化工原理 流体流动 第一节 流体静力学基本方程讲解

合集下载

2 化工原理_刘雪暖_第1章流体流动流体静力学

2  化工原理_刘雪暖_第1章流体流动流体静力学

⒉压力的单位及换算:
1atm=1.013105 Pa=10.33 mH2O=760mmHg 1at=9.81104Pa=10mH2O=735.6mmHg=1kgf/cm2 1atm=1.033at 1bar=1105Pa 1kgf/m2=1mmH2O
1.2 流体静力学 ⒊压力的表示方法:
以绝对真空(0atm)为基准:绝对压力,真实压力 以当地大气压为基准:表压或真空度 绝压>大气压:压力表→表压力 表压=绝压-大气压力 绝压<大气压:真空表→真空度 真空度=大气压力-绝压 注:①大气压力应从当地气压计上读得; ②对表压和真空度应予以注明。
整理后得:
P P1 P2 ( g ) gR gR
(ρ>>ρg)
1.2 流体静力学 ⒊斜管压差计(Inclined manometer)
采用倾斜 U 型管可在测量较小的压差 p 时, 得到较大的读数 R1 值。
压差计算式:
p 1 p 2 R 1 sin 0 g
1.2 流体静力学
(二)液面测量
• 解:
pa pb p a p o gh
h
p b p o o gR
2 . 72 m
o R

13600 1250 0 . 2
1.2 流体静力学
(三)液封高度的计算
如各种气液分离器的后面、 气体洗涤塔底以及气柜等, 为了防止气体泄漏和安全等 目的,都要采用液封(或称 水封)。
根据流体静力学基本方程式,可得:
P A P1 gZ 1
PB P2 gZ 2 0 gR
P1 gZ 1 P2 gZ
2
0 gR

化工原理-第一节流体静止的基本方程

化工原理-第一节流体静止的基本方程

孔板流量计泵水封填料塔水池把流体视为由无数个流体微团(或流体质所组成,这些流体微团紧密接触,彼此没有间隙。

这就是连续介质模型。

流体微团(或流体质点):宏观上足够小,以致于可以将其看成一个几何上没有维度的点;同时微观上足够大,它里面包含着许许多多的分子,其行为已经表现出大量分子的统计学性质。

一.连续介质模型§1.1 概述第一节流体静力学基本方程式静止:流体在重力和压力作用下达到平衡。

静止流体的规律:实际上是流体在重力作用下内部压力的变化规律。

一、流体的密度1.定义:单位体积流体所具有的质量。

ρ= m / V [ kg / m 3]获得方法:(1)查物性数据手册(附录2,3,5,6)(2)公式计算:2、影响ρ的主要因素:m pMV RTρ==()p t f ,=ρ液体:()t f =ρ——不可压缩流体气体:()p t f ,=ρ——可压缩流体3. 气体密度的计算压力不高时气体的密度可按理想气体方程进行计算:,wn wB wA x x x 、、、⋯总其中m m x iwi =假设混合后总体积不变,4、混合物的密度1)液体混合物的密度ρm (原则:混合前后总体积不变)取1kg 液体,令液体混合物中各组分的质量分率分别为:iwi m x kg m == 1时,当总mnwnwBwAm x x x V ρρρρ总总=+++=21nwnwBwAmx x x ρρρρ+++=∴211——液体混合物密度计算式2)气体混合物的密度(原则:混合前后总质量不变)取1m 3 的气体为基准,令各组分的体积分率为:x vA,x vB ,…,x Vn , 其中:混合物中各组分的质量为:Vn n VB VA x x x ρρρ,......,,21知,由Vm=ρiVi V x =当V 总=1m 3时,若混合前后, 气体的质量不变,总总V x x x m m n n ρρρρ=+++=.......2211当V 总=1m 3时,nn m x x x ρρρρ+++=......2211——气体混合物密度计算式ivi V x V =总在数值上:ρν1=1)比容:单位质量的流体所具有的体积,用υ表示,单位为m 3/kg 。

《化工原理》流体静力学基本方程

《化工原理》流体静力学基本方程
在静止流体中,从各方向作用于某一点的压力大小均相等。
压力的单位: 帕斯卡, Pa, N/m2 (法定单位); 标准大气压, atm; 某流体在柱高度; bar(巴)或kgf/cm2等。
换算关系:
1标准大气压(atm)=101300Pa =10330kgf/m2 =1.033kgf/cm2(bar, 巴) =10.33mH2O =760mmHg
4
p h Hg g
V
若a c 则 a c
bd
ba d c
p
p
h Hg
g
p
V
d 2 (h 0.001)
4
d 2 (h 0.001)
4
p
Hg g
4
d 2 (h
0.001)
V d 2 (h 0.001)
h
4
p
104731d 2 (h 0.001)
V d 2 (h 0.001)
p0
在垂直方向上作用于液柱的力有:
p1
下底面所受之向上总压力为p2dA,单位N;
G
上底面所受之向下总压力为p1dA,单位N;
整个液柱之重力G=ρg(Z1-Z2)dA,单位N。
z1
p2
z2
在静止液体中,上述三力之合力应为零,即:
p2dA-p1dA-ρgdA(Z1-Z2)=0
p2=p1+ρg(Z1-Z2)
若:V 5.0 cm3,d 0.16 cm,h 3.5 cm ,求压强p为多少?
解:如图1-16所示,水平放置时,A管中的空气的物质量为:
n pV RT
p即被测系统的压强。
垂直放置时,A管的空气量不变,此时之:
p
p' d 2 (h 0.001)

化工原理第一章 流体流动

化工原理第一章 流体流动
两根不同的管中,当流体流动的Re相 同时,只要流体的边界几何条件相 似,则流体流动状态也相同,这称为 流体流动的相似原理。
例1-10 20℃的水在内径为 50mm的管内流动,流速为 2m/s,是判断管内流体流动的 型态。
三.流体在圆管内的速度分布
(a)层流
(b)湍流
u umax / 2 u 0.82umax
hf
le
d
u2 2
三.管内流体流动的总摩擦阻力损失计算 总摩擦阻力损失 =直管摩擦阻力损失+局部摩擦阻力损失
hf hf 直 hf局
l u2 ( le u2 z u2 )
d2 d 2
2
[
(
l
d
l
e
)
z
]
u2 2
管内流体流动的总摩擦阻力损失计算 直管管长 管件阀件当量长度法
hf
l
制氮气的流量使观察瓶内产生少许气泡。 已知油品的密度为850 kg/m3。并铡得水 银压强计的读数R为150mm,同贮槽内的 液位 h等于多少?
(三)确定液封高度 h p ρg
H 2O
气体 压力 p(表压)
为了安全, 实际安装
水 的管子插入 液面的深度
h 比上式略低
第二节 流体流动中的基本方程式
截面突然变化的局部摩擦损失
突然扩大
突然缩小
A1 / A2 0
z (1 A1 )2
A2
z 0.5(1 A2 )2
A1
当流体从管路流入截面较 大的容器或气体从管路排 到大气中时z1.0
当流体从容器进入管的入 口,是自很大截面突然缩 小到很小的截面z=0.5
局部阻力系数法
hf
z
u2 2

化工原理--流体流动--第一节-流体静力学基本方程

化工原理--流体流动--第一节-流体静力学基本方程

① 液体混合物的密度ρm
mi 其中xwi m总 当m总 1 kg时,xwi mi m总 x x x 假设混合后总体积不变,V总 wA wB wn 1 2 n m
取1kg液体,令液体混合物中各组分的质量分率分别为:
xwA、xwB、 、xwn ,

1
m

2) 倾斜U型管压差计
假设垂直方向上的高度为Rm,读 数为R1,与水平倾斜角度α
R1 sin Rm
Rm R1 sin
2018/8/3
13
3) 微差压差计
U型管两侧管的顶端增设两个小扩大室,其内径与U型管的内径之比大于10, 装入两种密度接近且互不相溶的指示液A和C,且指示液C与被测流体B亦不互溶。 根据流体静力学方程可以导出:
2018/8/3 2
一、流体的密度
1、密度的定义
单位体积的流体所具有的质量,ρ; SI单位kg/m3。
m V 2、影响密度的主要因素
液体:
f T ——不可压缩性流体
f T , p
气体:
3、密度的计算
(1) 理想气体
f T , p ——可压缩性流体
0
1、压强的定义
流体垂直作用于单位面积上的压力,称为流体的静压强,简称压强。
SI制单位:N/m2,即Pa。 其它常用单位有: atm(标准大气压)、工程大气压kgf/cm2、bar;流体柱高度(mmH2O, mmHg等)。 换算关系为: 1atm 1.033kgf / cm 2 760mmHg
p1 p2 A C gR
——微差压差计两点间压差计算公式
2018/8/3
14
例:用3种压差计测量气体的微小压差 P 100Pa 试问:(1)用普通压差计,以苯为指示液,其读数R为多少? (2)用倾斜U型管压差计,θ=30°,指示液为苯,其读 数R’为多少? (3)若用微差压差计,其中加入苯和水两种指示液,扩大室截面积远远 大于U型管截面积,此时读数R〃为多少?R〃为R的多少倍? 3 3 水的密度 998 kg / m c 879kg / m 已知:苯的密度 A 计算时可忽略气体密度的影响。 解:(1)普通管U型管压差计 100 P R 0.0116m C g 879 9.807 (2)倾斜U型管压差计 (3)微差压差计 100 P " 0.0857m R A C g 998 879 9.807 R" 0.0857 故: 7.39 R 0 . 0116 2018/8/3

化工原理第一章流体力学基础

化工原理第一章流体力学基础

第一章 流体力学基础
m GA uA
17/37
1.3.1 基本概念
三、粘性——牛顿粘性定律
y x
v
内部存在内摩擦力或粘滞力
v=0
内摩擦力产生的原 因还可以从动量传 递角度加以理解:
v
单位面积上的内摩擦力,N m2
dv x
dy
动力粘度 简称粘度
速度梯度
----------------牛顿粘性定律
(2)双液柱压差计
p1
1略小于2
z1
p1 p2 2 1 gR
p1
R
p2
R
p2
1
z1
R 2
0
倾斜式压差计
浙江大学本科生课程 化工原理
第一章 流体力学基础
读数放大
14/14
幻灯片2目录
1.3 流体流动的基本方程 1.3.1 基本概念 1.3.2 质量衡算方程 1.3.3 运动方程 一、作用在流体上的力 二、运动方程 三、N-S方程 四、欧拉方程 五、不可压缩流体稳定层流时的N-S 方程若干解
v x v y vz 0
t x
y
z
t
vx
x
vy
y
vz
z
v x x
v y y
v z z
0
D
Dt
v x x
v y y
v z z
0
-------连续性方程微分式
若流体不可压缩,则D/Dt=0
v x v y v z 0 x y z
浙江大学本科生课程 化工原理
第一章 流体力学基础
dy
N m2 ms
Ns m2
Pa s
m
1Pa s 10P 1000cP

化工原理-流体静力学方程

化工原理-流体静力学方程
pa p1 Bg(m R)
pa p2 Bg Z m AgR 于是 p1 Bg(m R) p2 Bg Z m AgR
18
一、压强与压强差的测量
上式化简,得
p1 p2 (A B )gR BgZ

Z 0
则 p1 p2 (A B )gR
若U管的一端与被测流体连接,另一端与大 气相通,此时读数反映的是被测流体的表压强。
不同基准压力之间的换算 表压力 = 绝对压力-大气压力 真空度 = 大气压力-绝对压力 真空度 = -表压力
5
第1章 流体流动
1.2 流体静力学基本方程式 1.2.1 静止流体的压力 1.2.2 流体静力学基本方程式
6
流体静力学方程
微元立方流体
边长:dx、dy、dz 密度:ρ
图1-6 微元流体的静力平衡
例1-7 附 图
25
动画16
三、液封高度的计算
设备内操作条件不同,采用液封的目的也就 不同。流体静力学原理可用于确定设备的液封 高度。具体见[例1-8]、[例1-9]。
26
三、液封高度的计算
1-与真空泵相通的不凝性气体出口 2-冷水进口 3-水蒸气进口 4-气压管 5-液封槽
例1-9 附图
27
练习题目
ΔP,在此情况下,单位面积上所受的压力,称
为压力强度,简称压强,俗称压力,其表达式

p P A
ห้องสมุดไป่ตู้
p lim P A0 A
4
静止流体的压力
压力的单位 在SI单位制中,压力单位是N/m2或Pa。 其 他 单 位 还 有 : 1atm = 101300 N/m2 =
101.3kPa = 1.033kgf/cm2 = 10.33mH2O = 760mmHg

化工原理第一章 流体流动

化工原理第一章 流体流动

§1.3 流体流动的基本方程
质量守恒 三大守恒定律 动量守恒 能量守恒
§1.3.1 基本概念
一.稳态流动与非稳态流动 流动参数都不随时间而变化,就称这种流动为稳态流 动。否则就称为非稳态流动。 本课程介绍的均为稳态流动。
§1.3.1 基本概念
二、流速和流量
kg s 质量流量,用WS表示, 流量 3 体积流量,用 V 表示, m s S
=0 的流体
位能 J/kg
动能 静压能 J/kg J/kg
流体出 2 2
实际流体流动时:
2 2 u1 p1 u2 p gz1 we gz2 2 wf 2 2
摩擦损失 J/kg 永远为正
流体入 ------机械能衡算方程(柏努利方程) 1
z2
有效轴功率J/kg
z1 1
二、 液体的密度
液体的密度基本上不随压强而变化,随温度略有改变。 获得方法:(1)纯液体查物性数据手册
(2)液体混合物用公式计算:
液体混合物:
1
m

xwA
A

xwB
B

xwn
n
三、气体的密度
气体是可压缩流体,其值随温度和压强而变,因此 必须标明其状态。当温度不太低,压强不太高,可当作理
想气体处理。
理想气体密度获得方法: (1)查物性数据手册 (2)公式计算: 或
注:下标0表示标准状态。
对于混合气体,也可用平均摩尔质量Mm代替M。
混合气体的密度,在忽略混合前后质量变化条件下, 可用下式估算(以1 m3混合气体为计算基准):
m A x VA B x VB n x Vn
2
2
气体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据流体静力学方程可以导出:
p1 p2 A C gR
——微差压差计两点间压差计算公式
2021/4/14
14
例:用3种压差计测量气体的微小压差 P 100Pa
试问:(1)用普通压差计,以苯为指示液,其读数R为多少?
(2)用倾斜U型管压差计,θ=30°,指示液为苯,其读 数R’为多少? (3)若用微差压差计,其中加入苯和水两种指示液,扩大室截面积远远
学习这一章我们主要掌握有五个方面:1、流体的基本概念;2、流体静力学方
程及其应用;3、机械能衡算式及柏努利方程;4、流体流动的现象;5、流体流动
阻力的计算及管路计算。 流体静力学是研究流体在外力作用下的平衡规律,也就是说,研究流体在外力
作用下处于静止或相对静止的规律。静止流体的规律实际上是流体在重力作用下
第一章 流体流动
第 一 节 流体静力学基本方程
一、流体的密度 二、流体的压强 三、流体静力学方程 四、流体静力学方程的应用
2021/4/14
1
气体和液体统称流体。流体的特征是具有流动性,即其抗剪和抗张的能力很 小;无固定形状,随容器的形状而变化;在外力作用下其内部发生相对运动。流 体有多种分类方法:(1)按状态分为气体、液体和超临界流体等;(2)按可压缩性 分为不可压缩流体和可压缩流体;(3)按是否可忽略分子之间作用力分为理想流 体与粘性流体(或实际流体);(4)按流变特性可分为牛顿型和非牛顿型流体。
例水:层图高中度开h2=口0的.6m容,器密内度盛为有油2 和 1水00,0油kg层/ 高m3度h1=0.7m, 密度1 800kg / m3
1) 判断下列两关系是否成立pA=pA’,pB=pB’ 。
2) 计算玻璃管内水的高度h。
解:(1)判断题给两关系是否成立 ∵A,A’在静止的连通着的同一种液体的同
p P A
SI制单位:N/m2,即Pa。 其它常用单位有:
atm(标准大气压)、工程大气压kgf/cm2、bar;流体柱高度(mmH2O,
mmHg等)。
换算关系为:1atm 1.033kgf / cm2 760mmHg
10.33mH2O 1.0133bar 1.0133105 Pa 1工程大气压 1kgf / cm2 735.6mmHg
19
3、液封高度的计算
液封的作用: (1) 若设备内为负压操作,其作用是:当气体压力超过这个限度时,气体 冲破液封流出,又称为安全性液封。 (2) 若设备内要求气体的压力不超过某种限度时,液封的作用就是:防止
外界空气进入设备内。
液封需有一定的液位,其高度的确定就是根据流体静力学基本方程式。
2021/4/14
p2 pa gh p1 p2
pa 10.7103 pa gh
h 1.09m
2021/4/14
xwn
n
m总
m
1 xwA xwB xwn
m 1 2
n
——液体混合物密度计算式
② 气体混合物的密度ρm
取1m3 的气体为基准,令各组分的体积分率为:xvA,xvB,…,xVn,其中:
xVi
Vi V总
i
=1, 2, …., n
2021/4/14
4
当V总=1m3时,xVi
Vi

m V
知,混合物中各组分的质量为:1xVA
PV nRT m nM PVM PM
V V RTV RT
(2) 混合物密度
① 液体混合物的密度ρm
取1kg液体,令液体混合物中各组分的质量分率分别为:
xwA、xwB、、xwn ,
当m总 1kg时,xwi mi
假设混合后总体积不变,V总
其中xwi xwA xwB 1 2
mi m总
20
例1:如图所示,某厂为了控制乙炔发生炉内的压强不超过10.7×103Pa(表压),
需在炉外装有安全液封,其作用是当炉内压强超过规定,气体就从液封管口排出
,试求此炉的安全液封管应插入槽内水面下的深度h。 解:过液封管口作基准水平面o-o’,在其上取1,2两点。
p1 炉内 压强 pa 10.7 103
0.5
0.0232m
(3)微差压差计
R"
A
P
C
g
100
998 8799.807
0.0857m
故:
2021/4/14
R" R
0.0857 0.0116
7.39
15
2、液位的测定
液位计的原理——遵循静止液体内部压强变化的规律,是静力学基本方程的一种 应用。
液柱压差计测量液位的方法:
• 由压差计指示液的读数R可以计算出容器
2021/4/14
8
若取液柱的上底面在液面上,并设液面上方的压强为p0,取下底面在距离液面 h处,作用在它上面的压强为p
p2 p p1 p0
p p0 gh ——流体的静力学方程
表明在重力作用下,静止液体内部压强的变化规律。
2、方程的讨论
1) 液体内部压强p是随p0和h的改变而改变的,即: p f p0, h
,
2
xVB
,......,
n
xVn
若混合前后,气体的质量不变,m总 1x1 2x2 ....... nxn mV总
当V总=1m3时, m 1x1 2 x2
当混合物气体可视为理想气体时,
m
...... n xn ——气体混合物密度计算式
PM m ——理想气体混合物密度计算式 RT
4、与密度相关的几个物理量
10mH2O 0.9807bar 9.807 104 Pa
2、压强的表示方法
1) 绝对压强(绝压):以绝对零压(绝对真空)做起点计算的压强, 是流体体系的真实压强称为绝对压强。
2021/4/14
6
2) 表压强(表压):以当时当地的大气压强(外界大气压强)做起点
计算的压强,压强表上读取的压强值称为表压。 3) 真空度:真空表上读取的压强值称为真空度。 绝对压强、真空度、表压强的关系为 表压强=绝对压强-大气压强 真空度=大气压强-绝对压强= -表压
f T, p
液体: f T ——不可压缩性流体
气体: f T , p——可压缩性流体
3、密度的计算
(1) 理想气体
理想气体在标况下的密度: 0
M
22.4
操作条件(T, P)下的密度: 0
p T0
MT 0 p
p0 T 22.4Tp0
2021/4/14
3
由理想气体方程求得操作条件(T, P)下的密度
内液面的高度h。
• 当R=0时,容器内的液面高度将达到允许
的最大高度,容器内液面愈低,压差计读数
R越大。
h A B R
B
2021/4/14
16
远距离控制液位的方法: 压缩氮气自管口经调节阀通入,调节气体的流量使气流速度极小,只要在鼓
泡观察室内看出有气泡缓慢逸出即可。 压差计读数R的大小,反映出贮罐内液面的高度h 。
大于U型管截面积,此时读数R〃为多少?R〃为R的多少倍?
已知:苯的密度 c 879kg / m3 水的密度 A 998kg / m3
计算时可忽略气体密度的影响。
解:(1)普通管U型管压差计
R
P
C g
100
879 9.807
0.0116m
(2)倾斜U型管压差计
R30
100 879 9.807
一水平面上 pA pA'
因B,B’虽在同一水平面上,但不是连通着的 同一种液体,即截面B-B’不是等压面,故
pB pB'不成立。
(2) 计算水在玻璃管内的高度h
pA
p
' A
pA和pA’又分别可用流体静力学方程表示
设大气压为pa
2021/4/14
10
pA pa 油gh1 水gh2
pA' 水gh pa
内部压力变化的规律。流体静力学的基本原理在化工生产中有着广泛的应用,例
如压力、液面的测量等。本节主要讨论流体静力学的基本原理及其应用。在此,
首先介绍与此有关的几个物理量。
2021/4/14
2
一、流体的密度
1、密度的定义
单位体积的流体所具有的质量,ρ; SI单位kg/m3。
m
V 2、影响密度的主要因素
应当指出,外界大气压随大气的温度、湿度和所在地区的海拔高度而变。 为了避免绝对压强、表压强、真空度三者相互混淆,在以后的讨论中规定,对 表压强和真空度均加以标注。 如:4×103Pa(真空度)、200KPa(表压)。
2021/4/14
7
三、流体静力学方程
1、方程的推导
在1-1’截面受到垂直向下的压力:P1 p1A 在2-2’ 截面受到垂直向上的压力P:2 p2 A
p1 p2 A B gR Agz
当管子平放时:
p1 p2 A B gR
——两点间压差计算公式
当被测的流体为气体时,A B, B可忽略,则 p1 p2 AgR
2021/4/14
12
若U型管的一端与被测流体相连接,另一端与大气相通,那么读数R就反映了被 测流体的绝对压强与大气压之差,也就是被测流体的表压。
pa p1, pb p2
Pa 油gH1 h 水 gH h(表)
Pb 油gH1 (表)
2021/4/14
18
p1 p2 Hg gR
油gh 水gH h Hg gR
h 水H HgR 水 油
10001.0 13600 0.067 1000 820
0.493m
2021/4/14
当p1-p2值较小时,R值也较小,若希望读数R清晰,可采取三种措施:两种指示
液的密度差尽可能减小、采用倾斜U型管压差计、微差压差计。
相关文档
最新文档