图表示的是某班部分同学衣服上口袋的数目.①从图中给出的信息得到学生衣服上口袋数目的中位数为 ,众数为 .②根据上图信息,在给出的图表中绘制频数条形统计图,由此估计该班学生衣服上口袋数目为5≤x <7的概率.{解析}本题考查了统计图与中位数、众数,概率的知识,掌握中位数与众数的概念,并能从统计图中获取有效信息解决问题是关键.把一组数据按大小顺序排列,处于中间位置的一个数或者两个数的平均数叫做这组数据的中位数;一组数据中出现次数最多的数字叫做这组数据的众数.根据统计图先把21个数据分别统计下来,再求中位数与众数,并根据分组统计各组数字个数,即可绘制出频数条形统计图,及根据概率公式计算所要求的概率.{答案}解:①4,4;解析:从图中可得这组数据共21个,按大小顺序排列如下:1,1,2,2,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,10,10, 处于中间的第11个数据是4,故这组数据的中位数是4;其中数据4出现了4次,为最多,故这组数据的众数为4.②绘制频数条形统计图如下:共有21个数据,其中5≤x <7的有6个,所以可估计该班学生衣服上口袋数目为5≤x <7的概率P =216=72. {分值}10{章节:[1-20-1-2]中位数和众数}{考点:条形统计图}{考点:中位数}{考点:众数}{考点:一步事件的概率} x1≤x <3 3≤x <5 5≤x <7 7≤x <9 x ≥9y 人数 O 1 2345678910{类别:常考题} {难度:2-简单}{题目}22.(2019年四川巴中T22)已知关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根.①求m 的取值范围.②设x 1、x 2是方程的两根且21x +22x +x 1x 2-17=0,求m 的值.{解析}本题考查了一元二次方程根的判别式以及根与系数的关系.①一元二次方程有两个不相等的实数根,则判别式△=b 2-4ac >0,由此可求m 的取值范围;②根据根与系数的关系,得x 1+x 2=-ab=-(2m +1),x 1x 2=ac =m 2-1,利用完全平方公式把求值式变形为两根和与积的形式,进而利用整体代入得到关于m 的方程,通过解方程获解,注意关注所解得m 的值是否满足其取值范围,要把不符合的解舍去.{答案}解:①根据题意,得△=b 2-4ac =[-(2m +1)]2-4(m 2-1)>0,化简,得4m +5>0,解得m >-45. ②由一元二次方程根与系数的关系,得x 1+x 2=-(2m +1),x 1x 2=m 2-1.21x +22x +x 1x 2-17=(x 1+x 2)2-2x 1x 2+x 1x 2-17=[-(2m +1)]2-(m 2-1)-17=0,化简,得3m 2+4m -15=0,解得m 1=35,m 2=-3.又∵m >-45,∴m =-3不合题意.∴m =35.{分值}10{章节:[1-21-3] 一元二次方程根与系数的关系} {考点:根的判别式} {考点:根与系数关系} {考点:配方法的应用} {类别:常考题} {难度:3-中等难度}{题目}23.(2019年四川巴中T23)某区域平面示意图如图所示,点D 在河的右侧,红军路AB 与某桥BC 互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C 处测得点D 位于西北方向,又在A 处测得点D 位于南偏东65°方向,另测得BC=414m ,AB=300m ,求出点D 到AB 的距离. (参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14){解析}本题考查了解直角三角形的实际应用.先由点D 分别向AB 与BC 引垂线,构造两个直角三角形与一个矩形,通过解两个直角三角形,借助矩形进行线段间的等量转换,构造方程求解. {答案}解:如图,过点D 作DE ⊥AB 于点E ,DF ⊥BC 于点F ,则四边形DEBF 是矩形. 设DE =x m ,在Rt △ADE 中,∠DAE=65°,65°45°ABCD∵tan ∠DAE =AE DE ,∴AE =DAE DE tan =14.2x ,则BE =300-14.2x, 又BF=DE= x ,∴CF=414-x .在Rt △CDF 中,∠DCF=45°, ∴DF=CF=414-x .又BE=CF , 即300-14.2x=414-x ,解得x =214. 答:点D 到AB 的距离为214m .{分值}8{章节:[1-28-2-2]非特殊角}{考点:解直角三角形的应用—测高测距离} {考点:矩形的性质} {考点:矩形的性质} {类别:常考题} {难度:3-中等难度}{题目}24.(2019年四川巴中T24)如图,一次函数y 1=k 1x +b (k 1、b 为常数,k 1≠0)的图像与反比例函数y 2=xk 2(k 2≠0,x >0)的图像交于点A (m ,8)与点B (4,2). ①求一次函数与反比例函数的解析式. ②根据图像说明,当x 为何值时,k 1x +b -xk 2<0.{解析}本题考查了一次函数与反比例函数的综合,能熟练运用待定系数法确定函数解析式是解决问题的关键.①先利用点B 的坐标求出反比例函数的解析式,进而再求得点A 的坐标,即得m 的值,最后利用待定系数法求得一次函数的解析式;②k 1x +b -xk 2<0,即y 1<y 2,根据两函数交点的横坐标,分段考虑两函数值的大小关系,进行求解,注意反比例函数自变量的取值范围,不要粗心出错. {答案}解:①把B (4,2)代入y 2=x k 2,得k 2=4×2=8,∴反比例函数的解析式为y 2=x8. 把A (m ,8)代入y 2=x 8,得8=m8,解得m =1.∴A (1,8). 把A (1,8),B (4,2)代入y 1=k 1x +b ,得65°45°A B CDEF⎩⎨⎧=+=+,24,811b k b k 解得⎩⎨⎧=-=.10,21b k ∴一次函数的解析式为y 1=-2x +10.②由图像可知,当0<x <1或x >4时,y 1<y 2,即k 1x +b <x k 2,k 1x +b -xk2<0. {分值}8{章节:[1-26-1]反比例函数的图像和性质} {考点:待定系数法求一次函数的解析式} {考点:反比例函数与一次函数的综合} {类别:常考题} {类别:易错题} {难度:3-中等难度}{题目}25.(2019年四川巴中T25)如图,在菱形ABCD 中,连结BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以点O 为圆心,OH 为半径的半圆交AC 于点M . ①求证:DC 是⊙O 的切线.②若AC =4MC 且AC =8,求图中阴影部分的面积.③在②的条件下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值.{解析}本题考查了菱形的性质、圆的切线的判定、直角三角形的性质、扇形的面积公式、轴对称与最短路径问题、解直角三角形等知识.①证明切线时,当直线与圆公共点没有具体告知时,采取的方法是“作垂直,证半径”;②根据所给条件先求得OC 、OH 、OM 的长,进而可得∠OCH =30°,∠COH =60°,于是阴影部分的面积等于Rt △OCH 与扇形OHM 的面积之差;③利用轴对称与最短路径问题,通过作点M 关于BD 的对称点N ,得PH +PM 的最小值为HN ,再由ON=OM=OH ,∠MOH=60°,得∠MNH=30°,即△NHC 为等腰三角形,于是再通过解Rt △NPO 与Rt △COD ,或全等三角形等知识均可进行求值.{答案}解:①证明:过点O 作OG ⊥CD 于点G . 在菱形ABCD 中,对角线AC 平分∠BCD , 又∵OG ⊥CD ,OH ⊥BC ,∴OG =OH , ∴DC 是⊙O 的切线.AB ODCHP M②∵AC =4MC 且AC =8,∴OC =2MC =4,MC =OM =2,∴OH =2. 在直角△OHC 中,OH =21OC , ∴∠OCH =30°,∠COH =60°, ∴HC =22OH OC =23. S 阴影=S △OCH -S 扇形OHM =21CH ·OH -36060π·OH 2 =21×23×2-36060π×4=23-32π. ③作M 关于BD 的对称点N ,连接HN 交BD 于点P .又∵BD ⊥MN ,∴PM=PN ,∴PH+PM=PH+PN=HN ,此时PH+PM 最小. ∵ON=OM=OH ,∠MOH=60°,∴∠MNH=30°, ∴∠MNH=∠HCM ,∴HN=HC=23. 即PH+PM 最小值为23.在Rt △NPO 中,OP =ON ·tan30°=332. 在Rt △COD 中,OD =OC ·tan30°=334.∴PD =OP +OD =23.(注:还可通过以下方法求得PD 的长:由菱形性质得OD=OB ,易求∠POH=∠PHO=30°,则OP=HP ,易证△ODG ≌△NPO ,得OD=PN ,∴PD=OP+OD=PH+PN=HN= HC=23.) {分值}10{章节:[1-24-2-2]直线和圆的位置关系} {考点:菱形的性质} {考点:解直角三角形} {考点:切线的判定} {考点:扇形的面积} {考点:最短路线问题} {类别:高度原创} {难度:4-较高难度}{题目}26.(2019年四川巴中T26)如图,抛物线y =ax 2+bx -5(a ≠0)经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B 、C 两点的直线为y =x +n .AB OD CHP MNG①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,△PBE 的面积最大并求出最大值.③过点A 作AM ⊥BC 于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A ,M ,N ,Q 为顶点的四边形是平行四边形,求点N 的横坐标.{解析}本题考查了确定二次函数的解析式、抛物线上三角形面积的最值与平行四边形存在性问题,是二次函数知识的综合应用.①由抛物线y =ax 2+bx -5与直线y =x +n 均过点C ,可得n=-5,进而可求点B 的坐标,再利用点A 与点B 的坐标,即可确定抛物线的解析式.②用t 分别表示线段PB 与BE 的长,易知∠PBE =45°,故又可用t 表示△PBE 中BE 边上的高,从而利用三角形的面积公式构建二次函数,利用最值使问题得以解决.③过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .可发现△PQN 为等腰直角三角形,则PN=4,为定值.于是设N(m ,-m 2+6m -5),则H(m ,0),P(m ,m -5),结合点Q 所在的不同位置,利用PN=NH+HP=4,或PN=NH -HP=4,分情况讨论求解.{答案}解:①由y =ax 2+bx -5(a ≠0)得C (0,-5),代入y =x +n 得n =-5,∴y =x -5,则B (5,0).把A (1,0)、B (5,0)代入y =ax 2+bx -5,得⎩⎨⎧=-+=-+,05525,05b a b a 解得⎩⎨⎧=-=.6,1b a∴抛物线的解析式为y =-x 2+6x -5;②由题意,得PB=4-t ,BE=2t ,由OB=OC=5,可得∠PBE =45°,∴△PBE 中BE 边上的高h=BP ·sin45°=22(4-t ), ∴S △PBE =21BE ·h =21×22(4-t )·2t =22-( t -2)2+22.∴当t =2时,△PBE 的面积最大,最大值为22.③由①知直线BC 的解析式为y =x -5,故∠PBE =45°,又AB=5-1=4,∴点A 到直线BC 的距离为AM =22.过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设N(m ,-m 2+6m -5),则H(m ,0),P(m ,m -5).易知△PQN 为等腰直角三角形,即NQ=22,PQ=22.∴PN=4.备用图第26题图(Ⅰ)如图1,PN=NH+HP=4,∴-m2+6m-5-(m-5)=4,解得m1=1,m2=4.∵点A,M,N,Q为顶点的四边形是平行四边形,∴m=4.(Ⅱ)如图2,PN=NH+HP=4,∴m-5-(-m2+6m-5)=4,解得m1=2415+,m2=2415-.∵点A,M,N,Q为顶点的四边形是平行四边形,∴m>5.∴m=2415+.(Ⅲ)如图3,PN=NH-HP=4,∴-(-m2+6m-5)-[-(m-5)]=4,解得m1=2415+,m2=2415-.∵点A,M,N,Q为顶点的四边形是平行四边形,∴m<0.∴m=2415-.综上所述,要使点A,M,N,Q为顶点的四边形是平行四边形,点N的横坐标为4或2415+或2415-.{分值}12{章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质} {考点:二次函数y=ax2+bx+c的性质}{考点:等腰直角三角形}{考点:其他一次函数的综合题}{考点:几何图形最大面积问题}{考点:二次函数与平行四边形综合}{考点:公式法}{考点:代数综合}{类别:思想方法}{类别:高度原创}{难度:5-高难度}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年四川省巴中市恩阳区茶坝中学中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列说法:①如果a=﹣4,那么﹣a=4;②倒数等于它本身的有理数是1;③如果a是非正数,那么﹣a是负数;④如果a是负数,那么|a|+1是正数,其中正确的有()A.1个B.2个C.3个D.4个2.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()A.B.C.D.3.下列运算正确的是()A.2a+a=3a2B.C.(3a2)3=9a6D.a2•a3=a54.如图,直线AB、CD相交于点O,∠BOE=90°,OF平分∠AOE,∠1=15°30′,则下列结论不正确的是()A.∠2=45°B.∠1=∠3C.∠AOD+∠1=180°D.∠EOD=75°30'5.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球6.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为()A.B.C.D.7.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班学生的成绩统计如下:则该班学生成绩的众数和中位数分别是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分8.下列各题估算正确的是()A.B.C.D.9.如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A.40°B.50°C.80°D.100°10.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF =2S△ABE,其中结论正确的个数为()A.2个B.3个C.4个D.5个二.填空题(共10小题,满分30分,每小题3分)11.分解因式:x3y﹣2x2y+xy=.12.在函数y=+中,自变量x的取值范围是.13.将201800000用科学记数法表示为.14.已知关于x的方程x2+3x﹣m=0有两个相等的实数根,则m的值为.15.如图,已知抛物线l1:y=(x﹣2)2﹣2与x轴分别交于O、A两点,将抛物线L1向上平移得到L2,过点A作AB⊥x轴交抛物线L2于点B,如果由抛物线L1、L2、直线AB及y轴所围成的阴影部分的面积为16,则抛物线L2的函数表达式为.16.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,过E点作EH⊥CD于H,则EH的长为.17.已知扇形所在圆半径为4,弧长为6π,则扇形面积为18.若关于x的方程无解,则m的值是.19.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=2,则⊙O的半径为.20.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是.三.解答题(共11小题,满分90分)21.(5分)计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣122.(5分)解方程组(1)(2).23.(6分)方程与计算:(1)+1=;(2)先化简:÷(),然后再从﹣2<x≤2的范围内选取一个合适的x的整数值代入求值.24.(6分)如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.(1)画出△A1OB1;(2)直接写出点A1和点B1的坐标;(3)求线段OB1的长度.25.(8分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?26.(8分)如图,在平面直角坐标系xOy中,已知正比例函数y1=﹣2x的图象与反比例函数y2=的图象交于A(﹣1,n),B两点.(1)求出反比例函数的解析式及点B的坐标;(2)观察图象,请直接写出满足y≤2的取值范围;(3)点P是第四象限内反比例函数的图象上一点,若△POB的面积为1,请直接写出点P的横坐标.27.(10分)随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)28.(10分)如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为i=1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,求山高BC(结果保留根号).29.(10分)如图,在▱ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G、H.(1)求证:△BAE∽△BCF;(2)若BG=BH,求证:四边形ABCD是菱形.30.(10分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.31.(12分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2019年四川省巴中市恩阳区茶坝中学中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用绝对值的性质以及非负数的定义分别分析得出即可.【解答】解:①如果a=﹣4,那么﹣a=﹣(﹣4)=4,故此说法正确;②倒数等于它本身的有理数是±1,故此说法错误;③如果a是非正数,那么么﹣a是非负数,故此说法错误;④如果a是负数,那么|a|+1是正数,故此说法正确;故选:B.【点评】此题主要考查了相反数的定义以及绝对值得性质,正确把握语句的意思是解题关键.2.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.故选:D.【点评】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.3.【分析】根据合并同类项、同底数幂的乘法和除法、幂的乘方与积的乘方、二次根式的乘法法则.【解答】解:A、错误,∵2a+a=3a;B、错误,∵=×,被开方数不能是负数;C、错误,∵(3a2)3=27a6;D、正确,符合底数幂的乘法法则.故选:D.【点评】(1)本题综合考查了整式运算的多个考点,包括合并同类项、同底数幂的乘法和除法、幂的乘方与积的乘方、二次根式的化简,需熟练掌握且区分清楚,才不容易出错.(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.4.【分析】根据角平分线性质、对顶角性质、互余、互补角的定义,逐一判断.【解答】解:A、由OE⊥AB,可知∠AOE=90°,OF平分∠AOE,则∠2=45°,正确;B、∠1与∠3互为对顶角,因而相等,正确;C、∠AOD与∠1互为邻补角,正确;D、∠EOD=180°﹣15°30'﹣45°≠75°30',错误;故选:D.【点评】本题主要考查邻补角以及对顶角的概念,和为180°的两角互补,和为90°的两角互余.5.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选:A.【点评】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.6.【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【解答】解:设小正方形的边长为1,则其面积为1.∵圆的直径正好是大正方形边长,∴根据勾股定理,其小正方形对角线为,即圆的直径为,∴大正方形的边长为,则大正方形的面积为×=2,则小球停在小正方形内部(阴影)区域的概率为.故选:C.【点评】用到的知识点为:概率=相应的面积与总面积之比;难点是得到两个正方形的边长的关系.7.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列,最中间的两个数都是80分,则这组数据的中位数是80分;80分出现了12次,出现的次数最多,则众数是80分.故选:B.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.【分析】A、被开方数0.35接近于0.36,所以算术平方根接近于0.6,由此即可判定;B、2.6的立方为17.576,大于被开方数10很多,由此即可判定;C、35.1的平方约为1232.01,接近于被开方数,由此即可判定;D、26900接近于27000,立方根应接近于30,由此即可判定.【解答】解:A、∵0.35接近0.36,∴应接近0.6,故选项错误;B、∵2.53=>10,∴ 2.5,故选项错误;C、∵35.1的平方约为1232.01,接近于被开方数,故选项正确;D、∵26900<27000,∴<30,故选项错误;故选:C.【点评】此题主要考查了无理数的估算能力,应先算出算术平方根的平方立方根的立方,与所给的被开方数进行比较,得到相应的答案.注意区分开平方还是开立方.9.【分析】由⊙O是△ABC的外接圆,∠A=50°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.【解答】解:∵⊙O是△ABC的外接圆,∠A=50°,∴∠BOC=2∠A=100°.故选:D.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,得到CE=CF;由正方形的性质就可以得出∠AEB=75°;设EC=x,由勾股定理得到EF,表示出BE,利用三角形的面积公式分别表示出S△CEF 和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF,∴CE=CF,故①正确;∵∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°,∴∠AEB=75°,故②正确;设EC=x,由勾股定理,得EF=x,CG=x,AG=AE sin60°=EF sin60°=2×CG sin60°=x,∴AG≠2GC,③错误;∵CG=x,AG=x,∴AC=x∴AB=AC•=x,∴BE=x﹣x=x,∴BE+DF=(﹣1)x,∴BE+DF≠EF,故④错误;∵S△CEF=x2,S△ABE=×BE×AB=x×x=x2,∴2S△ABE ═S△CEF,故⑤正确.综上所述,正确的有3个,故选:B.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二.填空题(共10小题,满分30分,每小题3分)11.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【分析】根据二次根式的性质和的意义知,被开方数大于等于0.【解答】解:根据二次根式有意义得:x﹣1≥0且2﹣x≥0,解得:2≥x≥1.故答案为:2≥x≥1.【点评】考查了分式和根号有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:201800000用科学记数法表示为:2.018×108,故答案为:2.018×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【分析】根据方程有两个相等的实数根得出△=0,求出m的值即可.【解答】解:∵关于x的方程x2+3x﹣m=0有两个相等的实数根,∴△=32﹣4×1×(﹣m)=0,解得:m=﹣,故答案为:﹣.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 的关系是解答此题的关键.15.【分析】利用二次函数图象上点的坐标特征求出抛物线与x轴交点的横坐标,由阴影部分的面积等于矩形OABC的面积可求出AB的长度,再利用平移的性质“左加右减,上加下减”,即可求出抛物线L2的函数表达式.【解答】解:当y=0时,有(x﹣2)2﹣2=0,解得:x1=0,x2=4,∴OA=4.=OA•AB=16,∵S阴影∴AB=4,∴抛物线L2的函数表达式为y=(x﹣2)2﹣2+4=(x﹣2)2+2.故答案为:y=(x﹣2)2+2.【点评】本题考查了抛物线与x轴的交点、矩形的面积以及二次函数图形与几何变换,观察图形,找出阴影部分的面积等于矩形OABC的面积是解题的关键.16.【分析】先利用等边三角形的性质得到∠BAC=60°,AB=AC,再利用旋转的性质得∴∠DAE =∠BAC=60°,AD=AE=5,CE=BD=6,则可判断△ADE为等边三角形得到DE=AD=5,设DH=x,则CH=CD﹣DH=4﹣x,于是根据勾股定理得到EH2+x2=52①,EH2+(4﹣x)2=62②,然后利用加减消元法先求出x,再计算EH即可.【解答】解:∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,∴∠DAE=∠BAC=60°,AD=AE=5,CE=BD=6,∴△ADE为等边三角形,∴DE=AD=5,设DH=x,则CH=CD﹣DH=4﹣x,在Rt△DHE中,EH2+x2=52,①在Rt△CHE中,EH2+(4﹣x)2=62,②②﹣①得16﹣8x=11,解得x=,∴EH==.故答案为.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.17.【分析】直接根据扇形的面积公式S=lR进行计算即可.扇形【解答】解:根据扇形的面积公式,得S=lR=×6π×4=12π.扇形故答案为:12π.【点评】本题考查了扇形面积的计算.熟记公式是解题的关键.18.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:x﹣5=m+2x﹣6,解得:x=1﹣m,由分式方程无解,得到x=3,即1﹣m=3,解得:m=﹣2,故答案为:﹣2【点评】此题考查了分式方程的解,始终注意分母不为0这个条件.19.【分析】连接OC,由垂径定理知,点E是CD的中点,CE=CD,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣2,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣2)2,解得:x=,∴⊙O的半径为,故答案为:.【点评】本题考查了垂径定理和勾股定理,熟练掌握并应用定理是解题的关键.20.【分析】根据二次函数的图象与性质即可求出答案.【解答】解:由题意可知:k﹣2>0,∴k>2,故答案为:k>2.【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.三.解答题(共11小题,满分90分)21.【分析】先代入三角函数值、计算绝对值、零指数幂和负整数指数幂,再进一步计算可得.【解答】解:原式=×﹣3+1+2=1﹣3+1+2=1.【点评】本题主要考查实数的运算,解题的关键是熟练掌握特殊锐角三角函数值、绝对值性质及零指数幂和负整数指数幂的运算法则.22.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.【分析】(1)两边都乘以x(x﹣1)化分式方程为整式方程,解整式方程求得x的值,再检验即可得答案;(2)先根据分式混合运算顺序和运算法则化简原式,再根据分式有意义的条件得出x的值,代入计算可得.【解答】解:(1)两边都乘以x(x﹣1),得:3+x(x﹣1)=x2,解得:x=3,检验:x=3时,x(x﹣1)=6≠0,所以分式方程的解为x=3;(2)原式=÷[﹣]=÷=•=,∵x≠0且x≠±1,∴x=2,则原式==4.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解分式方程的步骤.24.【分析】(1)分别作出点A和点B绕点O逆时针旋转90°所得对应点,再与点O首尾顺次连接即可得;(2)由所得图形可得点的坐标;(3)利用勾股定理可得答案.【解答】解:(1)画出△A1OB1,如图.(2)点A1(0,1),点B1(﹣2,2).(3)OB1=OB==2.【点评】本题主要考查作图﹣旋转变换,解题的关键是掌握旋转变换的定义和性质,并据此得出变换后的对应点.25.【分析】(1)根据条形图的意义,将各组人数依次相加可得答案;(2)根据表中的数据计算可得答案;(3)用样本估计总体,按比例计算可得.【解答】解:(1)4﹢8﹢10﹢18﹢10=50(名)答:该校对50名学生进行了抽样调查.(2)最喜欢足球活动的有10人,占被调查人数的20%.(3)全校学生人数:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)则全校学生中最喜欢篮球活动的人数约为2000×=720(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.26.【分析】(1)把A(﹣1,n)代入y=﹣2x,可得A(﹣1,2),把A(﹣1,2)代入y=,可得反比例函数的表达式为y =﹣,再根据点B 与点A 关于原点对称,即可得到B 的坐标; (2)观察函数图象即可求解;(3)设P (m ,﹣),根据S 梯形MBPN =S △POB =1,可得方程(2+)(m ﹣1)=1或(2+)(1﹣m )=1,求得m 的值,即可得到点P 的横坐标.【解答】解:(1)把A (﹣1,n )代入y =﹣2x ,可得n =2,∴A (﹣1,2),把A (﹣1,2)代入y =,可得k =﹣2,∴反比例函数的表达式为y =﹣,∵点B 与点A 关于原点对称,∴B (1,﹣2).(2)∵A (﹣1,2),∴y ≤2的取值范围是x <﹣1或x >0;(3)作BM ⊥x 轴于M ,PN ⊥x 轴于N ,∵S 梯形MBPN =S △POB =1,设P (m ,﹣),则(2+)(m ﹣1)=1或(2+)(1﹣m )=1整理得,m 2﹣m ﹣1=0或m 2+m +1=0,解得m =或m =,∴P 点的横坐标为.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.27.【分析】(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.【解答】解:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量为y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.【点评】本题是增长率的问题,要记牢增长率计算的一般规律,然后读清题意找准关键语.28.【分析】作DF⊥AC于F.解直角三角形分别求出BE、EC即可解决问题;【解答】解:作DF⊥AC于F.∵DF:AF=1:,AD=200米,∴tan∠DAF=,∴∠DAF=30°,∴DF=AD=×200=100(米),∵∠DEC=∠BCA=∠DFC=90°,∴四边形DECF是矩形,∴EC=DF=100(米),∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠1=45°﹣30°=15°,∴∠ABD=∠BAD,∴AD=BD=200(米),在Rt△BDE中,sin∠BDE=,∴BE=BD•sin∠BDE=200×=100(米),∴BC=BE+EC=100+100(米).【点评】本题考查解直角三角形的应用仰角俯角问题,坡度坡角问题等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.29.【分析】(1)先利用已知里的两个垂直,可证一对角相等,都等于90°,再利用平行四边形的性质,对角相等,那么可证△BAE∽△BCF;(2)由BG=BH,可得∠3=∠4,那么∠AGE=∠CHF,利用等量减等量差相等,可证∠DAC=∠DCA,等角对等边,那么AD=DC,那么▱是菱形.【解答】证明:(1)∵BE⊥AD,BF⊥CD,∴∠BEA=∠BFC=90°.又ABCD是平行四边形,∴∠BAE=∠BCF.∴△BAE∽△BCF.(2)∵△BAE∽△BCF,∴∠1=∠2.又BG=BH,∴∠3=∠4.∴∠BGA=∠BHC,BG=BH.∴△BGA≌△BHC(ASA).∴AB=BC.∴▱ABCD为菱形.【点评】本题利用了平行四边形的性质、相似三角形的判定和性质、全等三角形的判定和性质、菱形的判定等知识.30.【分析】(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O 上,故DE是⊙O的切线.(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.【解答】(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线.(2)解:∵∠AED=90°,DE=6,AE=3,∴.连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.则AC=15(cm).∴⊙O的半径是7.5cm.【点评】本题考查常见的几何题型,包括切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.31.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4;②∵点P 在线段AB 上,∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°,i .当∠ADQ =90°时,则DQ ⊥AD ,∵A (﹣1,0),D (2,3),∴直线AD 解析式为y =x +1,∴可设直线DQ 解析式为y =﹣x +b ′,把D (2,3)代入可求得b ′=5,∴直线DQ 解析式为y =﹣x +5,联立直线DQ 和抛物线解析式可得,解得或,∴Q (1,4);ii .当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,把A 、Q 坐标代入可得,解得k 1=﹣(t ﹣3), 设直线DQ 解析式为y =k 2x +b 2,同理可求得k 2=﹣t ,∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t (t ﹣3)=﹣1,解得t =,当t =时,﹣t 2+2t +3=,当t =时,﹣t 2+2t +3=,∴Q 点坐标为(,)或(,);综上可知Q 点坐标为(1,4)或(,)或(,). 【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

相关文档
最新文档