勾股定理经典题型
(完整)初中人教版数学勾股定理经典题型分析

勾股定理经典题型分析类型一:勾股定理的直接用法1、在 Rt △ ABC 中,∠ C=90°(1)已知 a=6, c=10,求 b , (2)已知 a=40, b=9,求 c ; (3)已知 c=25, b=15 ,求 a. 思路点拨 : 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
, ,再由勾股定理计算出 AD 、DC 的长,进而求出 BC 的长 . 解析 :作 于 D ,则因,∴ ( 的两个锐角互余)∴ (在 中,如果一个锐角等于 直角边等于斜边的一半) . 理,在中,.理,在中,解析: (1) 在△ ABC 中,∠ C=90 (2) 在△ ABC 中,∠ C=90°,(3) 在△ ABC 中,∠ C=90°,, a=6, c=10,b=a=40,b=9,c= c=25, b=15,a=举一反三【变式】 :如图∠B=∠ACD=90 【答案】∵∠ ACD =90°AD =13, CD=12- CD 2 122∴AC=5ABC=90 °且 BC=3 理可得 BC 2=52-32=16∴ AB= 4 ∴ AB 的长是 4., AD =13,CD =12, BC=3,则 AB 的长是多少∴ AC 2 =AD 2=132 -=25 又∵∠ ∴由勾股定 AB2=AC 2 -类型二:勾股定理的构造应用2、如图,已知:在中, , , . 求:BC 的长 .于 D ,则有 那么它所对的 根据勾股定根据勾股定思路点拨 :由条件角的直角三角形,为此作举一反三 【变式 1】如图,已知: , , 于 P. 求证:解析:连结 BM ,根据勾股定理,在 中,.而在 中,则根据勾股定理有.∴又∵ (已知), ∴. 在 中,根据勾股定理有,∴.AB=4 ,CD=2 。
求:四边形 ABCD 的面积。
类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示, 在一次夏令营活动中, 小明从营地 A 点出发, 沿北偏东 方向走了 到达 B 点,然后再沿北偏西 30°方向走了 500m 到达 目的地 C 点。
勾股定理经典题型

勾股定理已知两边求第三边例1.在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_____________.例2.已知直角三角形的两边长为3、2,则另一条边长是________________.例3.在一个直角三角形中,若斜边长为5cm,直角边的长为3cm,则另一条直角边的长为 .例4. 一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?利用列方程求线段的长例5. 把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还要准备一根长为____的铁丝才能把三角形做好.例6. 如图,将一个边长分别为4、8的长方形纸片ABCD折叠,使C 点与A 点重合,则EB 的长是 .例7. 如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收 购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?例8. 如图,某学校(A 点)与公路(直线L )的距离为300米,又与公路车站(D 点)的距离为500米,现要在公路上 建一个小商店(C 点),使之与该校A 及车站D 的距离 相等,求商店与车站之间的距离.综合其它考点的应用 例9. 如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm例10. 在直角ΔABC 中,斜边长为2,周长为2+6,求ΔABC 的面积.FED C B AA D EB CA B例11. 已知:如图,△ABC 中,AB >AC ,AD 是BC 边上的高.求证:AB 2-AC 2=BC(BD-DC).例12. 如图∠B=90º,AB =16cm ,BC =12cm ,AD =21cm,CD=29cm求四边形ABCD 的面积.例13. 小明想测量学校旗杆的高度,他采用如下的方法:先将旗杆上的绳子接长一些,让它垂到地面还多1下端拉直,使它刚好接触地面,测得绳下端离旗杆底部5你能帮它计算一下旗杆的高度.判别一个三角形是否是直角三角形例14. 在△ABC 中,2:1:1::=c b a ,那么△ABC 是 。
勾股定理经典题型(后附答案)

第 1 页 共 5 页勾股定理经典题型(后附答案)一、经典例题精讲题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长. ⑵已知17AB =,15AC =,求BC 的长. 题型二:利用勾股定理测量长度例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.题型三:勾股定理和逆定理并用——例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41=那么△DEF 是直角三角形吗?为什么?题型四:利用勾股定理求线段长度——例题4 如图4,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.题型五:利用勾股定理逆定理判断垂直——例题5 如图5,王师傅想要检测桌子的表面AD 边是否垂直与AB 边和CD 边,他测得AD=80cm ,AB=60cm ,BD=100c m ,AD 边与AB 边垂直吗?怎样去验证AD 边与CD 边是否垂直?例题6 有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?第 2 页 共 5 页题型六:旋转问题:例题7 如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,若AP=3,求PP ′的长。
变式1: 如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长.变式2: 如图,△ABC 为等腰直角三角形,∠BAC=90°,E 、F 是BC 上的点,且∠EAF=45°,试探究222BE CF EF 、、间的关系,并说明理由.题型七:关于翻折问题例题8 如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.变式:如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿直线AD 翻折,点C 落在点C ’的位置,BC=4,求BC ’的长.题型八:关于勾股定理在实际中的应用:例题9 如图,公路MN 和公路PQ 在P点处交汇,点A处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假 使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,第 3 页共5页请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?题型九:关于最短性问题例题10 如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处,它发现在自己的正上方油罐 上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一 条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少 路程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)变式:如图为一棱长为3cm 的正方体,把 所有面都分为9个小正方形,其边长都是1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下地面A 点沿表面爬行至右侧面 的B 点,最少要花几秒钟?三、课后训练: 一、填空题1.如图(1),在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米. 2.种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出 4.6㎝,问吸管要做 ㎝。
勾股定理经典题型讲解

我国古代数学著作《九章算术》中的一个问题,原文是:今有 方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,水 深、葭长各几何?请用学过的数学知识回答这个问题.
译:有一个水池,水面是一个边 长为10尺的正方形,在水池正中 央有一根芦苇,它高出水面一尺. 如果把这根芦苇拉向水池一边的 中点,它的顶端恰好到达池边的 水面.这个水池的深度与这根芦 苇的长度分别是多少?
是( C ) 3 4 π2
A.3 1π B.3 2 C. 2
D.3 1 π2
解析:把圆柱侧面展开,展开图如图所示,点A、C的最短距离
为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD
为底面半圆弧长,AD=1.5π,所以AC= 32 (3π )2 3 4 π2 ,
2
2
故选:C.
在Rt△ABC中, ∠C=90°. (1)若a:b=1:2 ,c=5,求a;(2)若b=15,∠A=30°,求a,c.
解:(1)设a=x,b=2x,根据勾股定理建立方程得
x2+(2x)2=52, 解得
x (5 舍去)
(2)
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
(结果取整数).
解: AB BC2 AC2
602 202 40 2
≈57(m).
四.勾股定理解决线段移动问题
如图,一架2.6米长的梯子AB 斜靠在一竖直的墙 AO上,这时AO 为2.4米. (1)求梯子的底端B距墙角O多少米? (2)如果梯子的顶端A沿墙下滑0.5 米,那么梯子底端B也外移0.5米吗?
勾股定理经典题型讲解
一.利用勾股定理求直角三角形的边长
如图,在Rt△ABC中, ∠C=90°.
勾股定理题型(很全面)

典型例题:一、利用勾股定理解决实际问题例题:水中芦苇梯子滑动1、有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?2、如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?3、如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我反走私A艇发现正东方向有一走私艇C以每小时6.4海里的速度偷偷向我领海开来,便立即通知正在MN在线巡逻的我国反走私艇B密切注意,反走私A艇通知反走私艇B时,A和C两艇的距离是20海里,A、B两艇的距离是12海里,反走私艇B测得距离C是16海里,若走私艇C的速度不变,最早会在什么时间进入我国领海?二、与勾股定理有关的图形问题1.已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是.2.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是____ _____.3.在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______ ___.4.如图,△ABC中,∠C=90°,(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S1+S2与S3的关系;(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S1+S2与S3的关系;(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S1+S2与S3的关系.图①图②图③5.如图,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…,记正方形ABCD的边长a1=1,依上述方法所作的正方形的边长依次为a1,a2,a3,…,an,根据上述规律,则第n个正方形的边长an=___ _____记正方形AB-CD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,……,S n(n为正整数),那么S n=____ ____.6、如图,Rt△ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为.ABCDEFG1FE DAB CA B C D EG F F 三、关于翻折问题1、如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG.2、如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F. (1)求证:△FAC 是等腰三角形;(2)若AB=4,BC=6,求△FAC 的周长和面积.3、如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知cm CE 6=,cm AB 16=,求BF 的长.4、如图,一张矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝。
勾股定理典型题型

例1、如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△
ACP'重合,若AP=3求PP的长。c
变式1:如图,P是等边三角形ABC内一点,PA=2,PB=2「3,PC=4,求厶ABC的边长.- 分析:利用旋转变换,将厶BPA绕点B逆时针选择60°,将三条线段集中到同一个三「
x2+1.52=(x+0.5)2
解之得x=2.故水深为2米.
题型三:勾股定理和逆定理并用一一
例题3如图3,正方形ABCD中,E是BC边上的中点,F是AB上一点,且
FB1AB那么ADEF是直角三角形吗?为什么?
4
解析:这道题把很多条件都隐藏了,乍一看有点摸不着头脑。仔细读题会意可以发
现规律,没有任何条件,我们也可以开创条件,由FB丄AB可以设AB=a,那
角形ቤተ መጻሕፍቲ ባይዱ,'
根据它们的数量关系,由勾股定理可知这是一个直角三角形•
变式2、如图,△AB(为等腰直角三角形,/BAC=90 ,E、F是BC上的点,且/EAF=45,
A
试探究BE2、CF2、EF2间的关系,并说明理由.z/k
题型七:关于翻折问题/\\
例1、如图,矩形纸片ABCD的边AB=10cm,BC=6cm, E为BC上一点,将矩形纟—琴
在厶DEF中,EF+ DE"=5a2+20a2=25a2=DF
•••△DEF是直角三角形,且/DEF=90 .
注:本题利用了四次勾股定理,是掌握勾股定理的必练习题。
题型四:利用勾股定理求线段长度一一
例题4如图4,已知长方形ABC冲AB=8cm,BC=10cn在边CD上取一点E,将厶ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。合理设元是关键。
初中数学期末复习勾股定理重点题型分类+解析

初中数学期末复习勾股定理重点题型分类+解析初中数学期末复习勾股定理重点题型分类+解析!_梯子_正方形_的底部题型一:利用勾股定理进行线段计算如果单独考查勾股定理,通常是给我们送分的,非常简单,我们只有熟记勾股定理的公式、常见的勾股数,以及常见的特殊rt△的三边比例,即可以轻松解出题目。
【例1】一驾2.5米长的梯子靠在一座建筑物上,梯子的底部离建筑物0.7米,如果梯子的顶部滑下0.4米,梯子的底部向外滑出多远(其中梯子从ab位置滑到cd位置)?【分析】本题是常见的梯子滑动问题,是勾股定理结合实际问题产生的题型。
英对实际问题,我们需要实际问题抽象成简单的几何图形,再利用勾股定理解答。
题目要求梯子的底部滑出多远,就要求梯子原先顶部的高度ao,且三角形aob,三角形cod均为直角三角形.可以运用勾股定理求解.解:在直角三角形aob中,根据勾股定理ab 2=ao 2+ob 2,可以求得:oa= =2.4米,现梯子的顶部滑下0.4米,即oc=2.4-0.4=2米,且cd=ab=2.5米,所以在直角三角形cod中,即do= =1.5米,所以梯子的底部向外滑出的距离为1.5米-0.7米=0.8米.答:梯子的底部向外滑出的距离为0.8米.题型二:勾股定理的证明过程勾股定理的证明过程同样是勾股定理的一个常考点。
因此我们同样要熟知勾股定的常见证明过程。
这个需要同学们查看课本,回忆整个证明过程。
下面给出常见的考题类型。
【例2】《勾股圆方图》是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图(1)).设每个直角三角形中较短直角边为a,较长直角边为b,斜边为c。
(1)利用图(1)面积的不同表示方法验证勾股定理.(2)实际上还有很多代数恒等式也可用这种方法说明其正确性.试写出图(2)所表示的代数恒等式:();(3)如果图(1)大正方形的面积是13,小正方形的面积是1,求(a+b)2的值.【分析】(1)如图(1),根据四个全等的直角三角形的面积+阴影部分小正方形的面积=大正方形的面积,代入数值,即可证明;(2)5个矩形,长宽分别为x,y;两个边长分别为y的正方形和两个边长为x的正方形,可以看成一个长宽为x+2y,2x+y的矩形;(3)利用(1)的结论进行解答.解:(1)图(1)中的大正方形的面积可以表示为c 2,也可表示为(b-a)2+4× ab∴(b-a)2+4× ab=c 2化简得b 2-2ab+b 2+2ab=c 2∴当∠c=90°时,a 2+b 2=c 2;(2)(x+y)(x+2y)=x 2+3xy+2y 2(3)依题意得 a2+ b2= c2=13 ( b− a) 2=1 则2ab=12∴(a+b) 2=a 2+b 2+2ab=13+12=25,即(a+b) 2=25.中考数学答题要点归纳,考前看这一篇就够了!中考数学复习9种题型答题模板+易错题练习,含答案!初中数学7-9年级,21个逢考必出的知识点,初中三年都适用!初中数学7-9年级,必考应用题分类+数量关系大全!初中数学复习,整式运算的几何背景与应用,常考题型解析!。
勾股定理典型分类练习题

勾股定理典型分类练习题题型一:直接考查勾股定理例1.在ABCC∠=︒.∆中,90⑴已知6BC=.求AB的长AC=,8⑵已知17AC=,求BC的长AB=,15变式1:已知,△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明△ABC是等腰三角形。
变式2:已知△ABC的三边a、b、c,且a+b=17,ab=60,c=13, △ABC是否是直角三角形?你能说明理由吗?题型二:利用勾股定理测量长度例1如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?例2如图,水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.题型三:勾股定理和逆定理并用例3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41那么 △DEF 是直角三角形吗?为什么题型四:旋转中的勾股定理的运用:例4、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,若AP=3,求PP ′的长。
变式:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长.分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形.题型五:翻折问题例5:如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿 AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.变式:如图,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 好落在BC 边上的点F ,求CE 的长.PAPCBCA BD E 1015题型6:勾股定理在实际中的应用:例6、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到 公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉 机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响, 已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?变式:如图,铁路上A 、B 两点相距25km, C 、D 为两村庄,若DA=10km,CB=15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.求E 应建在距A 多远处?关于最短性问题例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处, 它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不 引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行 突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路 程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)选择题1.在三边分别为下列长度的三角形中,不是直角三角形的是( ) A.5,12,13 B.4,5,7 C.2,3,5 D.1,2,32.在Rt △ABC 中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是( )A.5、4、3B.13、12、5C.10、8、6D.26、24、103.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a 、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( ) A 、5组; B 、4组; C 、3组; D 、2组 4.下列结论错误的是( )A 、三个角度之比为1∶2∶3的三角形是直角三角形;B 、三条边长之比为3∶4∶5的三角形是直角三角形;C 、三条边长之比为8∶16∶17的三角形是直角三角形;D 、三个角度之比为1∶1∶2的三角形是直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理
已知两边求第三边
例1.
在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长
勾股定理及其证明
1.勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方.若用a 、b 为表示两条直角边,c 表示斜边,则
222
a b c +=,如图1-1-1,其中
222222,,b c a a c b b a c -=-=+=
2.勾股定理的证明:勾股定理是通过面积拼图法来证明,其方法较多. 勾股定理的逆定理
1.在三角形中,若两边的平方和等于第三边的平方,则这个三角形为直角三角形,即⊿ABC 中,若
222a b c +=,则∠ABC 为直角三角形,∠C=90o 这是判
定一个三角形是直角三角形的方法.
为_____________.
例2.已知直角三角形的两边长为3、2,则另一条边长是________________.
例3.在一个直角三角形中,若斜边长为5cm,直角边的长为3cm,则另一条直角边的长为 .
例4.一种盛饮料的圆柱形杯,测得内部底面半径为㎝,
高为12㎝,吸管放进杯里,杯口外面至少要露出㎝,问吸
管要做多长
利用列方程求线段的长
例5.把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还
要准备一根长为____的铁丝才能把三角
形做好.
F
E D C
B A
例6.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C点与A点重合,则EB的长是.
例7.如图,铁路上A,B两点相距25km,C,D为两村
庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,
CB=10km,现在要在铁路AB上建一个土特产品收
购站E,使得C,D两村到E站的距离相等,则E
站应建在离A站多少km处
例8.如图,某学校(A点)与公路(直线L)的距
离为300米,
又与公路车站(D点)的距离为500米,现要在公路上
建一个小商店(C点),使之与该校A及车站D的距离
相等,求商店与车站之间的距离.
综合其它考点的应用
例9. 如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外
壁爬行,要从A 点爬到B 点,则最少要爬行 cm
例10. 在直角ΔABC 中,斜边长为2,周长为2+6,求ΔABC 的面积.
例11. 已知:如图,△ABC中,AB >AC ,AD 是BC 边上的高.
求证:AB 2-AC 2=BC(BD-DC).
例12. 如图∠B=90º,AB =16cm ,BC =12cm ,AD =21cm,CD=29cm
求四边形ABCD 的面积.
A
B
例13. 小明想测量学校旗杆的高度,他采用如下的方法:先将旗
杆上的绳子接长一些,1米,然后将绳子
下端拉直,使它刚好接触地面,测得绳下端离旗杆底部5米, 你能帮它计算一下旗杆的高度.
判别一个三角形是否是直角三角形
例14. 在△ABC 中,2:1:1::=c b a ,那么△ABC 是 。
例15. 如图,四边形ABCD 中,F 为DC 的中点,E 为BC 上一点,
且BC CE 4
1=.你能说明∠AFE 是直角吗
开放型试题
例16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方
形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_______.
l
3
2
1S4
S3
S2
S1
例17.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3 .
(1) 如图②,分别以直角三角形ABC三边为边向外作三个正方形,
其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关
系(不必证明)
(2) 如图③,分别以直角三角形ABC三边为边向外作三个正三角
形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间
的关系并加以证明;
(3) 若分别以直角三角形ABC三边为边向外作三个正多边形,其
面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系.
1. 在△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长是 。
2. 分别以下列四组数为一个三角形的边长:①6,8,10;②5
1
,41,31;
③8,15,17;④4,5,6其中一定能构成直角三角形的有 。
3. 直角三角形中,以直角边为边长的两个正方形的面积为72cm ,
82cm ,则以斜边为边长的正方形的面积为_________2cm .
4. 已知:c b a ,,为△ABC 的三边,且满足442222b a c b c a -=-,试判断△ABC 的形状.
5. 如图,一个梯子AB 长2.5 米,顶端A 靠在墙AC 上,这时
梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,
测得BD 长为0.5米,求梯子顶端A 下落了多少米
6. 如图,ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋
转后,能与'
ACP
∆重合,如果AP=3,那么.
______
'=
PP
7. 细心观察图,认真分析各式,然后解答问题:
()2
1
12=
+
2
1
1
=
S
()3
1
22=
+
2
2
2
=
S
()4
1
32=
+
2
3
3
=
S
(1)用含有n(n是正整数)的等式表示上述变化规律;
(2)推算出OA10的长;
(3)求出S12 + S22 + S32 + … + S102的值。
8.如图,一艘货轮向正北方向航行,在点A处测得灯塔M
在北偏西300,
1
S1
S2
S3
S4
S5
...
O A1
A2
A3
A4
A5
A6
货轮以每小时20海里的速度航行,1小时后到达B处,测得灯塔M在北
偏西450,问该货轮到达灯塔正东方向D处时,货轮与灯塔M的距离是
多少
9. △ABC中,∠A=300,∠B=450,BC=4,求AB的长。
10. 图示是一种“羊头”形图案,其作法是,从正方形1开始,
以它的一边为斜边,向外作等腰直角三角形,然后再以其直角
边为边,分别向外作正方形2,和2′,…,依次类推,若正
方形7的边长为1cm,则正方形1的边长为__________cm.。