汽车发动机原理第6章燃烧过程及混合气形成
汽车发动机原理柴油机混合气形成与燃烧课件

柴油机与汽油机的比 较
燃料不同
汽油机使用汽油作为燃料,而柴油机使用柴油作 为燃料。
燃烧方式不同
汽油机采用点燃式燃烧方式,而柴油机采用压燃 式燃烧方式。
应用范围不同
汽油机主要用于小型车辆和家用轿车等领域,而 柴油机则主要用于大型车辆和重型机械等领域。
02
柴油机混合气形成原理
混合气的概念与形成过程
混合气的概念
混合气是指柴油机燃烧室内,空气与燃油进行均匀混合所形 成的可燃气体。
混合气的形成过程
在柴油机进气过程中,空气通过进气门进入气缸,同时喷油 器在压缩行程中将柴油喷入气缸,燃油在高温高压空气中蒸 发扩散,并与空气混合形成混合气。
燃油喷射过程与特点
燃油喷射过程
在柴油机压缩行程后期,喷油器 定时定量地将柴油喷入气缸,油 雾与空气混合形成可燃混合气。
表面处理优化
对燃烧室表面进行耐磨、耐腐蚀处理,如镀铬、喷涂耐高温材料等, 以提高燃烧室的使用寿命和稳定性。
温度控制优化
采用高效燃烧室温度控制技术,如冷却水套、热防护等,防止燃烧室 过热或局部高温,提高燃烧室的热效率和使用安全性。
提高燃油喷射与混合气形成效率的方法
多阶段燃油喷射 根据发动机的转速和负荷,采用多阶段燃油喷射技术,实 现燃油的分层喷射和分段燃烧,提高燃油利用率和动力输 出。
汽车发动机原理柴油 机混合气形成与燃烧 课件
01
汽车发动机概述
汽车发动机的类型与特点
汽油机
以汽油为燃料,通过点燃式方式进行 燃烧,具有轻便、低噪音、低油耗等 优点,但同时也存在排放污染较高的 问题。
柴油机
以柴油为燃料,通过压燃式方式进行 燃烧,具有高效率、低油耗、低排放 等优点,但同时也存在噪音较大、制 造成本较高等问题。
汽车发动机原理课后习题答案

第一章发动机的性能1。
简述发动机的实际工作循环过程。
1)进气过程:为了使发动机连续运转,必须不断吸入新鲜工质,即是进气过程。
此时进气门开启,排气门关闭,活塞由上止点向下止点移动。
2)压缩过程:此时进排气门关闭,活塞由下止点向上止点移动,缸内工质受到压缩、温度.压力不断上升,工质受压缩的程度用压缩比表示。
3)燃烧过程:期间进排气门关闭,活塞在上止点前后.作用是将燃料的化学能转化为热能,使工质的压力和温度升高,燃烧放热多,靠近上止点,热效率越高.4)膨胀过程:此时,进排气门均关闭,高温高压的工质推动活塞,由上止点向下至点移动而膨胀做功,气体的压力、温度也随之迅速下降。
(5)排气过程:当膨胀过程接近终了时,排气门打开,废气开始靠自身压力自由排气,膨胀过程结束时,活塞由下止点返回上止点,将气缸内废气移除。
3。
提高发动机实际工作循环热效率的基本途径是什么?可采取哪些基本措施?提高实际循环热效率的基本途径是:减小工质传热损失、燃烧损失、换气损失、不完全燃烧损失、工质流动损失、工质泄漏损失。
提高工质的绝热指数κ。
可采取的基本措施是:⑴减小燃烧室面积,缩短后燃期能减小传热损失。
⑵. 采用最佳的点火提前角和供油提前角能减小提前燃烧损失或后燃损失。
⑶采用多气门、最佳配气相位和最优的进排气系统能减小换气损失.⑷加强燃烧室气流运动,改善混合气均匀性,优化混合气浓度能减少不完全燃烧损失。
⑸优化燃烧室结构减少缸内流动损失.⑹采用合理的配缸间隙,提高各密封面的密封性减少工质泄漏损失。
4。
什么是发动机的指示指标?主要有哪些?答:以工质对活塞所作之功为计算基准的指标称为指示性能指标。
它主要有:指示功和平均指示压力。
指示功率.指示热效率和指示燃油消耗率。
5.什么是发动机的有效指标?主要有哪些?答:以曲轴输出功为计算基准的指标称为有效性能指标.主要有:1)发动机动力性指标,包括有效功和有效功率。
有效转矩.平均有效压力。
转速n和活塞平均速度;2)发动机经济性指标,包括有效热效率.有效燃油消耗率;3)发动机强化指标,包括升功率PL.比质量me。
动力燃烧的原理

动力燃烧的原理动力燃烧是指在引擎中利用燃料与氧气发生化学反应产生能量,并将能量转化为机械能用于驱动车辆运动的过程。
它是内燃机的基本工作原理,广泛应用于汽车、船舶、飞机等交通工具中。
动力燃烧的原理可以分为三个关键步骤:燃烧、膨胀和排放。
首先是燃烧过程。
在内燃机中,通过喷射燃料到氧气中形成混合气,并且引发点火。
点火是通过火花塞产生的火花,将混合气中的燃料点燃。
当燃料进入氧气时,其中的碳氢化合物与气体氧化剂反应,产生水和二氧化碳等废气。
这个燃烧过程具有放热的特点,能够向汽缸内的气体传输能量。
然后是膨胀过程。
在内燃机中,燃料的燃烧产生的高温高压气体会推动活塞向下运动,使得活塞与连杆构成的曲轴相连,从而传递能量。
在往复式内燃机中,曲轴的旋转驱动连杆、活塞、缸体等部件的运动,最终将化学能转化为机械能。
而在涡轮增压发动机中,高温高压气体涡轮会驱动压气机增加压气机的进气压力,提高气缸内气体的密度,进而增加爆发力。
最后是排放过程。
在燃烧过程中,不仅会产生水和二氧化碳等废气,还会产生一些有害物质,如一氧化碳、氮氧化物等。
为了保护环境和人类的健康,燃烧产生的废气需要经过排气系统处理后排放到大气中。
常用的排气处理设备包括催化剂和尾气净化装置,通过一系列化学反应将有害物质转化为无害物质。
动力燃烧的原理可以继续分为两种不同的燃烧方式:汽油燃烧和柴油燃烧。
对于汽油燃烧来说,燃料进入汽缸后形成可燃混合气,进一步被压缩。
这个过程中,汽缸内的气体温度和压力升高,进而使得混合气开始燃烧。
燃烧产生的热能推动活塞向下运动,将燃料的化学能转化为机械能。
汽油燃烧有着较高的反应速率,比较容易产生点火所需的火焰。
这种燃烧方式在高速转速下表现出较好的性能,广泛应用于汽车等领域。
而对于柴油燃烧来说,燃料直接喷射到高压气体中,形成可燃混合气。
柴油燃料因为较高的点火温度而不需要点火系统,只需通过压缩使其自燃。
因此,柴油燃烧的特点是压燃,燃料颗粒在高温高压气体中被压缩导致快速点火和燃烧。
发动机原理第六章柴油机混合气形成与燃烧

2.对柴油机燃烧室的要求:
① α小,但应燃烧完全及时; ② 适度的ΔP/ΔΦ和Pz值;以保证工作柔和,
平稳,可靠; ③ 排气品质好; ④ 变工况适应好;应在负荷、转速变化时,
柴油机性能稳定; ⑤ 冷起动性好; ⑥ 制造、维修方便。
3、直喷式燃烧室的空气涡流运动
空气涡流运动是加速混合气形成的 有效手段;也是保证完善燃烧的重 要条件。
3.影响喷注质量的主要因素:
喷注结构,喷油压力,气缸内空气的压力,柴油
的粘度等。
二、空气运动对混合气形成的影响
缸内空气的涡流运动能加速雾化的油滴与 周围空气的混合,促进燃烧过程的进行。
但涡流过强,会使燃烧产物与邻近的喷注重叠; 涡流过强也使进气阻力加大,充量系数下降。
三、典型燃烧室结构分析
1.燃烧室分为两大类:直喷式和分开式。 直喷式燃烧室:燃油直接喷入由活塞顶和缸盖形成的
汽油机:提高火焰传播速度。 柴油机:保证及时形成较均匀的混合气。
第一节 混合气形成与燃烧过程
一、燃烧方式--油滴扩散燃烧
柴油机是在压缩过程中活塞接近上止点时,借助喷 油设备将燃油在高压下成雾状喷入燃烧室,以便 与空气形成可燃混合气。
油滴的着火要满足两个条件: (1)混合气的温度要高于着火临界温度。 (2)混合气的浓度要适当,即混合气的浓度要在
不变)
面容比大,经济性较差,启动性差(传热和流动损失大,装电热塞)
涡流室式燃烧室
1)预燃室式燃烧室
混合气形成:空间雾化混合为主。一般采用轴针 式喷油器。
主要特点:
喷雾质量要求不高(预燃室形成强的紊流和二次喷射的燃
烧涡流形成混合气)。
ΔP/ΔΦ较小,工作柔和。 空气利用率高,α值可较小。 变工况适应性好,对转速不敏感。 NOx排放低 启动性差,面容比较大,经济性差 低速噪声(惰转噪声)大(预燃室气体速度低,油束贯穿力大,
(完整版)汽车发动机原理课后习题答案

第二章发动机的性能指标1.研究理论循环的目的是什么?理论循环与实际循环相比,主要作了哪些简化?答:目的:1.用简单的公式来阐明内燃机工作过程中各基本热力参数间的关系,明确提高以理论循环热效率为代表的经济性和以平均有效压力为代表的动力性的基本途径2.确定循环热效率的理论极限,以判断实际内燃机经济性和工作过程进行的完善程度以及改进潜力3.有利于分析比较发动机不同循环方式的经济性和动力性简化:1.以空气为工质,并视为理想气体,在整个循环中工质的比热容等物理参数为常数,均不随压力、温度等状态参数而变化2.将燃烧过程简化为由外界无数个高温热源向工质进行的等容、等压或混合加热过程,将排气过程即工质的放热视为等容放热过程3.把压缩和膨胀过程简化成理想的绝热等熵过程,忽略工质与外界的热交换及其泄露等的影响4.换气过程简化为在上、下止点瞬间开和关,无节流损失,缸内压力不变的流入流出过程。
2.简述发动机的实际工作循环过程。
四冲程发动机的实际循环由进气、压缩、燃烧、膨胀、排气组成3.排气终了温度偏高的原因可能是什么?有流动阻力,排气压力>大气压力,克服阻力做功,阻力增大排气压力增大,废气温度升高。
负荷增大Tr增大;n升高Tr增大,∈+,膨胀比增大,Tr减小。
4.发动机的实际循环与理论循环相比存在哪些损失?试述各种损失形成的原因。
答:1.传热损失,实际循环中缸套内壁面、活塞顶面、气缸盖底面以及活塞环、气门、喷油器等与缸内工质直接接触的表面始终与工质发生着热交换2.换气损失,实际循环中,排气门在膨胀行程接近下止点前提前开启造成自由排气损失、强制排气的活塞推出功损失和自然吸气行程的吸气功损失3.燃烧损失,实际循环中着火燃烧总要持续一段时间,不存在理想等容燃烧,造成时间损失,同时由于供油不及时、混合气准备不充分、燃烧后期氧不足造成后燃损失以及不完全燃烧损失4.涡流和节流损失实际循环中活塞的高速运动使工质在气缸产生涡流造成压力损失。
发动机原理_柴油机混合气的形成和燃烧

运动速度和油膜厚度。
二、分隔式燃烧室
涡流室燃烧室 • 预燃室燃烧室 涡流室容积约占整个燃烧 室压缩容积的50%-60% • 预燃室容积约占整个燃烧 • 通道的截面积约为活塞截 室压缩容积的35%-45% 面积的 1%~3.5% • 通道的截面积约为活塞截 • 涡流室燃烧过程 面积的0.3%-0.6% • 预燃室燃烧过程
机械噪声
由曲轴连杆活塞机构、配气
机构、齿轮系、喷油泵及其 它附属机构等部分的高速运 动并与其相邻零部件发生频 繁的机械撞击,激励结构振 动而产生的噪声。
燃烧噪声
因为迅速地燃烧引起燃烧室
内压力急剧变化
控制噪声与振动的措施
1)控制燃烧过程来降低燃烧噪声。 2)改进机体等有关零部件的结构,降低结构振动的振幅 和提高共振频率。 3)为减小撞击力,尽可能减小缸套与活塞之间、轴承、 传动齿轮等处的间隙。为减小惯性力应减小运动件的质量, 并在可能的情况下,适当降低活塞平均速度。 4)应用吸振减振材料制造薄板零件 5)改进消声器的结构、材料;改进空气滤清器、冷却风 扇等的设计及适当调节配气相位以降低气体动力噪声。 6)遮蔽噪声源
三、对喷射系统的要求
理想的喷油规律: 更高的喷射压力和喷油速 率以及更短的喷油持续时 间已是技术发展的一个明 显趋势。 为避免柴油机工作过于粗 暴,又希望实现“先缓后 急”的喷油规律。 在所有的工况下都希望在 喷射结束阶段能尽可能迅 速地结束喷射。
四、柴油机电控喷射系统
电控喷射系统突出优 点是控制的准确性和 响应的快速性。 系统的基本控制量: • 循环喷油量的控制 • 供油提前角控制
第二节 燃油喷射和雾化
一、供油系统和喷射过程
柴油机供油系统 喷油泵速度特性及其校正 喷射过程 供油规律和喷油规律 不正常喷射现象和喷射系统中的穴蚀 破坏
柴油机混合气形成和燃烧

.
11
三、柴油机的有害排放物和振动噪声
CO和HC的生成机理与汽油机相同,但a>1,缝隙激冷效应
小,故其排放小。 柴油机有害排放物:NOx, PM, 且二者矛盾。 CO2 1) NOx的生成机理:
根据燃料及其混合气形成方式分为: 热力NO(Themal NO)和快速NO(Prompt NO) ➢ 热力NO产生条件:高温、富氧、滞留时间汽油机
适应高效率低排放燃烧方式的要求
.
26
二、喷射雾化和油束特性
➢ 喷雾(油束)特性取决于喷油器的结构、喷射压力和背压, 是影响混合气形成的主要因素
➢ 油束特性:用几何形状和雾化质量评价
几何形状:贯穿距离L ;贯穿率和喷雾锥角或B
贯穿率:油束射程与喷 孔出口沿喷孔轴线到达 燃烧室壁面的距离的比
核心部分液滴 密集,速度高
.
粒径分布
粒子直径/nm
15
高温:在预混合火焰温度2000~2400K范围内出现峰值; 在
扩散火焰区缺氧
实验结果
未氧化PM。
由 HC
向碳烟
的转换
T>2400K时:PM
率
计算结果
C原子不易凝聚;
已形成的碳烟氧化。
急速加热到1700K以上 时,聚乙炔及碳蒸汽成 为中间产物而生成碳烟
➢危害:致癌物;大气可见度
喷射压力与供油压力有关; 但非线性关系,不可控。
.
30
直列泵
VE型分配泵: 一个柱塞,与固定
在一起的端面凸轮 盘一同旋转
调速手柄
调速套筒 飞锤 燃油入口
停车 调速弹簧 手柄
流回油箱
溢流节流孔
张力杠杆 断油阀
供油量控制:通过驾驶 调 压 阀 员/调速器调节油量控制
汽车发动机基本原理

汽车发动机基本原理第一,进气过程。
汽车发动机通过进气道将外界空气引入进气歧管,在进气歧管中混合一定量的燃油形成可燃混合气。
进气阀的开闭控制了空气的流入,节奏与速度的大小由油门踏板的位置决定。
第二,压缩过程。
进气阀闭合后,活塞开始向上移动,将混合气体压缩到汽缸的顶部。
此过程会将混合气体的体积缩小,使混合气体的温度和压力升高。
这种压缩使得混合气体更容易被点燃。
第三,燃烧过程。
在活塞抵达顶死点附近时,点火系统会向汽缸内的混合气体中喷射火花,引发混合气体的燃烧。
燃烧产生的高温高压气体将使汽缸内的压力迅速增加,并推动活塞向下移动。
燃烧的主要燃料为汽油,燃烧后产生的气体会膨胀,将能量转化成活塞的线性运动。
第四,排气过程。
活塞再次向上运动,将燃烧后的废气排出汽缸。
在此过程中,排气阀会打开,废气会通过排气管排出汽车。
废气中含有一些有害物质,如一氧化碳和氮氧化物,这是后来汽车排放控制的重要问题。
在这个四个过程中,汽车发动机的运动由曲轴和连杆机构转换成活塞的往复运动,并通过传动系统将产生的动力传递给车轮以驱动汽车行驶。
发动机的性能受到多种因素的影响,包括气缸数量、工作方式、缸径和活塞行程等等。
除了基本原理之外,现代汽车发动机还有一系列的控制系统来确保发动机的正常运行。
这些控制系统包括点火系统、供油系统、冷却系统和排放控制系统等等。
这些系统通过传感器和电子控制单元的协调工作,对发动机的运行进行监测和调节,以提高燃烧效率,降低排放和节省燃料。
总之,汽车发动机的基本原理是通过将燃料燃烧产生的高温高压气体转换成活塞的运动,从而产生驱动力。
它是汽车行驶的核心部件,也是汽车工程技术的关键。
随着科技的发展,发动机的效率和环保性能将不断提高,为汽车行业的可持续发展提供更多可能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.着火落后期
由火花塞跳火的A点到气缸压力线脱离压缩线的B点 所界定的时期称为着火落后期,其长短用着火落后时间i 或着火落后角 i来表示。
电火花在上止点前ig角(点火提前角)跳火,可燃 混合气按高温单阶段方式着火后,经过一个阶段形成稳定 的火核。此时,压力和温度升高,缸内气体压力开始脱离 压缩压力线,这标志着火落后期结束。
1.着火落后期(滞燃期)
图6-3中由喷油始点A到气缸压力线与压缩线脱离点 B对应的时期称为着火落后期,或称滞燃期。
随压缩过程的进行,缸内空气压力和温度不断升高, 在上止点附近气体温度高达600℃以上,高于燃料在当时 压力下的自燃温度。在A点被喷入气缸的柴油,经历一系 列复杂的物理化学过程,这包括雾化、蒸发、扩散、与空 气混合等物理准备阶段,以及低温多阶段着火的化学准备 阶段,在空燃比、压力、温度以及流速等条件合适处,多 点同时着火,随着火区域的扩展,缸内压力和温度升高, 并脱离压缩线。
压力升高率dp/d在实际中往往有两种表示方式, 一种是最大压力升高率(dp/d)max;另一种是平均压 力升高率dp/d ,其定义为
dp/d =(pc-pb)/( c - b)
(6-1)
压力升高率是表征内燃机燃烧等容度和粗暴度的指标。 压力升高率越高,则燃烧等容度越高,这对动力性和经 济性是有益的;但会使燃烧噪声及振动增加,同时也是 氮氧化物增高的重要原因(见后述)。一般汽油机的平
因此,应尽量缩短后燃期,减少后燃所占的百分比。 柴油机燃烧时,空气是过量的,只是混合不匀造成局部缺 氧。因此,加强缸内气体运动,可以加速后燃期的混合气 形成和燃烧速度,而且会使碳烟及不完全燃烧成分加速氧 化。
三.合理的燃烧放热规律
图6-3 上已示出实测的柴油机放热规律。汽油机放 热规律变化不大,对性能的影响也不如柴油机那样多样和 明显,所以一般文献资料中讨论柴油机放热规律居多。
2.明显燃烧期
由B点到C点的期间称为明显燃烧期,在此期间,火 焰由火焰中心传播至整个燃烧室,约90%的燃料被烧掉。 随燃烧的进行,缸内温度和压力很快升高,并达到最高燃
烧压力pmax,一般将pmax作为明显燃烧期的终点。pmax及 压力升高率dp/d是与发动机性能密切相关的两个燃烧特
性参数。
汽油机的最高燃烧压力pmax一般小于5.0MPa。pmax
压力及 dp/d都急剧升高,燃烧放热速率dQB/d 很快达到
最高值。
dp/d的大小对柴油机性能有至关重要的影响,一般 柴油机dp/d =0.2~0.6 MPa/(°) ,直喷式柴油机的较大, 约为dp/d =0.4~0.6 MPa/(°) 。从提高动力性和经济性 的角度,希望dp/d大一些为好,但dp/d过大会使柴油机
p/d )max和pmax与滞燃期
的关系,两者均随滞燃期的 增长而线性增长。以后的章
节中我们将经常讨论dp/d 和pmax的控制问题。
由于在速燃期参与燃烧的主要是在着火落后期内形 成的可燃混合气,因此也称这一时期为“预混合燃烧”阶段。 值得指出的是,这种预混合气体是在极短时间内形成的, 实际是一种非均质预混合气,即第5章中所介绍的油滴群 的燃烧,与汽油机的均质预制混合气燃烧并不完全相同。
1.放热规律三要素
指的是燃烧放热始点(相位)、放热持续时期和放 热率曲线的形状三个要素。
放热规律始点决定了放热率曲线距压缩上止点的位 置,在持续期和放热率形状不变的前提下,也就决定了放 热率中心(指放热率曲线包围的面心)距上止点的位置。 如前所述,这一因素对循环热效率、压力升高率和燃烧最 大压力都有重大影响。
加大,称为真空提前。图6-6 表示了最佳θig在n及负荷变
化时的变化规律。这是因为,在节气门开度不变时,各个 转速的着火落后期均变化不大。但转速上升后,相同落后 期所占的转角将正比增加,于是高转速时的着火落后角显
著加大。为保证最大压力点相位大致不变,必定要加大θi
g角。在转速不变时,随着节气门的减小,进气管真空度
工作粗暴;噪声明显增加;运动零部件受到过大冲击载荷, 寿命缩短;过急的压力升高会导致温度明显升高,使氮氧化
物生成量明显增加。为兼顾柴油机运转平稳性,dp/d不宜 超过0.4 MPa/(°);而为了抑制氮氧化物的生成, dp/d
与汽油机不同的是,柴
油机dp/d 的大小主要取决
于着火落后期内形成的可燃 混合气的多少,而可燃混合 气的生成量要受着火落后期 内喷射燃料量的多少、着火 落后期的长短、燃料的蒸发 混合速度、空气运动、燃烧 室形状和燃料物化特性等多 种因素的影响。图6-4是各种 非增压直喷高速柴油机的(d
一般柴油机的着火落后角θi=8 ° ~12°,着火落后 时间τi=0.7~3ms。与汽油机不同的是,柴油机着火落后
期长短会明显影响滞燃期内喷油量和预制混合气量的多 少,从而影响柴油机的燃烧特性、动力经济性、排改特 性以及噪声振动,必须精确控制。
2.速燃期
由B点开始的压力急剧上升的BC段,称为速燃期,C 点是燃烧放热率变缓的突变点。由于在着火落后期内作好燃 前准备的非均质预混合气多点大面积同时着火,而且是在活 塞靠近上止点时气缸容积较小的情况下发生,因此气体温度、
图6-5是任一工况的θig或θinj角对
动力、经济性指标Pe、be的影响曲 线。最佳角度条件下,能获得最大 Pe和最小be值。此曲线叫做点火提 前角或喷油提前角的调节特性线。
1) 汽油机的点火提前规律
对于汽油机,最佳θig角将随转速的上升而加大,称
为转速提前;而又随进气管真空度的上升(负荷下降)而
一般i约为10°-20°。形成火核的时间往往在B点之 前,但在实际中难以测定,因此一般都以B点作为确定着 火落后期的标志。也有的资料中以燃烧放热量的1%-10% 内的某一数值着火落后期的标 准,可见它是一个工程概 念。
若能保证汽油机正常工作,着火落后期的长短对汽 油机性能影响不大,这一点与柴油机不同,因为汽油机性 能主要取决于何时着火而不是何时点火。
高,一般会使循环热效率和循环功增加,但机械负荷及热
负荷也会随之增加。pmax出现的时间也非常重要,一般希 望pmax出现在上止点后10 ° ~15 °。 出现过早,则混合气
着火必然过早,引起压缩过程负功增加;过晚则预膨比上 升,等容度下降,循环热效率下降,同时散热损失也上升,
如图6-2所示。如前所述,pmax出现的位置可用点火提前 角θ 来控制。
第六章 燃烧过程及混合气形成
6.1 实际发动机的燃烧过程及放热规律
燃烧过程对发动机动力性、经济性和排放特 性等主要特性有重大影响。
本节基于示功图和燃烧放热规律,对汽油机 和柴油机的燃烧过程进行介绍和分析,并对两者 的燃烧过程特征进行对比。
一.汽油机燃烧过程
一般将汽油机燃烧过程分为三个阶段:着火落后期、 明显燃烧期、后燃期。
均压力升高率为dp/d =0.2~0.4MPa/(°),也有资料 上推荐最佳范围为dp/d =0.17~0.25MPa/ (°) ,这
时综合性能比较好。
3.后燃期
由C点到D点的期间称为后燃期。在C点时,火焰前 锋面已传播到燃烧室壁面,整个燃烧室被火焰充满。由于 90%左右的燃烧放热已完成,因而继续燃烧的是火焰前锋 面扫过后未完全燃烧的燃料以及壁面及其附近的未燃混合 气;另外,高温裂解产生的CO,HO等成分,在膨胀过程 中随温度下降又部分化合而放出热量。由于燃烧放热速率 下降,加之气体膨胀作功,使缸内压力很快下降。
柴油机的最高燃烧压力pmax一般为5-9MPa,增压 柴油机有可能大于10MPa。同汽油机一样,一般希望pmax
出现在上止点后10°~15 ° ,这样可以获得较好的动力性 和经济性。但与汽油机不同的是,C点的位置不仅取决于
喷油提前角θfj,也取决于着火落后期和速燃期的长短。
缓燃期结束时,累积放热率可达80%左右,燃气温 度可达1700-2000℃。
为保证高的循环热效率和循环功,应使后燃期尽可 能短。一般要求整个燃烧持续期在40-60ºCA。
二.柴油机燃烧
过程
柴油机的燃烧 过程要比汽油机复杂 的多,往往要同时借 助于实测的示功图和 燃烧放热率曲线进行 分析。
如图6-3所示, 柴油机的燃烧过程可 分为4个时期,即着 火落后期(滞燃期)、 速燃期、缓燃期和后 燃期(分别对应图中 1、2、3、4阶段)。
与汽油机相同,实际着火点应该在B点之前,用燃 烧放热速率曲线或高速摄影等方法可以更精确地判定着 火点。如图6-3所示,由于柴油汽化吸热,造成在着火 前dQB/d曲线出现负值,一旦开始燃烧放热,dQB/d 很快由负变正。因此可以取dQB/d明显上升前第1个极 小值点,或dQB/d=0点作为着火点,这在曲线上比示功 图的B点容易判定。
随着大量在着火落后期内生成的可燃混合气燃烧殆 尽,燃烧放热速率暂时降至较低水平,出现图6-3中曲线 上的谷点C,以此作为速燃期和预混合燃烧阶段的结束点 要比示功图上的C点容易判断。速燃期中,累积放热率可 达20-30%。
3.缓燃期
由C点到出现最高燃烧压力的D点,称为缓燃期。在 此期间,参与燃烧的是速燃期内未燃烧的燃料和缓燃期内 喷入的燃料。特别是后续喷入燃料,边蒸发混合,边以高 温单阶段方式着火参与燃烧。由于汽缸内温度的急剧升高, 蒸发混合速度明显加快,加之后续喷油速率的上升,使放 热速率dQB/d 再次加速,出现柴油机燃烧特有的“双峰” 现象。这一阶段燃烧放热速率的大小取决于油气相互扩散 混合速度,因此也称为扩散燃烧阶段或可控燃烧阶段。可 以说,dQB/d 曲线的双峰,第1个峰对应预混合燃烧阶 段,而第2个峰则对应扩散燃烧阶段。但小负荷时由于喷 油量少并在着火落后期内就停止,往往并不出现“双峰”现 象。
Байду номын сангаас
放热持续时期的长短,一定程度上是理论循环等压
放热预膨胀比ρ值大小的反映。显然这是决定循环热效率
的一个极为关键的因素。对有害排放量也有较大的影响。