天线无源互调检测暗室-PIM暗室-antenna PIM test Chamber-无源互调暗室-PIM Chamber-介绍

天线无源互调检测暗室-PIM暗室-antenna PIM test Chamber-无源互调暗室-PIM Chamber-介绍
天线无源互调检测暗室-PIM暗室-antenna PIM test Chamber-无源互调暗室-PIM Chamber-介绍

无源互调检测暗室介绍

PIM介绍: 无源互调(Passive Inter-Modulation, PIM)是由天线发射系统中各种无源器件的非线性特性引起的。在大功率、多信道系统中,由于其大功率特性,使传统的无源线性器件产生较强的非线性效应,这些无源器件的非线性会产生相对于工作频率的更高次谐波,这些谐波与工作频率混合会产生一组新的频率,其最终结果就是在空中产生一组无用的频谱(三阶互调产物, 五阶互调产物, 七阶互调产物…),如果这些互调产物落在发射或接收波段区间,并且这些互调产物的功率超过系统中有用信号的最小幅度, 就会影响正常的通信。所有无源器件由于非线性特性都会产生互调失真,其产生的原因很多,如机械接触的不可靠、虚焊和表面氧化等。

在GSM900通信系统与3G通信系统中,随着发射功率的增加,由发射频段产生的三阶互调产物会落入到他们各自的接收频段。通过以下数学计算可以来验证这个现象

1- 2G GSM上行/下行 [890,915]/[935,960] fPIM3=[910,985] fPIM5=[885,1010] fPIM7=[860,1035]

2- 3G WCDMA / CDMA2000 / TD-SCDMA 上行/下行 [1920,2060]/[2110,2170]

fPIM3=[2050,2230] fPIM5=[1990,2290] fPIM7=[1930,2350]

从上述计算结果可知,GSM900与3G通信系统中,fPIM3/ fPIM5/ fPIM7均落入到上行的接收频段。如果在发射频段产生一个-110dBm的无源互调信号,也就是干扰信号,这可能会给系统带来影响,因为这个数值已经大于系统中有用信号的最小幅度。

因此当输入功率较小时,由于器件的非线性程度较弱,可以忽略其非线性而近似为线性器件。但当输入功率很大时,与接收信号相比,非线性因素所造成的影响比较大,就不能被忽略了。随着移动通信网络的发展,运营商面临数据业务增长过快带来了各种挑战,这些挑战催生了有源基站天线的大量运用,促使了移动通信系统向更低能耗、更高功率、更宽频带和更高的接收机灵敏度的趋势发展,无源互调对移动通信的影响已经成为不可回避的重要问题。

天线无源互调电平测量系统与测量方法

天线PIM 测量系统应具有以下特点:

(1) 大功率信号源:PIM 的测量是大功率测量问题,一般需要以高于工作功率电平2~4倍的功率进行测量,微波功率高达上百瓦甚至几千瓦。

(2) 高灵敏度接收机由于PIM 的功率电平一般都非常低,对测量系统的灵敏度要求很高。 (3) 低PIM 组件:PIM 测试系统的组成部件本身必须是高性能、低PIM 的。专用的合成器、定向耦合器、滤波器等产生的PIM 电平必须控制在被测件PIM 电平的-6dB 以下,连匹配负载都要采用不产生PIM 的特殊负载,以保证整个测试系统能够正常工作。

(4) PIMP (Passive Inter Modulation Product ,无源互调产物)与环境温度有关,并随着时间发生变化,因此需要进行长时间的温度循环试验。

(5) 此外,PIM 测量系统与频率和带宽的相关性很强,测量系统难以通用,一般需要根据测试目的进行专门的制作。同时,不仅要测量无源部件的PIM 产物,还要能够对天线和整星进行测量。因此,如何设计一个低PIM 的测量系统是进行PIM 测量首先必须解决的问题。

有源基站天线参考图片

天线接收(反射)PIM测试布置如下图所示

PIM测试的准确性会受到测试系统外部或内部很多因素的影响。影响天线产品的PIM测试结果的因素包括以下几个方面:

a)暴露在AUT辐射场中的导电材料;

b)AUT的安装附件出现松动、损坏或腐蚀;

c)暴露在来自AUT辐射的射频场中的松动或腐蚀的附件;

d)测试系统外部的无线电射频信号;

e)性能很差的同轴接口电缆;

f)接口连接处存在肮脏、污染、磨损;

g)接口连接不当;

h)射频接口连接屏蔽不善;

i)来自于测试设备的未经过滤的有源互调。

如果条件允许,天线PIM电平测量可在室外完成。在进行这种测试时,必须满足政府规章中允许的射频辐射电平要求,另外,来自于AUT的射频能量辐射,可能在周围物体上产生PIM,并反射到天线中,导致天线PIM测试结果存在误差,同时来自于外部的射频辐射也可能会干扰测试质量,因此为准确测量天线PIM电平,测试应当在一个低PIM测试环境的电波暗室(也称为无源互调检测暗室,互调检测暗室,无源互调暗室,PIM暗室或PIM test Chamber)里进行,这样可减少或消除很多影响因素。

天线无源互调接收(反射)电平暗室测量数学模型

三阶PIM接收电平

其中σ代表连接件的PIM电平与输入信号的比值(dBc)

ω3代表PIM3的频率(MHz)

从上述模型中可知,为准确测量天线PIM电平,暗室建造的关键是吸波海绵的选择以及暗室壳体的材料和施工方法,以期降低数学模型中的第一项。

深圳常宁电子作为天线测试系统供应商与微波暗室设计制造商, 在近一年的时间内, 成功完成一支持大口径金属网状展开天线的高阶(13rd阶)互调电平精准测量的大型暗室工程, 以及为数不少的支持无源基站天线与天线+RRU的有源基站天线3rd, 5th互调电平精准测量的小型暗室工程 (如Commscope, Andrew etc.公司), 成为基站通信天线, 微波通信天线等天线无源互调PIM电平精准测量暗室工程制造行业之佼佼者。

用于BTS天线无源互调电平(PIM)精准测量的暗室主要技术指标

Changning’s BTS antenna PIM Test Chamber Technical Specifications

●异性外观,幕墙色彩工业设计,6m(Length) x 5m(max Width) x 4.6m(max Height),焊接工艺

●满足无源基站天线与有源基站天线PIM3电平测量所需的环境

●暗室工作频率范围: 400MHz – 18GHz

●暗室屏蔽效能 >100dB @ 400MHz – 18GHz

●暗室残留PIM电平 < -165dBc PIM3@2x43.5dB m (测试频段 700MHz~6GHz)

●优质国产700MM+500MM吸波海绵,高阻燃性能,连续照射承受功率容量1kw/m2

●全手工打造木制天线测试架与测试平台

关于PIM暗室更多或定制化的咨询,请直接联系深圳常宁电子的Tiger YOU–[東熹] 以获得更快更优质的支持服务

天线测试方法介绍

天线测试方法介绍 对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz以下的低频天线通常是使用锥形微波暗室(anechoic chamber),这是20世纪60年代就出现的技术。遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。因此,他们无法发挥这种技术的最大效用。 随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。其它技术包括近场和反射面测试。选用哪种天线测试场取决于待测的天线。 为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。 在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。远场测量可以在室内或室外测试场进行。室内测量通常是在微波暗室中进行。这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。在矩形微波暗室中,采用一种墙面吸波材料来减少反射。在锥形微波暗室中,锥体形状被用来产生照射。 图1:这些是典型的室内直射式测量系统,图中分别为锥形(左)和矩形(右)测试场。

天线的主要性能指标和相关知识

天线的主要性能指标 1、方向图: 天线方向图是表征天线辐射特性空间角度关系的图形。以发射天线为例,从不同角度方向辐射出去的功率或场强形成的图形。一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平面方向图和垂直面方向图。平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。 描述天线辐射特性的另一重要参数半功率宽度,在天线辐射功率分布在主瓣最大值的两侧,功率强度下降到最大值的一半(场强下降到 最大值的0.707倍,3dB衰耗)的两个方向的夹角,表征了天线在指定方向上辐射功率的集中程度。一般地,GSM定向基站水平面半功 率波瓣宽度为65° 在120°的小区边沿,天线辐射功率要比最大辐射方向上低9-10dB。 2、方向性参数 不同的天线有不同的方向图,为表示它们集中辐射的程度,方向图的尖锐程度,我们引入方向性参数。理想的点源天线辐射没有方向性,在各方向上辐射强度相等,方向是个球体。我们以理想的点源天线作为标准与实际天线进行比较,在相同的辐射功率某天线产生于某点的电场强度平方E2与理想的点源天线在同一点产生的电场强度的平方E02的比值称为该点的方向性参数D=E2/E02? 3、天线增益 增益和方向性系数同是表征辐射功率集中程度的参数,但两者又不尽相同。增益是在同一输出功率条件下加以讨论的,方向性系数是在同一辐射功率条件下加以讨论的。由于天线各方向的辐射强度并不相等,天线的方向性系数和增益随着观察点的不同而变化,但其变化趋势是一致的。一般地,在实际应用中,取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。 另外,表征天线增益的参数有dBd和dBi。DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益 dBi=dBd+2.15。相同的条件下,增益越高,电波传播的距离越远。 4、入阻输入阻抗 输抗是指天线在工作频段的高频阻抗,即馈电点的高频电压与高频电流的比值,可用矢量网络测试分析仪测量,其直流阻抗为0Q。 般移动通信天线的输入阻抗为50 Q。 5、驻波比 由于天线的输入阻抗与馈线的特性阻抗不可能完全一致,会产生部分的信号反射,反射波和入射波在馈线上叠加形成驻波,其相邻的电 压最大值与最小值的比即为电压驻波比VSWR假定天线的输入功率P1,反射功率P2,天线的驻波比VSWR=( +) / (-)。一般地说,移 动通信天线的电压驻波比应小于 1.5,但实际应用中VSWR应小于1.2。 6、极化方式 根据天线在最大辐射(或接收)方向上电场矢量的取向,天线极化方式可分为线极化,圆极化和椭圆极化。线极化又分为水平极化,垂 直极化和土45o极化。发射天线和接收天线应具有相同的极化方式,一般地,移动通信中多采用垂直极化或土45o极化方式。 7、双极化天线隔离度 双极化天线有两个信号输入端口,从一个端口输入功率信号P1dBm,从另一端口接收到同一信号的功率P2dBm之差称为隔离度,即隔 离度=P1-P2。 移动通信基站要求在工作频段内极化隔离度大于28dB。土45o双极化天线利用极化正交原理,将两副天线集成在一起,再通过其他的一 些特殊措施,使天隔离度大于30dB。 天线常识

天线测试方法

1测试方法 1.1技术指标测试 1.1.1频率范围 1.1.1.1技术要求 频率范围:1150MHz~1250MHz。 1.1.1.2测试方法 在其它技术指标测试中检测,其它各项指标满足要求后,本项指标符合要求。 1.1.1.3测试结果 测试结果记录见表1。 表1 工作频率测试记录表格 1.1.2 1.1. 2.1技术要求 极化方式:线极化。 1.1. 2.2测试方法 该指标设计保证,在测试验收中不进行测试。 1.1.3波束宽度 1.1.3.1技术要求 波束宽度: 1)方位面:60°≤ 2θ≤90°; 0.5 2)俯仰面:60°≤ 2θ≤90°。 0.5 1.1.3.2测试框图 测试框图见图1。

图1 波束宽度测试框图 1.1.3.3测试步骤 a)按图1连接设备; b)将发射天线置为垂直极化,将待测天线也置为垂直极化并架设于一维转台上, 设置信号源输出频率为1150MHz,幅度设为最大值; c)使用计算机同时控制一维转台及频谱仪,在一维转台转动的同时频谱仪自动记 录待测天线接收的幅度值,待一维转台完成360°转动后,测试软件绘制该频点的俯仰面方向图; d)从该频点方向图中读出俯仰面波束宽度,并记录测试结果于表2; e)重复步骤b)~d),直到完成所有频点俯仰面波束宽度测试; f)将发射天线置为水平极化,将待测天线也置为水平极化并架设于一维转台上, 设置信号源输出频率为1150MHz,幅度设为最大值; g)使用计算机同时控制一维转台及频谱仪,在一维转台转动的同时频谱仪自动记 录待测天线接收的幅度值,待一维转台完成360°转动后,测试软件绘制该频点的方位面方向图; h)从该频点方向图中读出方位面波束宽度,并记录测试结果于表2; i)重复步骤f)~h),直到完成所有频点方位面波束宽度测试; j)若方位面波束宽度和俯仰面波束宽度60°≤ 2θ≤90°,则满足指标要求。 0.5 1.1.3.4测试结果 测试结果记录见表2。

手机天线测试

浅谈实践中的手机天线测试 随着移动通信的飞速发展和应用,中国的手机行业也不断发展壮大,当然中国的手机用户也在迅猛增长。而手机的射频器件中,手机天线是无源器件,手机天线作为手机上面唯一的一个“量身定做”的器件,它的特殊性和重要性必然要求其研发过程对天线性能的测试要求非常严格,这样才能确保手机的正常用。 现在就简单的介绍一下手机天线的研发过程中的几种常见的手机天线测试方法: 1、微波暗室(Anechonic chamber) 波暗室又叫无反射室、吸波暗室简称暗室。微波暗室由电磁屏蔽室、滤波与隔离、接地装置、通风波导、室内配电系统、监控系统、吸波材料等部分组成。它是以吸波材料作为衬面的屏蔽房间,它可以吸收射到六个壁上的大部分电磁能量较好的模拟空间自由条件。暗室是天线设计公司都需要建造的测试设备,因为对于手机天线的测试比较精确而且比较系统,其测试指标可以用来衡量一个手机天线的性能的好与坏。主要是天线公司使用,但其造价昂贵。 2、TEM CELL测试 用TEM CELL测试天线有源指标,因为微波暗室和天线测试系统造价比较昂贵,一般要百万以上,一般的手机设计和研发公司没有这种设备,而用TEM CELL(也较三角锥)来代替测试。和微波暗室的测试目的一样,TEM CELL也是一个模拟理想空间的天线测试环境,金属箱能够提供足够的屏蔽功能来消除外部干扰对天线的影响,而内部的吸波材料也能吸收入射波,减小反射波。TEM CELL不能对天线进行无源测试,只能对有源指标进行测试。由于空间限制,TEM CELL的吸波材料比较薄,而对于劈状吸波材料,是通过劈尖间的多次反射增加对入射波进行吸收,因此微波暗室里的吸波材料都比较厚,而TEM CELL的吸波材料都不购厚,因此对入射波的吸收都不是很充分,因此会导致测试的结果不精确。 另外,TEM CELL的高度也不够,这也是TEM CELL不能进行定量测试的一个原因。根据天线辐射的远场测试分析,对于EGSM/DCS频段的手机天线,被测手机与天线的距离至少大于1米;因此,我们可以看几乎所有的2D暗室都是远大于这个距离。而TEM CELL比这个距离小一些,所以这也是TEM CELL相对于微波暗室来讲测量不准的一个原因。 所以,TEM CELL只能对天线做定性的分析而不能做定量的分析。在实验室可以定性分析几种样机的差异,比较其性能的优劣,但不能作为准确的标准值来衡量天线的性能,只能通过与其他的“金鸡”(Golden sample ) 对比,大致来判断手机天线的性能。TEM CELL一般只找最佳方值,使测试结果对手机摆放的位置比较敏感。

2.4G天线性能比较测试说明_20141016

2.4G天线性能比对测试 测试人:丁江帅 时间:2014-10-16 目录 1.天线性能参数 (2) 2.测试器材 (2) 3.测试说明 (3) 4. 测试结果与分析 (3) 4.1测试结果如下表(如附件1): (3) 4.2 测试结果分析 (3)

1.天线性能参数 佛山健博通天线(白色)参数如下: 深圳乐光天线(黑色)参数如下: 2.测试器材 频谱仪一台被测天线两个两个N型转SMA公头射频线缆两条检测器一个锂电池一个支撑塑料棒

3.测试说明 ★检测器烧录单载波程序。 ★将被测天线经射频线缆连接,使其竖直于地面。 ★频谱仪设置为2.45GHz,带宽2MHz,参考电平设置为-50dBm。 ★测试时,检测器始终与两个被测天线根据测试要求可适当改变。 ★给检测器供电,观察天线接收信号的强度,并保存数据(可多次测试进行比较)。4. 测试结果与分析 4.1测试结果如下表(如附件1): 表1.被测天线的测试数据 4.2 测试结果分析 安装位置:发射和接收天线位置保持一致,发射天线和接收天线相对于其他物体保持大于十倍空气波长(122cm),接收天线始终处于竖直状态发射天线顶面始终与接收天线(杆式)保持垂直。 两天线测试时,环境要求保持一致,这样可以减少测试条件不一致带来的误差。测试时,经多次断电和接通,前后对比情况下,随机保存数据。从测试数据来看,同样的环境和测试条件:(1)随着发射天线离地面高度的减少,信号衰减越大,相应白色和黑色天线接收的信号也大大减弱;(2)接收天线和发射天线距离不变,接收天线离地面高度不变及发射天线离地面高度不变时,改变发射天线相对接收天线的角度,接收天线接收的信号强度基本不变。 综述,同样的距离和离地面的高度,黑色天线具有较高的增益即对接收到的信号衰减更弱一些,性能较好于白色天线。 注:测试环境如附件9 接收情况如附件:

射灯天线覆盖效果测试报告(室外向下对打)--钟陈生

茂南财富新城射灯覆盖(室外向下对打)效果测试报告 测试人:钟陈生、申卫报告撰写:钟陈生测试日期:2013年7月17 1.概述 1.1站点描述 基础信息 1.2射灯覆盖图及环境描述:

项目总负责人 单项负责人设 计 人校 审 人 审 核 人单 位比 例日 期 mm 2013.4图号 中国移动通信集团设计院有限公司 2011YBGS0130-WX-MNCHXCF-02-5 注:本系统图中器件红色为新增,黑色为原有, 蓝色为更换,黄色为利旧。 茂南财富新城F-安装点位图 二功分器 ″馈线7/8″馈线1/2″超柔馈线 全向天线 三功分器 双频合路器 电桥 22栋 28栋29栋 30栋31栋 23栋 27栋 25栋 38栋 26栋 17栋 ANT1-20F 下倾角51.84° ANT1-18F 下倾角37.15°ANT2-18F 下倾角47.39° ANT3-18F 下倾角47.39° ANT4-18F 下倾角47.39° ANT7-18F 下倾角47.39° ANT10-18F 下倾角47.39° ANT11-18F 下倾角42.27°ANT9-18F 下倾角43.88° ANT8-18F 下倾角40° ANT13-18F 下倾角45° ANT14-18F 下倾角45° ANT15-18F 下倾角47.39° ANT12-18F 下倾角43.88° ANT5-18F 下倾角47.39° ANT6-18F 下倾角37.13° ANT16-18F 下倾角47.39°ANT17-18F 下倾角37.13° 16栋 10栋 PS1-18F PS2-18F PS3-18F PS4-18F PS5-18F PS6-18F PS7-18F 38栋,共 19层 26栋,共18层 约高57米 约高54米 射灯天线

天线测试方法介绍

天线测试方法介绍 来源:Vince Rodriguez公司 对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz 以下的低频天线通常是使用锥形微波暗室(anechoic chamber),这是20世纪60年代就出现的技术。遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。因此,他们无法发挥这种技术的最大效用。 随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。其它技术包括近场和反射面测试。选用哪种天线测试场取决于待测的天线。 为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。 在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。远场测量可以在室内或室外测试场进行。室内测量通常是在微波暗室中进行。这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。在矩形微波暗室中,采用一种墙面吸波材料来减少反射。在锥形微波暗室中,锥体形状被用来产生照射。

XX天线性能测试报告

基站天线性能综合评估报告 (XX分公司网络优化中心) XX分公司为了改善弱覆盖、提高用户满意度,解决网络中的隐形问题,同时借鉴发达省份的成功经验,历时两个多月的时间,选择了使用不同年限、品牌的天线进行综合性能测试。通过对三阶互调、使用年限、前后比和第一上旁瓣抑制性等指标综合分析,借助更换对比,DT测试、话务KPI综合分析,为网络优化中天线故障排查、是否需要更换和更换标准、以及更换后达到的效果提供了参考依据。 1.本次测试选取的场景、天线、基站数量如下: 场景天线数量/根基站数量 1.农村弱覆盖投诉183 2.高速公路带状覆盖488 3.市区干扰点掉话279 4.库房新天线抽查10/ 2.天线性能测试 本次采用德国Rosenberger 三阶互调测试仪和扫频仪对天线性能进行测试,同时结合话务统计指标、DT测试数据进行综合分析,最后得出结论。 2.1 天线性能测试结果 本次主要对天线自身的主要参数指标:三阶互调(IM)、驻波比(VSWR)、前后比、第一上旁瓣抑制进行测试。

2

2.1.1 三阶互调合格率 参数说明:三阶互调是反映天线综合性能的重要指标,该指标从一定程度上反映了天线的优劣。目前国标要求≤-107dbm。本次判定合格的标准如下: 三级互调测试标准(dbm) 等级大于‐90大于‐107且小于等于‐90小于等于‐107 评测不合格可用优良 三阶互调测试结果 不合格合格优良 11% 28% 61% 说明:通过本次对天线综合性能的测试,发现较多天线三阶互调不合格(本次测试把IM≤-90dbm的均视为合格,远低于国标要求),这和目前集成度越来越高的基站系统难以匹配。 3.网络KPI指标综合分析 本次网络KPI指标的分析是建立在:老天线→集采新天线→KATHREIN高性能天线,分别提取相同时段的话务统计数据,进行多次分析基础之上的。

天线稳定转台系统结构设计技术研究.

舰船电子对抗 ! 4 ?((( 年?天线结构的力学分析在考虑天线的风载荷惯性载荷自重以、、 , 点主力骨架对反射体的支点及其附近的节点除外 % 其位移的绝对值越大 , , 。与变形前的及多种工况的情况下利用有限单元法对天情况比较变形后的反射面向后倾斜倾斜角?‘ 一? % , 线结构进行了多次力学分析计算 , 。、。根据计算这是由于支撑反射体的主力骨架受。结果对结构设计作了多次修改目的是在保力变形的缘故 , 由于天线电性能对倾斜角。?证天线结构具有足够的强度刚度和固有频率的前提下尽量减轻它的重量所采用的计算模型是把反射体主力骨架和馈源支架作为一个整体结构来考虑的有 ! ? #6 、。、不太敏感可以暂不考虑由于反射面向后倾 , 。斜而引起的节点位移在这种情况下反射面上所有节点位移的绝对值大大减小位移的均方根值由 # 4 , , 该计算模型包含、 # 4 ( 2 1 1 减小到? 4 # 4 ? 1 1 左右 , 个板壳元个节点、、??个梁单元?2 、个边 , 节点的最大位移由 62? 1 1 , 。?( , 1 1 减小到界元、 ! 22 。反射体的面板主力骨计算结果表明反射面的变形不 , 架馈源支架和风力平衡板均采用板壳元反射体的背筋映接反射体与

主力骨架的?个 6 ? 大天线结构具有足够的刚度能满足电性能要求 ! ?4 。形件以及主力骨架上的?个套筒用于联 ! 。。 4 ! 强度 , 接风力平衡板 % 均采用梁单元将天线系统与稳定转台方位轴的安装平面作为刚性约束?在风正吹的情况下最大应力出现在主力骨架中的背架与座架联接处的图力板4 Ζ 点参看本天线结构在风正吹时的力学计算模型如图所示。?% 。‘ 。根据第四强度理论该点处的相当应 4 , 一! ( ! Π 8 1 1 , 。背架与座架是通过铝 , ? ?6 % 焊接在一起的取许用应力 [司一 81 1 Δ 。? 2 Π 显然。 , 。’ ∴ [ ? ] 、这表明天线结构具有足够的强度 ! ? 4 4 ?固有频率?主天线的三阶固有频率和相应的振动方式如表型。所示?。图表示了主天线的一阶振表符图?固有频率与振动方式χ Ρ 号固有频率δ 4 % 振动方式式主天线对β 力学计算模型Ν ?Υ&Η ? 4 ?# 轴的扭转振动下面简要介绍利用Μ_ ?⊥ Ν Μ 、软件计算Χ洛 8 ?? 4 ??主天线对Ξ 轴的扭转振动主天线对Δ 轴的扭转振动 / ? 4 7 Μ Ν ? % 对天线结构进行力学分析。所得到的结果 ! ? 4 ?( 4 ?# ??刚度 , 在载荷作用下天线结构会发生变形节点产生位移就图 0 , 。 , ! 4 ? 4 重量重心与转动惯量 ;< 。、位移越小表明结构刚度越高 , 。天线系统的重量为?! # 天线时天线系统的重量为 , 不包括询问。 , 所示的直角坐标系α Ξ β , βΔ , 来说当风 , 0仍 ; < 正吹时在平行于轴的直线上反射面上。β 图 0 所示α Ξ : 0 3 βΡ 坐标系中天线系统重 , 坐标越大的节点其位移的绝对值越大 , 在平心〔、的坐标是Ξ 一# 4 β《Λ 、 62? 2 1 1 4 , Δ ‘ 一行于Ξ 轴的直线上Ξ 坐标绝对值越大的节一?2 221 第期天线稳定转台系统结构设计技术研究量轻转子惯量小过载能力强转矩一转速特 , , , 性的线性度好。。带有制动器时电机锁紧可 , , 靠试验结果表明该电机能满足舰载雷达舱室外设备的环境要求与它配套使用的变频器和适配变压器能满足舱室内设备的环境要。 , 求?4 该电机的应用对于减轻稳定转台的重量。是非常有利的 ! 稳定转台 驱动系统的传动型式图 2 表示了稳定转台的驱动系统。方位。图一阶振型转台的驱动系统采用外置双曲柄少齿差行星Α 、天线系统对

基站美化天线技术规范

美化天线技术规范

总体概况 随着移动通信的快速发展,城市基站数量不断增多,天线星罗密布,对周围环境带来了一定的负面影响,难以满足对环境美观的要求;同时群众对天线辐射的普遍抗拒心理也导致基站选址建设相当困难,这就要求对天线的安装方案进行特别设计,使之与周围环境协调统一。 美化天线是在尽量不增加传播损耗的情况下,通过一些美学、工艺技术的手段对天线进行伪装,来达到隐蔽的目的。通过采用美化天线,既美化了城市环境,也避免了居民对无线辐射恐惧和抵触,保证通信的覆盖和质量。 经过几年的积累,在美化天线的规范、分类、应用上积累了丰富经验,制定了完善的标准化美化天线体系和定价模式。本手册对美化天线的技术标准、安装验收规范、采购模式等内容进行了梳理,供各分公司参考。 1 建设总体要求 美化天线在满足通信基站工程建设规范要求的基础上,同时需要满足以下原则: (1)技术性原则:在进行天线隐蔽时,首先必须满足无线覆盖的要求,无线信号衰减尽量低,衰减增加不超过1dB。 由于天线需要±30°内的方位角,15°内俯仰角(电调+机械角度)可调整,美化天线的材料和结构对天线调整后的发射性能应没有影响,在天线安装位置的垂直面的正前方不能有金属阻挡。 (2)经济性原则:在进行天线隐蔽时,需要考虑经济效益,尽量选用通用型强、结构简单的隐蔽方案,以节省隐蔽费用。 (3)维护性原则:天线有时需要调整下倾角和方位角以及维护等,天馈线隐蔽方案需要考虑天馈线的维护和扩容的方便。 (4)安全性原则:美化天线要求结构牢固,满足各地风压设计要求。产品应适应全天侯使用,在雨、雪天气及-40℃~70℃温度均可保持良好物理特性;天线罩材料阻燃性好,达到GB8624-1997难燃Ⅰ级。 (5)耐用性原则:要求隐蔽材料经久耐用,耐高温和耐腐蚀,使用寿命不少于10年。

天线测试转台传动系统优化设计 张庆杰

天线测试转台传动系统优化设计张庆杰 发表时间:2019-05-17T16:41:17.500Z 来源:《电力设备》2018年第34期作者:张庆杰 [导读] 摘要:针对传统天线测试转台传动系统当中,如果采用同步传动机构,会导致转台承载等多种能力都受到限制的问题,我们提出了一种更为合理的转台传动系统优化技术和工程分析设计的方式。 (石家庄硕华电子科技有限公司河北石家庄 050000) 摘要:针对传统天线测试转台传动系统当中,如果采用同步传动机构,会导致转台承载等多种能力都受到限制的问题,我们提出了一种更为合理的转台传动系统优化技术和工程分析设计的方式。通过对这种传动系统的分析,可以得出这种新的设计方式有更好的负载能力以及自锁性能,可以提高转台的安全性和性价比。本文通过对各种不同的传动系统进行相应分析,提出更为合理的设计,使得它们的使用更为方便,提高可行性、安全性与可维护性。使得他们更为合理的被人们使用,提高生产效率,从而带动社会的经济发展。 关键词:测试转台;传动系统改进;优化设计 电子装备天线性能标定与测试的专用设备,被称之为天线测试转台,它的性能可以直接影响到天线设备的技术性能与实际使用效果。天线测试转台系统作为天线测试转台的控制传动机构,它的精度可以影响整个天线的附和性,从而影响整体的使用效果。目前我们传统的天线测试转台传动系统一般采用同步传动机构形式,但是这种形式对于承载能力的限制特别大,不利于在测试精度的前提下拓展负荷的范围,所以我们对传统的方式进行了改进,选择了更为优越的天线测试转台传动系统。 一、方向传动系统的优化设计 1.1优化要求与改进思路 针对现阶段都种被测天线复合的方向,传动系统在测试当中需要进行频繁运动的问题,这种方式需要有较大的转动角度,才能够得到更大的传动速度,为了保证原有的要求和尺寸,需采用更为合理的带轮传动。 1.2方向传动系统改进优化计算 根据综合方位振动系统的各种性能要求,我们先用一种新的减速箱,采取新的方式进行接口,从而使得系统改进后的速度也效率和负荷度都得到了较大的提升。由于方位传动系统的转动速度影响到了整体的测试效果,所以我们在改进过程当中不能够对传动系统的速度下降更多,所以我们为了保证效率,将输入的转速进行了改变,从而满足了传动系统性能要求。 1.3方向振动系统结构改进优化实现 根据方位传动系统现有的特点,改进的重点就是减速箱与减速箱之间的连接。考虑了变速箱的结构特点,将二者实现刚性的连接。由于空间位置的限制,我们的检测箱装备制必须进行更好的精确,使得运行更为方便。 二、俯仰传动系统的优化设计 2.1优化要求与改进思路 由于在测试的系统当中,俯仰系统的运动并不频繁,而且对于其他的传动系统而言,它的转动幅度比较小,所以对于俯仰转动系统的速度要求并不高。但是由于传动系统在测试的过程当中需要有特定的测试角度,所以我们就要对于该设计系统设置自锁功能。改进后的俯仰传动系统,实现了系统之间的刚性连接,使得它的承载能力得到了很大的提高,同时速度也将满足测试的要求。 2.2俯仰传动系统改进优化计算 俯仰传动系统在各个参数方面都有着不同的要求,所以我们要选用相应的减速箱,将减速箱的数据进行重新设置,从而使得改进后的速度比、效率和负荷都得到提升。通过改进后,我们可以使得传动频率降低,并且将减少它的转动角度,从而满足测试的要求。 2.3俯仰传动系统结构改进优化实现 我们想要对于俯仰传动系统结构进行改进,就需要仔细研究它的空间位置,从而可以进行合理的布置。在这个传动系统的改进过程当中,重点是合理布置传动系统当中减速箱和电机的位置,使这两者不发生干涉。 三、极化传动系统的优化设计 3.1优化要求与改进思路 极化传动系统与方位振动系统的结合与连接安装的方式都比较类似,所以在极化传动系统的结构和测试当中,我们要要求动作不是太过频繁、震动角度要小,速度要求不高,并且需要拥有自锁的特点。 3.2极化传动系统的计算 对于这种战斗系统,我们主要需要调整的就是进电输出的转速,从而使得前后的速度比发生变化,使速度比增大650%,使得转动的最大负荷增加,将速度降低。我们要使得改进后的系统频率更低,角度更小,从而减少速度对于测试的影响,使得改进后的系统能够满足测试的要求。 3.3极化传动系统的实现 我们需要根据极化传动系统的本身特有,特别对于极化传动系统进行相应的改造。要仔细研究它们的空间位置,使得安排更为合理,防止各个设备发生冲突,并且还要对于数据进行仔细测量,使参数更为符合现实的需求。 上述所有天线测试,传动系统的优化设计都没有改变天线传动系统的使用要求和内部的基本结构,仅仅是对于天线测试转台的方向传动系统、俯仰传动系统和极化传动系统等各个方面进行了系统的分析与相应的优化设计,实现了互相的更合理使用完成了对于系统的升级与改进。 通过对于各个不同传动系统的优化设置,实现了各个部分的刚性连接,提高了系统的承载能力,提高了负荷力,同时也使得安全性得到了增强,并且提高了系统的可维护性。对于俯仰和极化传动系统在工作中需要自锁的特性,需要对于这两个传动系统实现刚性连接,提高电机断电时的自锁能力与减速机的自锁能力同时得到提高,从而整体提高整体的系统制作能力,从而提高安全性,使其应用更为广泛。 结束语:我们需要对现阶段的天线测试转台系统进行调整,使其可以满足现在我们对于该传动系统的不同需求,从而提升整体的运行效率。我们不要单纯的对其进行改造,我们需要对于不同的传动系统进行不同的分析,从而采用最为合适的参数。进行不同的调整,使其应用更为方便,提高安全性、维护性和性价比。使它们可以以获得更好的刚性连接,提高负荷能力。通过对于系统的提高,获得更大的经

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz:

四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 五、实验总结

控制测量规范与要求

第一部分茅荆坝(蒙冀界)至承德公路(第15标)控制网复测技术设计书 一、编制依据及技术标准 (1)、《大广高速公路蒙冀界至承德高速公路GPS控制网成果表》(设计院交给的)(2)、《全球定位系统(GPS)铁路测量规程》(TB10054) (3)、《工程测量规范》(GB50026-2007) (4)、《国家三四等水准测量规范》(GB/T12898-2009) (5)、《公路勘测规范》(JTGC10-2007) 二、平面GPS、四等水准加密方法与精度要求 根据《全球定位系统(GPS)铁路测量规程》平面控制测量等级规定和本项目实际情况,隧道段控制网采用GPS观测方法时,精度按四等网技术要求施测。为确保线路衔接的平顺性,加密点必须联测其相邻的GPS平面控制点。 平面加密控制网的施测精度控制按:加密GPS网最弱边相对中误差小于1/70000,基线边方向中误差不大于1.7″的要求进行。 2.1具体精度控制标准 2.2 四等水准施测技术要求 四等水准测量的主要技术标准见表6.3-3. 注:表中L为往返测段、符合或环线的水准路线长度,单位Km。 三、平面控制网复测实施计划 3.1 GPS复测组网实施

为保证线路上所有控制点成果具有较高的可靠性和尽量保证点位精度的均匀性,平面控制网复测采用4太GPS接收机同时作业的观测模式,以此提高GPS观测网形的图形强度。GPS 网各时段全部以边连接方式构网,形成由大地四边形组成的带状网。 3.2 采用GPS测量方法的平面复测 遵循与设计单位建网时相同的构网原则,本次GPS方法的控制网复测组网以大地四边形为基本构网图形组成带状网,采用边联式构网。实际外业测量必须遵循基线组网设计所确定的作业模式,并在接收机或控制器上配置GPS外业观测参数,参与作业的接收机所配制的参数应相同。 每天出工之前,必须检查电池容量是否满足作业要求,数据存储设备应有足够的存储空间,仪器及其附件必须齐全。 天线安置应符合下列要求: —在开始GPS外业观测前,必须确认天线安置基座的对中器合格,天线安置基座的对中精度要求为1mm。天线应利用脚架和天线安置基座直接实现队中—在开始GPS外业观测前,必须确认天线安置基座的管水准器合格,天线安置基座必须严格整平。脚架必须稳定、牢固安置。 —如天线有指北定向标志,则应借助指北针或罗盘,在开始观测和观测过程中都使接收机天线指北标志指向正北方向。 —雷雨季节架设天线时,要注意防雷击。雷雨过境时,应立即停止观测,并卸下天线。GPS测量需要遵循的操作要点有: —观测组必须严格遵守调度命令,按规定时间开始同步观测。当没按计划到达点位时,应及时通知其他组,并经观测计划编制者同意后对观测时段作必要调整,观测者不得擅自更改观测计划。 —经检查,接收机的电源电缆、天线电缆等各项连接正确,接收机设置状态和工作状态正常后,方能启动接收机开始测量。 —每时段观测前后分别量取天线高,天线高丈量必须按接收机使用规定,从天线相位中心标志处丈量至地面点位标志,丈量的天线高是垂直高还是斜高必须在记录手薄上清楚的表明,且无论是垂直高还是斜高,直接丈量距离的误差在前后2次丈量中必须小于等于1mm,方取两次直接距离丈量的平均值作最终距离丈量的结果。 —不同时段的观测间隔期间必须重新进行天线安置基座的整平、对中操作,并重新丈量仪高。 —接收机开始记录数据后,应及时将观测站名、测站号、时段号、天线高等信息完整地记录在观测手薄上。同时严密注意仪器的警告信息,及时汇报和处理各种特殊情况。

OTA天线测试的能力及测试标准

OTA测试能力 OTA测试能力: 1:有源部分 辐射功率 (TRP) 灵敏度性能 (TIS) 2:无源部分 天线增益测试(Gain) 天线接口阻抗测试(Input Impedance) 天线驻波比/回波损耗测试(VSWR/RL) 天线方向图测试(Radiation Pattern) 方向性(Directivity) 波束宽带/前后比(3Db BW/FB Ratio) 交叉极化比/隔离度(Cross Polar/Isolation) 支持的无线制式:GSM,CDMA,WCDMA,TDSCDMA产品的有源或者无源测试;蓝牙,WIFI,DVB等天线的无源测试; 目前支持的测试规范: 1:CTIA的OTA测试规范(Test Plan for Mobile Station Over the Air Performance V2.2.2)2:GCF 的OTA测试规范(GCF CC V3.33最新规定) 3:3GPP/ETSI OTA antenna performance conformance testing (TS 34.114,TS25.144) 4:中国工信部在2008年强制执行的OTA进网规定(YDT 1484-2006) 5:无源天线测试标准(Passive antenna test:IEEE149-1979)

TRP全称Total Radiated Power,即总辐射功率。其含义是手机在空间三维球面上的射频辐射功率的积分值,反应了手机在所有方向上的发射特性。打个比方,就如同一盏灯泡在所有方向上的辐射的光的总和。那么越亮就代表其发射的能量越多,越暗就代表其发射的能量越少。但是辐射功率是有上限的,手机本身对最大的辐射功率进行了限制,任何手机的射频模块输出功率不会超过2W(33dBm)。越是接近这个值,说明信号发射能力越好,也说明辐射更大。该指标通常与SAR指标(反映人体吸收的辐射的指标)相互制约,一部合格的手机既要有好的发射能力,又要有较低的SAR 值。 我国的标准YD1484-2006<<移动台空间射频辐射功率和接收机性能测量方法>>是对手机进行TRP测量的规范性文件,其中约定了TRP的最低值,对于GSM手机而言,900频段不能低于26dBm,1800频段不能低于25dBm;对于CDMA手机而言TRP 不能低于20dBm,与北美的CTIA要求是一致的,而与欧洲的3GPP标准比较则有一些测量方式上的差异。 目前无线产品对人体辐射大小的衡量方法被广泛接受的标准是SAR (Specific Absorption Rate)值. SAR的实际意义就是对人体的辐射能量的大小, 它是指辐射被人体头部或身体各部位组织吸收的比率,单位是W/kg。国际非电离性辐射保护委员会(ICNIRP)和欧洲规定的SAR值上限标准为2W/kg,美国联邦通讯委员会( FCC)规定的最大SAR值为1.6W/kg,我国目前SAR的主要标准为YD/T 1644.1 《手持和身体佩戴使用的无线通信设备对人体的电磁照射》。在这里特别要注意的是SAR的测试数值是指峰值水平, 也就是要求被测手机处于最大功率发射模式下进行测量和评估!

远场天线测试系统

远场天线测量系统 睿腾万通 科技有限公司

目录 1概述 (3) 2用户需求分析 (4) 2.1用户需求 (4) 2.2用户远场环境 (4) 3远场天线测量系统特点 (5) 4远场天线测量系统 (5) 4.1系统组成 (5) 4.2系统清单 (6) 4.3系统布局 (8) 4.4系统原理 (8) 4.5系统测试能力 (11) 4.6射频链路预算 (11) 4.7系统扩展性 (12) 5分系统设计 (12) 5.1机械子系统 (12) 5.2控制子系统 (16) 5.3射频子系统 (17) 5.4天线测量软件 (20) 6培训 (21) 6.1安装期间培训 (22) 7系统维护、保修等 (23) 7.1服务优势 (23) 7.2专业的售后服务保障团队 (23) 7.3系统维护服务保障 (24)

1概述 成都睿腾万通科技有限公司很高兴能有机会为客户推荐一套由本公司研发、集成的的远场天线测量系统。睿腾万通公司是一家专门从事天线测量产品的研发、集成、生产与销售的高科技企业。公司以电子科技大学为技术依托,技术团队由多名业内资深的技术专家组成,团队成员的专业领域覆盖电磁场与微波技术,软件工程,自动化控制,结构机械等,具有博士、硕士学历人员占40%。公司具体从事业务覆盖通用近场、远场的开发与集成,基于通用天线测量系统的功能升级,数字阵、相控阵列快速测量与诊断的解决方案,以及天线测量技术咨询与服务。公司掌握远近场天线测量的核心算法与控制,具有丰富的系统集成与研发能力。 我们为国内多个用户提供过系统集成方案,测试频率从500MHz至110GHz,集成系统包括室内远场、室外远场、平面近场及紧缩场。 本方案推荐了一套多轴转台远场天线测量系统,以满足客户的当前以及未来产品的测量需求。推荐的远场测量系统采用4轴被测天线转台,集成是德科技的射频组建,使用睿腾万通公司自主开发的远场天线测量软件及控制系统,构成一套具有高可靠性,高性能的远场测量系统,测量系统除了能够进行常规的远场测量外,还具天线罩参数测量、相控阵及数字阵列的扩展功能。更进一步的细节将在后面的章节有所描述。 为了使客户充分地了解和使用此套天线测量系统的特性和功能,睿腾万通将在现场安装验收期间提供近场测量系统涉及到的测量理论、系统应用、实际操作和维护的详细培训。并在用户使用过程中提供良好的技术服务的咨询。 我们衷心希望能够同用户的专家合作,提供一套高性能远场测试系统。这是一个令人兴奋的工程,我们期待与客户在此项目上完美愉快和顺利的合作。

天线测试方法选择及评估

天线测试方法选择及评估 对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz以下的低频天线通常是使用锥形微波暗室(anechoic chamber),这是20世纪60年代就出现的技术。遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。因此,他们无法发挥这种技术的最大效用。 随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。其它技术包括近场和反射面测试。选用哪种天线测试场取决于待测的天线。 为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。 在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。远场测量可以在室内或室外测试场进行。室内测量通常是在微波暗室中进行。这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。在矩形微波暗室中,采用一种墙面吸波材料来减少反射。在锥形微波暗室中,锥体形状被用来产生照射。 图1:这些是典型的室内直射式测量系统,图中分别为锥形(左)和矩形(右)测试场。 近场和反射测量也可以在室内测试场进行,而且通常是近场或紧缩测试场。在紧缩测试场中,反射面会产生一个平面波,用于模拟远场行为。这使得可以在长度比远场距离短的测试场中对天线进行测量。在近场测试场中,AUT被放置在近场,接近天线的表面上的场被测量。随后测量数据经过数学转换,即可获得远场行为(图2)。图3显示了在紧缩测试场中由静区上的反射面产生的平面波。 图2:在紧缩测试场,平坦波形是由反射测量产生。 一般来说,10个波长以下的天线(中小型天线)最容易在远场测试场中测量,这是因为在可管理距离内往往可以轻松满足远场条件。对大型天线(electrically large antenna)、反射面和阵列(超过10个波长)来说,远场通常在许多波长以外。因此,近场或紧缩测试场可以提供更加可行的测量选项,而不管反射面和测量系统的成本是否上升。 假设天线测试工程师想要在低频下进行测量。国防部门对此尤感其兴趣,因为他们需要研究诸如在低频下使用天线等事项,以便更好地穿透探地雷达(GPR)系统中的结构(针对工作在400MHz范围的射频识别(RFID)标签),以及支持更高效的无线电设备(如软件定义无线电(SDR))和数字遥感无线电设备。在这种情况下,微波暗室可以为室内远场测量提供足够好的环境。 矩形和锥形是两种常见的微波暗室类型,即所谓的直接照射方法。每种暗室都有不同的物理尺寸,因此会有不同的电磁行为。矩形微波暗室处于一种真正的自动空间状态,而锥形

相关文档
最新文档