【免费下载】机械可靠性工程

【免费下载】机械可靠性工程
【免费下载】机械可靠性工程

设备可靠性工程复习题及答案

一、单项选择:

1、在工程中用以衡量产品质量的动态指标是(A、可靠性)

2、可靠性设计的重要内容之一是(C、可靠性预测)

3、属于可靠性在发展过程中形成相互关联方面的是(D、可靠性数学)

4、包括了产品全生命周期内的全部技术环节的是(D、可靠性工程)

5、下列不属于可靠性要点的是(A规定方法)

6、可靠性是产品在(C规定条件和规定时间)内完成规定功能的能力

7、属于可靠性特征量的是(D失效概率密度)

8、衡量产品可靠度的重要尺度是(B寿命特征)

9、下列不是离散型随机变量的是(D试件的寿命)

10、下列不是连续型随机变量的是(D产品的合格数)

11、应用最广泛并且也是一种基本的概率分布的是(A正态分布)

12、用于材料的疲劳强度和寿命,也用于产品寿命试验时失效时间的统计分析的分布是

B

13、指数分布描述了产品(B偶然失效期的寿命分布)

14、下列反映了所得结果的可信程度的是(B区间估计)

15、点估计具有(A无偏性)

44、机械设计中首先涉及到的问题是(D结构强度的可靠性)

16、要使零件能正常工作,强度与应力的关系是(A大于)

17、属于随机变量进行数学运算时常用方法的是(D代数法)

45、随机载荷是一种无规律的载荷,对其只能用的描述方法是(B试验统计)

18、通常用来描述小批量产品的离散程度的是(B极差)

19、材料力学特性参数包括(D材料的弹性模量)

20、疲劳强度修正系数包括(C应力集中系数)

21、主要承受扭矩的轴是(A传动轴)

22、圆柱螺旋弹簧的基本失效模式是断裂和(A疲劳破坏)

23、系统可靠性与组成系统的哪项无关(A单元功能)

24、在单元数目和单元可靠度相同的情况下,串并联系统的可靠度与并串联系统的可靠度的

关系是(C高于)

25、当单元可靠度相同时,组成的并联系统的可靠度最高的是(A两个单元)

25、当单元可靠度相同时,组成的串联系统的可靠度最低的是(A两个单元)

27、当储备单元完全可靠时,储备系统的可靠度与并联系统的可靠度的关系是(C大于)

28、串联系统的可靠度为单元可靠度之积,而系统的失效率为各单元失效率之(A和)

29、下列方法适用于各单元失效率为常数的串联系统的是(AGREE分配法)

30、下列不是选择元器件的基本依据的是(A元器件的外形)

31、为了抑制电容引起的浪涌电流,可以串联一个(B电感)

32、可靠性设计中必须采用的设计技术之一是元器件的(A减额使用)

33、属于电阻器主要降额参数的是(D电压)

34、属于传导干扰的形式(B电感耦合)

35、白盒测试法包括(A多重条件覆盖法)

36、下列方法属于黑盒测试法的是(A等价类测试法)

37、FTA方法采用的演绎推导方法是(A自上而下)

38、严重度可分为几个等级(D4)

39、FEMA方法采用的归纳分析方法是(B由下而上)

40、故障树符号包括(D事件符号)

41、下列属于下行法步骤的是(C逐级置换)

42、按可靠性试验环境分类的是(D现场试验)

43、属于机械产品加速寿命试验的应力类型的是(A恒定应力)

二、多项选择:

1、可靠性的重要性体现在哪几方面:(A、B、D)

2、可靠性工程的主要内容:(A、B、C、D)

30、可靠性设计具有(A、C、D)

3、可靠性要点包括:(A、B、C、D)

4、浴盆曲线的三个阶段:(A、B、D)

5、常用寿命指标:(A、B、C、D)

6、有效度函数可分为:(A、B、C)

7、连续型分布包括:(A、B、C、D)

8、离散型分布包括:(A、B)30D

9、随机变量进行数学运算的常用方法包括:(A、B、D)

10、材料力学特性参数包括:(A、B、C)

11、疲劳强度修正系数包括:(A、B、D)

12、滚动轴承的主要失效形式:(A、C、D)

13、下列属于系统可靠性分配方法的是:(A、B、C、D、E)

14、下列属于电子产品可靠性设计中特有的方法的是:(热设计B、冗余设计C、耐环境设计D、电磁兼容设计)

15、下列属于电子产品可靠性设计中特有的方法的是:(A、B、C、E)

A、降额设计

B、热设计

C、冗余设计E、耐环境设计

29、电子产品系统方案设计时应遵循的原则:(A、B、C、D)

A、简化方案

B、避免片面追求高性能指标和过多的功能

C、合理划分软硬件功能

D、尽可能用数字电路代替模拟电路

28、典型的过应力包括:(A、B、C、D)

A、浪涌

B、静电

C、噪声

D、辐射

16、为了抑制电感负载产生的瞬态反向电压,保护器件,可采用哪几种形式:

(A、B、C、D)

A、并接一个电阻

B、并联一个RC支路

C、并联二极管

D、采用齐纳二极管

17、潜在通道的表现形式主要有:(A、B、C、D)

A、潜在电路

B、潜在时间

C、潜在标志

D、潜在指示

18、热设计解决方法:(A、B、C)

A、降额使用

B、隔热

C、散热设计

D、冷却处理

19、传导干扰的形式:(A、C、D)

A、共阻耦合

B、电压耦合

C、电感耦合

D、电容耦合

20、辐射干扰的形式:(C 、D ) A 、电感耦合B 、电容耦合C 、辐射场耦合D 、感应场耦合21、环境防护原则:(A 、B 、C ) A 、热环境防护B 、力学环境防护C 、电磁环境防护D 、空气环境保护22、白盒测试法包括:(B 、C 、D 、E ) A 、边界测试法B 、路径覆盖法C 、语句覆盖法D 、判断/条件覆盖法E 、多重条件覆盖法23、故障树建树的步骤:(A 、B 、C 、D ) A 、熟悉系统B 、确定顶事件C 、确定边界条件D 、故障树建造24、上行法步骤:(A 、B 、D ) A 、逐级写B 、逐级代C 、逐级置换D 、运用逻辑运算法则25、下行法步骤:(A 、B 、C 、D ) A 、列表开始B 、逐级置换C 、列表方法D 、化简26、可靠性试验的要素:(A 、B 、C 、D 、E ) A 、试验条件B 、试验时间C 、样品抽取D 、故障判别原则E 、试验数据处理27、筛选方案设计遵循的原则:(A 、B 、C 、D 、E ) A 、筛选目的B 、筛选程序C 、筛选应力D 、筛选方法E 、筛选剔除率

三、填空:

1、在工程中(可靠性)是用以衡量产品质量的动态指标。

2、提高产品的(可靠性)可以减少停机时间和维护人员,提高产品使用率。

3、进行(可靠性试验)可以证实和评价产品的可靠性。

4、衡量产品可靠度的重要尺度是(寿命特征)。

5、数学期望反映了随机变量取值的(平均值)。

6、方差反映了全部随机变量值分布的(离散程度)。

7、结构强度可靠性设计的原理和方法与传统机械强度设计理论是一致的,不同的是对相关(物理参数)的处理。

8、构件在外力作用下在微元单位面积上产生的内力称为(应力)。

9、构件承受应力的能力极限称为(强度)。

10、可靠度计算的一般表达式:

δδδd dS S f f t R c b a ])()[()(??=11、根据中心极限定理,如果每一随机变量的变异系数小于0.1,则综合后的函数可认为是(正态)分布。

12、动载荷可分为确定性载荷和(随机)载荷

13、有效应力集中系数与理论应力集中系数的关系式是()

σK σa )1(1-+=σσa q K 14、轴按所受的载荷分为(传动轴)、心轴和转轴。

15、圆柱螺旋弹簧的基本失效模式是疲劳破坏和(断裂)。

16、在可靠性工程中,常用(可靠性系统逻辑图)表示系统各单元之间的功能可靠性关系。

17、逻辑图作用:一是反映单元之间的功能关系,二是为计算系统的(可靠度)提供数学模型。

18、串联系统的失效率(大于)该系统的每个单元的失效率。

19、随着单元数目的增加,串并联系统的可靠性提升,并串联系统的可靠性(下降)。

20、采用分析系统“正常”、“失效”的各种状态的布尔真值表法来计算可靠度的方法称为

(状态穷举法)。

21、可靠性分配的本质是一个(工程决策)问题。

22、电子元器件的可靠性分为(固有可靠性)和使用可靠性两部分。

23、质量等级越低,对应的质量系数值(越大)。

24、电磁干扰的传播途径分为(传导)和辐射两种。

25、失效模式影响分析和(故障树分析)是可靠性工程中常用的系统可靠性分析方法。

26、在进行FMEA分析时,可用硬件法和(功能法)两种形式。

27、危害度分析可用定性和(定量)两种分析方法。

28、故障树是一种评价复杂系统可靠性和(安全性)的一种方法。

29、系统可靠性分析的基础是(故障树)。

30、可靠性增长试验的目的是为了检查出产品存在的(可靠性)问题。

四、名词解释:

1、可靠性:产品在规定条件下和规定时间内完成规定功能的能力。

2、可靠度:是产品在规定条件下和规定时间内完成规定功能的概率。

3、失效率:是工作到某时刻时尚未失效的产品,在该时刻以后的下一个单位时间内发生失效的概率。

4、有效度:是指可维修的产品在规定条件下使用时,在某时刻具有或维持其功能的概率。

5、维修度:是指在规定条件下使用的产品发生故障后,在规定时间内完成修复的概率。

6、随机事件:这种结果具有不确定性而大量试验结果又具有规律性的现象。

7、串联系统:在组成系统的各单元中,只要有一个失效,则系统就失效的系统。

8、并联系统:组成系统的单元仅在全部发生故障后,系统才失效的系统。

9、表决系统:一个由n个单元组成的并联系统,只要其中k个单元不失效,系统就不会失效的系统。112C 10、可靠性分配:是将工程设计规定的系统可靠度指标合理地分配给组成该系统的各个单元,确定系统各组成单元的可靠性定量要求,从而保证整个系统的可靠性指标。

11、等分配法:是对系统中的全部单元配以相等的可靠度的方法,不考虑各个子系统的重要程度。

12、潜在通道:是指在系统所处的特定条件下,出现的未预期到的通路。

13、热设计:是采用适当可靠的方法控制产品内部所有电子产品的温度,使其在所处的工作环境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行的可靠性。

14、失效:是产品丧失规定的功能,即产品不再能够达到设计文本中规定的产品功能。

15、危害度:是综合产品每一故障模式的严重度和其在系统故障中所占概率的综合性指标,以评价产品故障对系统影响的大小。

五、简答题:

1、可靠性特征量有哪些?

1 可靠度、

2 不可靠度、

3 失效概率密度、

4 失效率

2、可靠性要点包括?

1 产品、

2 规定条件3、规定时间4、规定功能

3、常用寿命指标包括?

1 平均寿命2、可靠寿命3、中位寿命4、特征寿命

4、材料的力学特性参数包括?

1 材料的弹性模量、2、材料的静强度指标、3、材料的疲劳强度5、对串联系统的可靠性模型分析的结论? 1 串联系统的可靠度与组成系统的单元数量n 及单元的可靠度有关

2 串联系统的失效率大于该系统的每个单元的失效率

3 若串联系统的各个单元寿命服从指数分布,则该系统寿命也服从指数分布6、可靠性分配方法有哪些? 1 等分配法、2 相对失效率法3 相对失效概率法、

4 AGREE 分配法、

5 成本最小分配法7、储备系统与并联系统的区别? 区别是并联系统中每个单元一开始就同时处于工作状态,而储备系统中仅有一个单元工作,其余单元处于待机工作状态。8、故障树定性分析的目的? 目的就是找出导致顶事件发生的所有可能的故障模式,通过逻辑运算推导得到故障树的最小割集,即搞清顶事件发生时必同时存在的某些底事件的集合,从而可以判定系统可靠性最薄弱的环节。9、潜在通路分析的目的? 目的是在假定组成系统的所有元部件均正常工作的情况下,分析并找出那些能引起系统功能异常或抑制正常功能实现的潜在通路,为改进设计提供依据。10、软件工程化遵循的规范? 选择规范开发方法、建立以可靠性为核心的质量控制体系、软件重用、使用开发管理工具,合理配置设备资源和人力资源、加强测试。11、可靠性试验的目的? 1 对于研制中产品使达到规定的可靠性指标。2 对于研制定型产品进行可靠性鉴定。3 对于生产过程中的产品进行质量控制。4 对加工出的批量产品进行筛选把关。12、可靠性试验的要素包括? 1 试验条件、2 试验时间、3 样品抽取、4 故障判别原则、5 试验数据处理六、论述题:

1、可靠度与安全系数的关系? 由公式可知:222

122221)]1)(1(1[1S S v Z v Z v Z n ----+=

δ安全系数与联结系数Z (即可靠度R )间的关系,取决于强度分布的变异系数与n S v 应力分布的变异系数值的大小。

δv 当把代人时,亦可得公式可知:

S

n =21

22)(δσσ++=S Z S

n 当给定联结系数Z (即可靠度R )时,就确定了具此可靠度的安全系数均值的大小

n 2、对并联系统的分析可以得出的结论?

试卷电气设备,在安装

1 并联系统的失效概率低于各单元的失效概率。

2 并联系统的平均寿命高于各单元的平均寿命。并联系统的各单元服从指数寿命分布,该系统不再服从指数寿命分布。

3 并联系统的可靠度大于各单元的可靠度的最大值。

4 随着单元数的增加,系统的可靠度增大,系统的平均寿命也随之增加,但随着单元数目的增加,新增单元对系统可靠性及寿命提高的贡献越来越小。

3、在选用各类元器件时应遵循的主要原则?

1 在元器件型号、规格较多的情况下,应根据产品要实现的功能要求及环境条件选用,最好做到定点供应。

2 根据电路性能参数的要求选用元器件,此种方法应估算元器件使用时的应力情况,确定元器件的极限值,电路是使用条件不得超过元器件的电力与环境条件的额定值,或按降额设计技术选用元器件。

3 设计产品时应尽量选用标准元器件,并尽可能压缩采用元器件的品种、规格,提高元器件的复用率。对非标准的元器件要进行严格验证。

4 根据产品要求的可靠性等级,选用符合生产许可证审查要求的相应等级元器件。除特殊情况外,所以元器件均应经过“可靠性”筛选方可使用。

4、进行降额设计时应注意的问题?

1 对一般电子元器件降额幅值越大,设备的可靠性将会越高。但降额幅值过小,将带来设备的体积、重量和成本的增加。

2 有些元器件降额太大,易产生低电平失效。所以,应用中应注意规定电容器降额的低电平指标。

3 降额幅值的大小应考虑环境应力的变化,因在不同的环境中,元件的额定值在改变,所以应该根据产品的特殊性适当调整。

4 有些元器件的某些参数是不能降额的。

5 对器件进行降额应用时,不能将所受的各种应力孤立看待,应进行综合权衡。

6 不能用降额补偿的方法解决低质量元器件的使用问题,低质量产品要慎重使用。

5、产生潜在通路的原因?

1 由于设计的层次化分工,分系统设计人员对系统整体设计缺乏全面深入的认识,对如何适当地联结各分系统缺乏全面考虑

2 对修改设计给系统带来的影响未进行充分的审查及试验分析,尤其是在复杂的系统中

3 操作人员的差错

6、进行加速寿命试验要满足的基本条件?

1 在加速寿命试验条件下产品的失效机理与正常条件下产品的失效机理相同。

2 在加速寿命试验条件下产品的寿命分布模型不会改变,即其应力变化要在产品正常性能的允许范围之内。

3 产品特征寿命与所加应力存在确定函数关系。

我所认知的电子设备可靠性工程

我所认知的电子设备可靠性工程 04091102班04091061 石坚 摘要:说到到可靠性工程,由于这学期在学校开了个鸡排店,用到了油炸的机器,接触到了有关可靠性设计的部分。所以选了电子设备可靠性工程这门选修课,以便进一步了解机器的可靠性设计,尤其是和我们专业有关的电子设备的可靠性。可靠性是指产品在规定的条件下和规定的时间内完成规定功能的能力。任何产品不论是机械、电子,还是机电一体化产品都有一定的可靠性,产品的可靠性与实验、设计和产品的维护有着极大的关系。通过自己的亲身经历,觉得可靠性是个很重要的参数,而随着社会的进步和科学技术的发展,人们对电子设备、电子器件的可靠性更是要求越来越高。本文就电子元器件的可靠性,包括电子元器件在不同条件下的不同特征,元件失效的规律,发生故障的概率等做了简单的论述。 引言:可靠性的定义是系统或元器件在规定的条件下和规定的时间内,完成规定功能的能力。可靠性技术基于两个重要的理论基础:失效物理和概率统计,同时,它产生了两个重要的应用领域,即系统可靠性和元器件可靠性。在元器件可靠性领域又进一步可分为元器件固有可靠性和使用可靠性。前者主要研究元器件的设计和制造过程中的可靠性,后者侧重研究在电子系统研制过程中如何选好、买好、用好和管好元器件,防止、控制引入过应力而损坏可靠元器件和接收、使用可靠性不能满足要求得元器件。根据电子行业界分析,60%以上的生产故障是由于元器件失效引起的,70%以上的市场返修也是因为器件失效引起的。国内外地有关资料表明:在电子元器件的失效中,由于选择或使用不当等人为因素导致失效的比列高达失效数的50%以上。 一.提高电子产品的可靠性意义重大 提高产品的可靠性,可以防止故障和事故的发生,尤其是避免灾难性的事故发生,从而保证人民生命财产安全。1986年1月28日,美国航天飞机“挑战者”号由于1 个密封圈失效,起飞76s 后爆炸,其中7 名宇航员丧生,造成12 亿美元的经济损失;1992年,我国发射“澳星”时,由于一个小小零件的故障,使“澳星”发射失败,造成了巨大的经济损失和政治影响。

电子产品可靠性试验-环境试验要点

一、可靠性理论基础 二、试验(GB) 一.总则:GB2421-2008 电工电子产品环境试验 本系列标准不涉及环境试验样品性能要求,环境试验期间和试验以后,试验样品的容许性能限值由被试验样品的相关规范规定。 基准标准大气压:20℃,101.3KPa 测量与试验标准大气压:15℃-30℃,25%RH-75%RH,86KPa-106KPa。 自由空气条件:无限大空间,空气运动只受散热试验样品本身影响,样品辐射能量全部由周围空气吸收。 散热试验样品与非散热试验样品界定:在自由空气条件和试验标准大气压下,温度稳定后测得的试验样品温度与环境温度是否大于5℃。 环境温度:是采用在试验样品之下0mm - 5 0mm的一个水平面上面,而且与试验样品和试验箱壁等距离处或者距离试样品1 m处若干温度。( 二者取温度值小的) 的平均值。应采取适当措施防止热辐射影响这些温度的测量。 热稳定:试验样品表面温度与最后所测表面温度之差<3℃(非散热试验样最后所测表面温度即试验箱温度;散热试验样品则需多次测量才能确定) A: 低温。 B: 高温 C: 恒定湿热。 D: 交变湿热 E: 冲撞( 例如冲击和碰撞) 。 F: 振动。 G: 稳态加速度。 H: 待定( 原分配在贮存试验) 。 J : 长霉。 K: 腐蚀性大气( 例如盐雾) 。 L: 砂尘。 M: 高气压或低气压 N: 温度变化。 P : 待定( 原分配在“可燃性”试验) Q: 密封( 包括板密封,容器密封与防止流体浸入和漏出的密封) 。 R: 水( 例如雨水、滴水) 。 S : 辐射( 例如太阳辐射,但不包括电磁辐射) T: 锡焊( 包括耐焊接热) 。 U: 引出端强度( 元件的)。 V: 待定( 原分配在“噪声”. 但“噪声诱发的振动”将归于试验F g ,即“振动”系列试验之一) 。W: 待定。 X:作为字头与另一个大写字母一起用于新增加的试验方法命名。例如试验XA:在清洗剂中浸渍 Y: 待定。 Z:用于表示综合试验与组合试验。方法如下:Z后面跟一斜杠和一组综合实验或组合试验相关的大写字母。例如Z/AM:试验低温和低气压综合试验。 综合试验:≥2种试验环境同时作用于试验样品。组合实验:依次连续暴露≥2种试验环境分别进行试验 试验顺序(s e q u e n c e o f t e s t s)试验样品被依次暴露到两种或两种以上试验环境中的顺序。 1 各次暴露之间的时间间隔通常对试验样品不产生明显影响 2 各次暴露之间通常要进行预处理和恢复 3 通常在每次暴露之前和之后进行检测,前一项暴露的最后检测就是下项暴露的初始检测 受控恢复条件:实际试验温度±1℃(15℃-30℃),73%RH-77%RH,86KPa-106KPa。(测量前如果要求对试验样品进行干燥,除有关规范另有规定外,应在下述的条件下干燥6 h。标准干燥条件55±2℃/<20%) 恢复条件: 条件试验后,在检测之前:试验样品应在检测环境温度下稳定;当样品试验后电气参数变化很快,应按受控恢

电子产品可靠性试验

电子产品可靠性试验 第一章 可靠性试验概述 1 电子产品可靠性试验的目的 可靠性试验是对产品进行可靠性调查、分析和评价的一种手段。试验结果为故障分析、研究采取的纠正措施、判断产品是否达到指标要求提供依据。具体目的有: (1) 发现产品的设计、元器件、零部件、原材料和工艺等方面的各种缺陷; (2) 为改善产品的完好性、提高任务成功性、减少维修人力费用和保障费用提供信息; (3) 确认是否符合可靠性定量要求。 为实现上述目的,根据情况可进行实验室试验或现场试验。 实验室试验是通过一定方式的模拟试验,试验剖面要尽量符合使用的环境剖面,但不受场地的制约,可在产品研制、开发、生产、使用的各个阶段进行。具有环境应力的典型性、数据测量的准确性、记录的完整性等特点。通过试验可以不断地加深对产品可靠性的认识,并可为改进产品可靠性提供依据和验证。 现场试验是产品在使用现场的试验,试验剖面真实但不受控,因而不具有典型性。因此,必须记录分析现场的环境条件、测量、故障、维修等因素的影响,即便如此,要从现场试验中获得及时的可靠性评价信息仍然困难,除非用若干台设备置于现场使用直至用坏,忠实记录故障信息后才有可能确切地评价其可靠性。当系统规模庞大、在实验室难以进行试验时,则样机及小批产品的现场可靠性试验有重要意义。 2 可靠性试验的分类 2.1 电子装备寿命期的失效分布 目前我们认为电子装备寿命期的典型失效分布符合“浴盆曲线”,可以划分为三段:早期失效段、恒定(随机或偶然)失效段、耗损失效段。可参阅图1.2.1。 早期失效段,也称早期故障阶段。早期失效出现在产品寿命的较早时期,产品装配完成即进入早期失效期,其特点是故障率较高,且随工作时间的增加迅速下降。早期故障主要是由于制造工艺缺陷和设计缺陷暴露产生,例如原材料缺陷引起绝缘不良,焊接缺陷引起虚焊,装配和调整不当引起参数漂移,元器件缺陷引起性能失效等。早期失效可通过加强原材料和元器件的检验、工艺检验、不同级别的环境应力筛选等严格的质量管理措施加以暴露和排除。 恒定失效段,也称偶然失效段,其故障由装备内部元器件、零部件的随机性失效引起,其特点是故障率低,比较稳定,因此是装备主要工作时段。 耗损失效段,其特点是故障率迅速上升,导致维修费用剧增,因而报废。其故障原因主要是结构件、元器 件的磨损、疲劳、老化、损耗等引起。 2.2 试验类型及其分布曲线的变化 针对电子装备寿命期失效分布的三个阶段,人们在设计制造和使用装备时便有针对地采取措施,以提高可靠性和降低寿命周期的费用。在设计制造阶段,要尽量减少设计缺陷和制造缺陷,即便如此仍然会存在早期失效和随机失效。为此,承制方需要运用工程试验的手段来暴露和消除早期失效,降低随机失效的固有水平。通过这些措施,可以改变产品的寿命分布曲线的形状,可参阅图1.2.2。在耗损阶段,用户可通过维修和局部更新的手段延长装备的使用寿命。 图 1.2.2 示意了两组产品寿命失效率分布曲线,图中表明产品B 的可靠性水平比产品A 的优良,因为B 的恒定失效率比A 的低,B 的早期失效段比A 的短。如果曲线A 和B 是同一种产品的不同阶段的失效率分布,则表明该产品经过了可靠性增长试验,取得成效,因此曲线B 的恒定失效率大为 失效率 早期 耗损 失效 偶然失效段 失效 时间 图1.2.1 电子装备寿命期失效分布的浴盆曲线示意

电子产品可靠性试验国家标准清单

电子产品可靠性试验国家标准清单 GB/T 15120、1-1994 识别卡记录技术第1部分: 凸印 GB/T 14598、2-1993 电气继电器有或无电气继电器 GB/T 3482-1983 电子设备雷击试验方法 GB/T 3483-1983 电子设备雷击试验导则 GB/T 5839-1986 电子管与半导体器件额定值制 GB/T 7347-1987 汉语标准频谱 GB/T 7348-1987 耳语标准频谱 GB/T 9259-1988 发射光谱分析名词术语 GB/T 11279-1989 电子元器件环境试验使用导则 GB/T 12636-1990 微波介质基片复介电常数带状线测试方法 GB/T 2689、1-1981 恒定应力寿命试验与加速寿命试验方法总则 GB/T 2689、2-1981 寿命试验与加速寿命试验的图估计法(用于威布尔分布) GB/T 2689、3-1981 寿命试验与加速寿命试验的简单线性无偏估计法(用于威布尔分布) GB/T 2689、4-1981 寿命试验与加速寿命试验的最好线性无偏估计法(用于威布尔分布) GB/T 5080、1-1986 设备可靠性试验总要求 GB/T 5080、2-1986 设备可靠性试验试验周期设计导则 GB/T 5080、4-1985 设备可靠性试验可靠性测定试验的点估计与区间估计方法(指数分布)

GB/T 5080、5-1985 设备可靠性试验成功率的验证试验方案 GB/T 5080、6-1985 设备可靠性试验恒定失效率假设的有效性检验 GB/T 5080、7-1986 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案GB/T 5081-1985 电子产品现场工作可靠性有效性与维修性数据收集指南 GB/T 6990-1986 电子设备用元器件(或部件)规范中可靠性条款的编写指南 GB/T 6991-1986 电子元器件可靠性数据表示方法 GB/T 6993-1986 系统与设备研制生产中的可靠性程序 GB/T 7288、1-1987 设备可靠性试验推荐的试验条件室内便携设备粗模拟 GB/T 7288、2-1987 设备可靠性试验推荐的试验条件固定使用在有气候防护场所设备精模拟 GB/T 7289-1987 可靠性维修性与有效性预计报告编写指南 GB/T 9414、1-1988 设备维修性导则第一部分: 维修性导言 GB/T 9414、2-1988 设备维修性导则第二部分: 规范与合同中的维修性要求 GB/T 9414、3-1988 设备维修性导则第三部分: 维修性大纲 GB/T 9414、4-1988 设备维修性导则第五部分: 设计阶段的维修性研究 GB/T 9414、5-1988 设备维修性导则第六部分: 维修性检验 GB/T 9414、6-1988 设备维修性导则第七部分: 维修性数据的收集分析与表示 GB/T 12992-1991 电子设备强迫风冷热特性测试方法 GB/T 12993-1991 电子设备热性能评定

【免费下载】机械可靠性工程

设备可靠性工程复习题及答案 一、单项选择: 1、在工程中用以衡量产品质量的动态指标是(A、可靠性) 2、可靠性设计的重要内容之一是(C、可靠性预测) 3、属于可靠性在发展过程中形成相互关联方面的是(D、可靠性数学) 4、包括了产品全生命周期内的全部技术环节的是(D、可靠性工程) 5、下列不属于可靠性要点的是(A规定方法) 6、可靠性是产品在(C规定条件和规定时间)内完成规定功能的能力 7、属于可靠性特征量的是(D失效概率密度) 8、衡量产品可靠度的重要尺度是(B寿命特征) 9、下列不是离散型随机变量的是(D试件的寿命) 10、下列不是连续型随机变量的是(D产品的合格数) 11、应用最广泛并且也是一种基本的概率分布的是(A正态分布) 12、用于材料的疲劳强度和寿命,也用于产品寿命试验时失效时间的统计分析的分布是 ( B ) 13、指数分布描述了产品(B偶然失效期的寿命分布) 14、下列反映了所得结果的可信程度的是(B区间估计) 15、点估计具有(A无偏性) 44、机械设计中首先涉及到的问题是(D结构强度的可靠性) 16、要使零件能正常工作,强度与应力的关系是(A大于) 17、属于随机变量进行数学运算时常用方法的是(D代数法) 45、随机载荷是一种无规律的载荷,对其只能用的描述方法是(B试验统计) 18、通常用来描述小批量产品的离散程度的是(B极差) 19、材料力学特性参数包括(D材料的弹性模量) 20、疲劳强度修正系数包括(C应力集中系数) 21、主要承受扭矩的轴是(A传动轴) 22、圆柱螺旋弹簧的基本失效模式是断裂和(A疲劳破坏) 23、系统可靠性与组成系统的哪项无关(A单元功能) 24、在单元数目和单元可靠度相同的情况下,串并联系统的可靠度与并串联系统的可靠度的 关系是(C高于) 25、当单元可靠度相同时,组成的并联系统的可靠度最高的是(A两个单元) 25、当单元可靠度相同时,组成的串联系统的可靠度最低的是(A两个单元) 27、当储备单元完全可靠时,储备系统的可靠度与并联系统的可靠度的关系是(C大于) 28、串联系统的可靠度为单元可靠度之积,而系统的失效率为各单元失效率之(A和) 29、下列方法适用于各单元失效率为常数的串联系统的是(AGREE分配法) 30、下列不是选择元器件的基本依据的是(A元器件的外形) 31、为了抑制电容引起的浪涌电流,可以串联一个(B电感) 32、可靠性设计中必须采用的设计技术之一是元器件的(A减额使用) 33、属于电阻器主要降额参数的是(D电压)

电子产品可靠性测试规范

产品可靠性测试规范 1.目的 本文制定产品可靠性测试的要求和方法,确保产品符合可靠性的质量 要求。 2.范围 本文件适用本公司所有产品。 3.内容 3.1 实验顺序 除客户特殊要求外,试验样品进行试验时,一般按下表的顺序进行: 3.2实验条件 3.2.1 实验条件:

3.2.2 试验机台误差: a.温度误差:高温为+/-2℃,低温为+/-3℃. b.振动振幅误差:+/-15%. c.振动频率误差:+/-1Hz. 3.2.3 落地试验标准 3.2.3.1 落地试验应以箱体四角八边六面(任一面底部相连之四角、与此四角相连之八边, 六面为前、后、左、右、上、下这六个面)按规定高度垂直落下的方式进行。 重量高度 0~10kg以内75cm 10~20kg以内60 cm 20kg以上53 cm 3.2.3.2 注意事项: 5.2.3.2.1 箱内样品及包材在每个步骤后进行外观与功能性检验。 5.2.3.2.2 跌落表面为木板。 3.2.4 推、拉力试验方法和标准 3.2. 4.1、目的:为了评定正常生产加工下焊锡与焊盘或焊盘与基材的粘结质量。 3.2. 4.2、DIP类产品,需把元件用剪钳剪去只留下元件脚部分(要求留下部分 可以自由通过元件孔),且须把该焊盘与所连接的导线分开,然后固定 在制具上用拉力机以垂直于试样的力拉线脚(如下图),直到锡点或焊 盘拉脱为止,然后即可在拉力计上读数。 拉力方向 焊锡 焊盘

(图1) 3.2. 4.3、SMT类产品,片式元件用推力计以如下图所示方向推元件。推至元件或焊盘脱落后在推 拉力计上读数。并把结果记录在报告上。 三极管推力方向如下图所示,推至元件或焊盘脱落后在推拉力计上读数,并记录。 3.2. 4.4、压焊类产品,夹住排线(FFC或FPC)以如下图所示方向做拉力,拉至FFC或FPC 断或焊锡与焊盘脱离(锡点脱离)或焊盘与基材脱离(起铜皮),把结果记录在报告 上。 3.2. 4.5、产品元器件抽样需含盖全面规格尺寸。产品各抗推、拉力标准为;

王玉玺-212015472-机械与结构系统的可靠性概述

《机械与结构系统的可靠性》课程总结 授课教师:刘电霆教授 学生姓名:王玉玺班级:机械工程15级学号:212015472 1 机械可靠性设计原理 1.1安全系数设计法与可靠性设计方法 安全系数设计法主要指的是产品的设计主要满足产品使用要求和保证机械性能要求。 机械结构在承受外在载荷后,计算得到的应力小于该结构材料的许用应力,然后计算塑性材料静强度及脆性材料静强度,最后计算疲劳强度时。 可靠性设计:结构可靠性和机构可靠性 机械可靠性设计:定性可靠性设计和定量可靠性设计 1.2应力强度干涉理论及可靠度计算 可靠性设计理论的基本任务:在故障物理学研究的基础上,结合可靠性试验以及故障数据的统计分析,提出可供实际计算的物理数学模型及方法,如图一所示。 图一 可靠度的计算方法有: 数值积分法(已知应力和强度的概率密度函数f(s)和f(S)时,进行数值积分,求出可靠度R(t),基于Simpson法则并且利用计算机软件); 应力——强度干涉模型法; 功能密度函数积分法; 蒙特卡洛模拟法。 2 机械系统可靠性设计 机械系统可靠性设计主要分为可靠性预测设计和可靠性分配两个方面。2.1可靠性预测设计 系统可靠性预计是在方案设计阶段为了估计产品在给定的工作条件下的可靠性而进行的工作。根据系统、部件、零件的功能、工作环境及其有关资料,推

测给系统将具有的可靠度。是一个由局部到整体、由小到大、由下到上的过程,是一种综合的过程。 实现步骤为: 1)对被预计的系统做出明确定义 2)确定分系统 3)找出影响系统可靠度的主要零件 4)确定各分系统中所用的零部件的失效率 5)计算分系统的失效率 6)定出用以修整各分系统失效率基本数值的修正系数。 7)计算系统失效率的基本数值 8)定出用以对系统失效率的基本数值进行修正的修正系数 9)计算系统的失效率 10)计算系统的可靠度 2.2可靠性分配 可靠性分配指的是把系统的可靠性指标按一定的原则合理地分配给分系统和零部件的方法。 分配基本原则为: 1)对于改进潜力大的分系统或部件,分配的指标可以高一些。 2)由于系统中关键件发生故障将会导致整个系统的功能受到严重影响,因此关键件的可靠性指标应分配得高一些。 3)在恶劣环境条件下工作的分系统或部件,可靠性指标要分配得低一些。 4)新研制的产品,采用新工艺、新材料的产品,可靠性指标也应分配的低一些。 5)易于维修的分系统或部件,可靠性指标可以分配的低一些。 6)复杂的分系统或部件,可靠性指标可以分配的低一些。 3 故障模式影响分析 3.1 故障模式影响及危害性分析 3.1.1故障模式影响及危害分析(FMECA) 通过分析系统中各个零部件的所有可能的故障模式及故障原因以及对系统的影响,并判断这种影响的危害度有多大,从而找出系统中潜在的薄弱环节和关键的零部件、采取必要的措施,以避免不必要的损失和伤亡。 3.1.2故障模式影响分析(FMEA) 只作故障模式影响分析,不作危害性分析。 3.2故障树分析 故障树分析法的步骤: 1)建立故障树 2)建立故障树的数学模型 3)进行系统可靠性的定性分析 4)进行系统可靠性的定量分析 故障树分析法的优点: 1)图文兼备,表达清晰,可读性好,便于交流 2)是工程技术人员故障分析思维流的图解,易于掌握

浅谈机械可靠性工程

浅谈机械可靠性工程 1绪论 1.1可靠性研究的历史 可靠性是一门新兴的工程学科。产品的可靠性已成为衡量产品质量的重要指标之一。近年来,世界各发达国家已把可靠性技术和全面质量管理紧密结合起来,有力地提高了产品的可靠性水平。 可靠性工程的诞生可以追溯到20世纪40年代,即第二次世界大战期间。当时,由于战争的需要,迫切要求对飞机、火箭及电子设备的可靠性进行研究。德国的科学技术人员在V-1火箭的研制中,最先提出了火箭系统的可靠性等于所有元器件可靠度乘积的理论。到了20世纪50年代初期,美国为了发展军事的需要,投入了大量的人力、物力对可靠性进行研究,先后成立了“电子设备可靠性专门委员会”、“电子设备可靠性顾问委员会(AGREE )”等研究可靠性问题的专门机构。20世纪50年代,苏联为了保证人造地球卫星发射与飞行的可靠性,开始了可靠性的研究工作。同时,日本企业家认识到,要在国际市场的竞争中取胜,必须进行可靠性的研究,1958年,日本科学技术联盟成立了“可靠性研究委员会”。1961年,苏联发射第一艘有人驾驶的宇宙飞船,就在这一时期,苏联对可靠性问题展开了全面的研究。20世纪60年代是美国航空航天事业迅速发展的时期。NASA 和美国国防部接受并发展了20世纪50年代由“AGREE ”发展起来的可靠性设计及实验方案。随着计算机的发展,软件可靠性问题也在20世纪60年代末获得重视。20世纪70年代,电子设备或系统获得广泛应用,其可靠性问题日益获得人们的重视,同时,人们也开始了对非电子设备(如机械设备)可靠性的研究。 20世纪70年代由于我国国家重点工程的需要(元器件的可靠性问题),以及消费者的强烈要求(电视机的质量问题),各行各业开展了可靠性的研究,并获得巨大进步。20世纪80年代初,我国掀起了电子行业可靠性工程和管理的第一个高潮,组织编写可靠性普及教材,制订了相关标准,形成了一批研究可靠性的骨干队伍。20世纪90年代初,原机械电子工业部提出了“以科技为先导,以质量为主线”,沿着管起来-控制好-上水平的发展模式开展可靠性工作,兴起了我国第二次可靠性工作的高潮,取得了较大的成绩。我国可靠性工程虽然发展快,但应该看到,目前与发达国家相比还有很大差距,还应做出坚持不懈的努力。 1.2可靠性研究的重要性及其意义 产品的可靠性与企业的生命、国家的安全紧密相关;产品性能的优化、结构的复杂化要求有很高的可靠性;产品更新速度的加快,使用场所的广泛性、严酷性,要求有很高的可靠性;产品竞争的焦点是可靠性;大型产品的可靠性是一个企业、一个国家科技水平的重要标志。 1.3可靠性的定义和特征量 可靠性定义为,产品在规定的条件下和规定的时间内,完成规定功能的能力。 表示产品总体可靠性水平高低的各种可靠性指标称为可靠性特征量。可靠性特征量的真值是理论上的数值,实际中是不知道的。根据样本观测值,经一定的统计分析可得到特征量的真值的估计值。估计值可以是点估计,也可以是区间估计。按一定的标准给出具体定义而计算值。 常用的可靠性特征量有可靠度()R t 、失效概率(或不可靠度)()F t 、失效率()t λ、平均寿命t 、可靠寿命()t R 与中位寿命等。 失效率曲线(浴盆曲线)反映了产品总体整个寿命期失效率的情况,它包括三个阶段:早期失效期、偶然失效期和耗损失效期。 可靠性特征量中()R t 、()F t 、可靠度函数的概率密度()f t 和()t λ是4个基本函数,只要知道其中的一个,则所有其他的特征量均可求得。 1.4机械可靠性设计的特点和内容 机械可靠性设计与以往的传统机械设计方法不同,机械可靠性设计具有自身特点:以应力和

电子设备可靠性工程报告

电子设备可靠性工程报告 班级:05091101班 学号:05091010号 姓名:杨永旺 摘要:本学期选修了电子设备可靠性工程,对这项科学有了更深的了解,进一步了解了本学科在工业生产和科学研究上的重要性。从学习的专业上进一步应用到今后的工作中。电子科学与技术专业中,我们要有更多的可靠性分析,对于研究和生产中,需要对研究的成果进行进一步的分析,得出可行性结论,才能在更好地生产,才能验证产品真正的性能。集成电路当中存在很多不确定因素,需要我们进行可行性分析,进行可靠性验证。随着电子工业的飞速发展,电子设备和系统的可靠性问题越来越重要。我国在可靠性研究方面虽起步较晚,但从发达国家的经验中,也从自己的教训中充分认识到可靠性研究工作的重要性,近年来开展了大量的基础工作,已经为电子产品的设计人员提供了进行可靠性设计的条件。作为电子科学与技术专业的学生我们有必要进一步升入了解电子机械的可靠性技术。 引言:可靠性的定义是系统或元器件在规定的条件下和规定的时间内,完成规定功能的能力。从集成电路的诞生开始,可靠性的研究测试就成为IC设计、制程研究开发和产品生产中的一个重要部分。Jack Kilby在1958年发明了集成电路,第一块商用单片集成电路在1961年诞生;1962年9月26日,第一届集成电路方面的专业国际会议在美国芝加哥召开。当时会议名称为“电子学失效物理年会”;1967年,会议名称改为“可靠性物理年会”;1974年又改为“国际可靠性物会议”(IRPS) 并延续至今。IRPS已经发展成集成电路行业的一个盛会,而可靠性也成为横跨学校研究所及半导体产业的重要研究领域。 在世界各国中,美国的可靠性工程发展居领先地位,特别是它的军用标准对各国的影响极大。同时随着我国科学技术的发展,可靠性工程在我国的发展也逐步加快,在国际上占有一席之地。我国集成电路也在进一步发展,但是在这一过程中可靠性的问题也进一步凸显,下面我们经进一步针对我国的电子电路可靠性的发展与应用进一步进行论述,从而从中发现些问题,为以后的工作提供给一些帮助! 提高产品的可靠性有以下几方面的重要意义。 (1)提高产品的可靠性,可以防止故障和事故的发生,尤其是避免灾难性的事故发生,从而保证人民生命财产安全。1986年1月28日,美国航天飞机“挑战者”号由于1个密封圈失效,起飞76s后爆炸,其中7名宇航员丧生,造成12亿美元的经济损失;1992年,我国发射“澳星”时,由于一个小小零件的故障,

电子产品的可靠性试验研究及方法

电子产品的可靠性试验研究及方法 电子产品的可靠性是指产品在规定的条件下及规定的时间内完成规定功能的能力,它是电子产品质量的一个重要组成部分。一个电子产品尽管其技术性能指标很高,但 如果它的可靠性不高,它的质量就不能算是好的。 1、引言 电子产品的可靠性是指产品在规定的条件下及规定的时间内完成规定功能的能力,它是电子产品质量的一个重要组成部分。一个电子产品尽管其技术性能指标很高,但 如果它的可靠性不高,它的质量就不能算是好的。产品的可靠性不高将会给生产带来 很大损失,随着控制系统的大型化,一个系统所用的电子元件越来越多,只要其中一 个元件发生故障,一般都会导致整个系统发生故障,由此产生的经济损失将远远超过 一个元件本身的价值,所以元件的可靠性越来越重要。电子产品是否适应预定的环境 和满足可靠性指标,必须通过可靠性试验进行鉴定或考核;有时还需通过试验来暴露 产品在设计和工艺中存在的问题,通过故障分析确定主要的故障模式和发生的原因, 进而采取改进措施。所以可靠性试验不仅是可靠性活动的重要环节,也是进一步提高 产品可靠性的有效措施。 2、电子产品可靠性特点 电子产品的可靠性变化一般都有一定的规律,其特征曲线如图1所示,由于其形状象浴盆,通常称之为“浴盆曲线”。从图1可以看出,在产品试验和设计初期,由 于设计制造中的错误、软件不完善以及元器件筛选不够等原因而造成早期失效率高, 通过修正设计、改进工艺、老化元器件、以及整机试验等,使产品进入稳定的偶然失 效期;使用一段时间后,由于器件耗损、整机老化以及维护等原因,产品进入了耗损 失效期。这就是可靠性特征曲线呈“浴盆曲线”型的原因。 通常我们定义,在多次实验中,某随机事件出现的次数叫做该事件的频数。如在M次试验中,事件A出现的频数是M,则事件A出现的相对频数是M / N。在状态不变的条件下,在多实践中,事件A出现的相对频数就反映了该事件A出现的可能性。它 是事件A出现的一个大概的百分率,称为事件A概率,记为P(A)。 P(A)=M / N (N很大)(1)

浅谈机械工程的可靠性优化设计

浅谈机械工程的可靠性优化设计 近年来,随着我国科技水平的不断提升,各行各业都得到了不同程度的发展。尤其是工业机械水平的提升,使得我国机械制造领域发生了巨大的变化。为了促进我国机械工程的进一步发展,获取更多的经济效益和社会效益,应当对机械工程的可靠性进行优化。文章从我国机械工程产品的可靠性优化设计现状入手,对于可靠性优化设计在机械工程中的具体应用进行了简要的分析与探讨,以供有关工作人员参考与借鉴。 标签:机械工程;可靠性;优化设计;探讨 引言 当前,随着我国社会经济的不断发展,人们的生活水平有了很大程度的提高。在科学技术快速发展的背景下,人们对于多功能机械产品的需求也有所增加。然而,从实际情况来看,现如今还存在一部分多功能机械产品的实际应用功能难以实现。因此,我国机械制造业的发展还有待于进一步提高。作为综合多学科与多技术的新兴设计技术之一,可靠性设计在机械工程的产品设计过程中已经得到了广泛的应用。文章对机械工程可靠性优化设计进行了相应的分析与探讨,以期通过可靠性优化设计方法,能够提高机械工程产品的质量。 1 机械工程产品的可靠性优化设计现状分析 随着社会的不断发展,科学技术的进步推动着产品的更新与换代。人们生活水平的逐渐提高,对于产品的多功能性与可靠性提出了更高的要求。在科技水平不断提高的背景下,现有生产过程中所产出的机械工程产品的结构呈现出复杂化的特点。不但各式各样的优秀工艺被应用到生产制造中,而且产品的更新速度也在不断的加快。产品的结构复杂化特点,对于机械工程的可靠性设计提出了更高的要求。具体来讲,可靠性主要是指在特定要求的状态下,产品能够实现特定功效的水平。在机械制造领域中,生产单位要想生产出符合客户需求的产品,首先应当展开细致的规划设计,对于产品设计过程中潜在的问题要进行严格的控制,从而有效提升其稳定性,实现预期的目标。 然而,从我国机械制造业的发展历程来看,相较于一些发达国家而言,我国机械制造业的起步较晚,仍然存在着一定的差距。在此背景下,与机械制造相关的可靠性分析工作同样进展的比较缓慢。自二十世纪八十年代以后,我国在机械制造方面有了一定程度的突破,并成立了专门的研究机构。从总体上来看,对于机械工程可靠性优化设计研究的重点主要在于理论方面。然而,从实践的角度出发可以发现,在机械工程生产过程中运用理论来解决实际问题的现象比较少见。因此,侧重于理论层面的机械工程可靠性优化设计与研究,是存在很大的局限性的,对于我国机械工程可靠性优化设计构成了比较严重的制约。 2 可靠性研究的发展过程

《机械系统可靠性与故障诊断》课程总结

《机械系统可靠性与故障诊断》课程总结机械设备的检测诊断技术在现代工业生产中的作用不可忽视,随着科学技术的发展,机械设备越来越复杂,自动化水平越来越高,机械设备在现代工业生产中的作用和影响越来越大,与其有关的费用越来越高,机器运行中发生的任何故障或失效不仅会造成重大的经济损失,甚至还可能导致人员伤亡。通过对设备工况进行检测,对故障发展趋势进行早期诊断,找出故障原因,采取措施避免设备的突然损坏,使之安全经济地运转,在现代工业生产中起着重要的作用。本学期通过对《机械系统可靠性与故障诊断》这门课程的学习,了解到机械系统的可靠性和故障诊断的重要性,并对这门课程有了进一步地了解。接下来,我就针对在课程中所学到的相关内容,谈谈自己的理解和看法。 机械故障检测诊断的基本过程包含两方面内容:(1) 对设备运行状态进行检测;(2) 发现异常情况后对设备的故障进行分析、诊断。其发展也经历了从简易诊断到精密诊断,从一般诊断到智能诊断,从单机诊断到网络诊断的过程,发展速度愈来愈快。根据系统采用的特征描述和决策方法,故障检测诊断的方法概括起来分为:基于系统数学模型的故障诊断方法和基于非模型的故障诊断方法两大类。基于模型的故障检测诊断技术是通过构造观测器估计出系统输出,然后将它与输出的测量值比较,从中取得故障信息。该方法能与控制系统紧密结合,是监控、容错控制、系统修复和重构的前提;是以现代控制理论和现代优化方法为指导,以系统的数学模型为基础,利用观测器

(组) 、等价空间方程、滤波器、参数模型估计和辨识等方法产生残差,然后基于某种准则或阈值对该残差进行评价和决策。 而基于非模型的故障诊断方法主要包括以下几个方面:(1) 基于可测信号处理的故障诊断方法系统的输出在幅值、相位、频率及相关性上与故障源存在着某种关系,利用这种关系可确定系统的故障。常用的方法有谱分析、相关分析、功率谱分析和概率密度法。 (2) 基于故障诊断专家系统的诊断方法专家系统是近年来故障诊断领域最显著的成就之一,内容包括诊断知识的表达、诊断推理方法、不确定性推理以及诊断知识的获取等。随着计算机科学和人工智能的发展,基于专家系统的故障诊断方法克服了基于模型的故障诊断方法对模型的过分依赖性,成为故障检测的有效方法。 (3) 故障模式识别的故障诊断方法这是一种静态故障诊断方法,它以模式识别技术为基础,其关键是故障模式特征量的选取和提取。该方法分为离线分析和在线分析 2 个阶段。通过离线分析来确定表达系统故障状态的特征向量集和以该特征向量集所描述的故障模式向量,由此形成故障的基准模式集,并确定区分识别这些故障模式向量的判别函数,然后通过在线诊断实时提取故障的特征向量,由判别函数对故障进行分离定位。 (4) 基于故障树的故障诊断方法故障树是表示系统或设备特定事件或不希望事件与它的各子系统或各部件故障事件之间的逻辑结构图,通过结构图对系统故障形成的原因做出总体至部分按树状逐渐地详细划分。这是一种图形演绎法,把系统故障与导致该故障的各

实现机械工程的可靠性优化设计

实现机械工程的可靠性 优化设计 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

实现机械工程的可靠性优化设计自改革开放之后,中国的工程机械行业得到了前所未有的发展,经过30多年的不懈努力,机械工程制造业取得了巨大的发展成果,在国民经济中占有很大的比重。在机械工程行业里面,对其可靠性进行优化设计是十分必要的。在本文中,深入探讨了工程机械可靠性优化设计中的问题,以便参考。 现代社会,科学技术的发展已不可同日而语,人们不仅对多功能产品的强烈需求,还希望多功能产品的各项能力非常突出。以提高产品的功能可靠性为目的,促使了产品产品的可靠性优化设计应运而生,从其概念的产生到如今,得到了迅速发展和广泛使用。在开展工程机械产品的设计时,需要把可靠性理论和技术融合起来,并依据具体的要求,可以优先考虑产品的可靠性;在延误开发时间,增加成本和性能的前提下,使工程机械产品的设计尽量满足可靠性的要求。由于可靠性设计是一个跨多学科,多技术的新兴技术,所以可靠性的设计涉及诸多问题。 1.机械工程设计的可靠性常用方法 1.1.鲁棒设计方法

这种设计方法主要是降低产品的敏感性。使产品的性能不会因为制造期间在变异或是使用环境的变化而变得不稳定,并且让产品在额定的使用期限内,不会因为产品的结构发生变化,参数变动,系统老化等问题而影响到工作的设计方法。该方法是基于统计分析为基础由日本的机械设计师田口玄一提出的,它根据产品的可用性对用户造成多大的经济损失来判断设计的可靠,这是它的基本原理,其中的损失通常是可靠的用户流失的可用性正比于产品的功能和目标,简单而言就是损失越多说明偏差越大,从侧面反映出产品的质量不过关,减小偏差则是提高产品质量的有效办法,大多是通过严格控制材料和生产工艺,以达到最大限度地减少错误的目的。然而,这种方法的缺点同样十分明显,经费相对昂贵以及技术太过复杂,难以完成。经过人们不断的摸索和实验,提高自身的抗干扰能力已成为此方法的主要途径,此方法的途径也非常的多,它是将很多的办法融合起来。良好的机械强度会比较高增强产品的可靠性。 1.2.降额设计 这个方法是当产品工作时其零件所受的应力都在其额定范围之内,为了达到降低应力的目的可以使零部件的所承受的应力降低或是提高零部件的质量。根据大量的工程实践表明,机械故障率非常低的产品其机械零件都是在低于其设定的工作压力之下进行工作的,而可靠性也随之升高。为了找到最好的降额办法,就需要不断的进行反复的实验。这是就

机械可靠性工程1

设备可靠性工程复习题1 一、单项选择:(每题1 分,共15分) 1、在工程中用以衡量产品质量的动态指标是(A )3A A、可靠性 B、实用性 C、安全性 D、经济性 2、可靠性设计的重要内容之一是(C)4A A、安全性预测 B、实用性预测 C、可靠性预测 D、经济性预测 3、属于可靠性在发展过程中形成相互关联方面的是(D)4A A、可靠性估计 B、可靠性分析 C、可靠性计算 D、可靠性数学 4、包括了产品全生命周期内的全部技术环节的是( D )4A A、技术工程 B、生命工程 C、安全工程 D、可靠性工程 5、下列不属于可靠性要点的是(A)6B A 、规定方法 B 、规定条件 C 、规定时间 D 、规定功能 6、可靠性是产品在(C)内完成规定功能的能力6B A、规定条件 B、规矩时间 C、规定条件和规定时间 D、规定质量 7、属于可靠性特征量的是(D)6D A、安全性 B、不安全性 C、有效概率密度 D、失效概率密度 8、衡量产品可靠度的重要尺度是(B)10D A、技术特征 B、寿命特征 C、安全特征 D、经济特征 9、下列不是离散型随机变量的是(D)18D A、机器的故障数 B、产品的合格数 C、信号的采集数 D、试件的寿命 10、下列不是连续型随机变量的是(D)19D A、零件能承受的应力 B、试件的寿命 C、水库的水位 D、产品的合格数 11、应用最广泛并且也是一种基本的概率分布的是(A)22D A、正态分布 B、对数正态分布 C、威布尔分布 D、伽玛分布 12、用于材料的疲劳强度和寿命,也用于产品寿命试验时失效时间的统计分析的分布是 (B ) A、正态分布 B、对数正态分布 C、威布尔分布 D、伽玛分布26D 13、指数分布描述了产品(B)27D C、必然失效期的寿命分布 D、耗损失效期的寿命分布

电子产品可靠性设计总结V1.1.0

电子产品可靠性设计总结V1.1.0 一、 印制板 ㈠,数据指标 1,印制板最佳形状是矩形(长宽比为3:2或4:3),板面大于200*150mm时应考虑印制板所承受的机械强度。 2,位于边沿附近的元器件及走线,离印制板边沿至少2mm,以防止打耐压不过。 3,焊盘尺寸以金属引脚直径加上 0.2mm 作为焊盘的内孔直径。例如,电阻的金属引脚直径为 0.5mm,则焊盘孔直径为 0.7mm,而焊盘外径应该为焊盘孔径加1.2mm,最小应该为焊盘孔径加1.0mm。 4,常用的焊盘尺寸 焊盘孔直径/mm 0.4 0.5 0.6 0.8 1.0 1.2 1.6 2.0 焊盘外径/mm 1.5 1.5 2.0 2.0 2.5 3.0 3.5 4 5,元器件之间的间距要合适,以防止焊接时互相遮挡,导致无法焊接。 6,走线和元器件与边界孔、固定孔之间的距离要足够的大,以防止无法添加平垫和螺丝,也可防止可耐压时不能通过。 7,PCB板的尺寸要与相关的壳子相匹配,固定孔之间的位置也要与要关的壳体固定位置相适合。 8,尽量用贴片元件,尺可能缩短元件的引脚长度。(地线干扰) ㈡,设计方法 1,保证PCB板很好的接地。(信号辐射) 2,屏蔽板尽量靠近受保护物体,而且屏蔽板的接地必须良好。(电场屏蔽) 3,易受干扰的元器件不能离得太近。(元件布局) ㈢,注意事项 1,以每个功能电路为核心,围绕这个核心电路进行布局,元件安排应该均匀、整齐、紧凑,原则是减少和缩短各个元件之间的引线和连接。 2,使用敷铜也可以达到抗干扰的目的,而且敷铜可以自动绕过焊盘并可连接地线。填充为网格状,以散热。 3,包地。对重要的信号线进行包地处理,可以显著提高该信号的抗干扰能力,当然还可以对干扰源进行包地处理,使其不能干扰其它信号。 4,严格确保元器件的焊盘大小足以插入元器件。各个元件间的距离不能太近导致元器件无法放下或无法焊接。 5,尽量少用过孔。 6,画完印制板图后,看看每个元器件的标号的方向正否统一。 7,元器件的标号不能画在其它元器件的焊盘内,也不能被其它原器件挡住。 8、接口应有文字说明其接口功能定义。 9、安装孔周围应不能走线,防止螺丝与信号线短接。 二、 PCB走线 ㈠,数据指标

电子产品的可靠性试验

电子产品的可靠性试验 评价分析电子产品可靠性而进行的试验称为可靠性试验。试验目的通常有如下几方面: 1. 在研制阶段用以暴露试制产品各方面的缺陷,评价产品可靠性达到预定指标的情况; 2. 生产阶段为监控生产过程提供信息; 3. 对定型产品进行可靠性鉴定或验收; 4. 暴露和分析产品在不同环境和应力条件下的失效规律及有关的失效模式和失效机理; 5. 为改进产品可靠性,制定和改进可靠性试验方案,为用户选用产品提供依据。 对于不同的产品,为了达到不同的目的,可以选择不同的可靠性试验方法。可靠性试验有多种分类方法. 1. 如以环境条件来划分,可分为包括各种应力条件下的模拟试验和现场试验; 2. 以试验项目划分,可分为环境试验、寿命试验、加速试验和各种特殊试验; 3. 若按试验目的来划分,则可分为筛选试验、鉴定试验和验收试验; 4. 若按试验性质来划分,也可分为破坏性试验和非破坏性试验两大类。 5. 但通常惯用的分类法,是把它归纳为五大类: A. 环境试验 B. 寿命试验 C. 筛选试验 D. 现场使用试验 E.鉴定试验 1. 环境试验是考核产品在各种环境(振动、冲击、离心、温度、热冲击、潮热、盐雾、低气压等)条件下的适应能力,是评价产品可靠性的重要试验方法之一。 2. 寿命试验是研究产品寿命特征的方法,这种方法可在实验室模拟各种使用条件来进行。寿命试验是可靠性试验中最重要最基本的项目之一,它是将产品放在特定的试验条件下考察其失效(损坏)随时间变化规律。通过寿命试验,可以了解产品的寿命特征、失效规律、失效率、平均寿命以及在寿命试验过程中可能出现的各种失效模式。如结合失效分析,可进一步弄清导致产品失效的主要失效机理,作为可靠性设计、可靠性预测、改进新产品质量和确定合理的筛选、例行(批量保证)试验条件等的依据。如果为了缩短试验时间可在不改变失效机理的条件下用加大应力的方法进行试验,这就是加速寿命试验。通过寿命试验可以对产品的可靠性水平进行评价,并通过质量反馈来提高新产品可靠性水平。 3. 筛选试验是一种对产品进行全数检验的非破坏性试验。其目的是为选择具有一定特性的产品或剔早期失效的产品,以提高产品的使用可靠性。产品在制造过程中,由于材料的缺陷,或由于工艺失控,使部分产品出现所谓早期缺陷或故障,这些缺陷或故障若能及早剔除,就可以保证在实际使用时产品的可靠性水平。 可靠性筛选试验的特点是: A. 这种试验不是抽样的,而是100%试验; B. 该试验可以提高合格品的总的可靠性水平,但不能提高产品的固有可靠性,即不能提高每个产品的寿命; C. 不能简单地以筛选淘汰率的高低来评价筛选效果。淘汰率高,有可能是产品本身的设计、元件、工艺等方面存在严重缺陷,但也有可能是筛选应力强度太高。淘汰率低,有可能产品缺陷少,但也可能是筛选应力的强度和试验时间不足造成的。通常以筛选淘汰率Q和筛选效果β值来评价筛选方法的优劣:合理的筛选方法应该是β 值较大,而Q值适中。 上述各种试验都是通过模拟现场条件来进行的。模拟试验由于受设备条件的限制,往往只能对产品施加单一应力,有时也可以施加双应力,这与实际使用环境条件有很大差异,因而未能如实地、全面地暴露产品的质量情况。现场使用试验则不同,因为它是在使用现场进行,故最能真实地反映产品的可靠性问题,所获得的数据对于产品的可靠性预测、设计和保证有很高价值。对制定可靠性试验计划、验证可靠性试验方法和评价试验精确性,现场使用试验的作用则更大。 鉴定试验是对产品的可靠性水平进行评价时而做的试验。它是根据抽样理论制定出来的抽样方案。在保证生产者不致使质量符合标准的产品被拒收的条件下进行鉴定试验。 1 .可靠性设计的意义 ①可靠性贯穿于电子产品的整个寿命周期,从产品的设计、制造到安装、使用、维护的个阶段都有一个可靠性问题。但首先要抓好可靠性设计。产品可靠性的定量指标应该在设计过程就得到落实,为产品的固有可靠性奠定良好的基础。反之,一个忽视可靠性设计的产品,必然是“先天不足,后患无穷”,在使用过程中大部会暴露出一系列不可靠问题。据统计,由于设计不当而影响产品可靠性的程度占各种不可靠因素的首位。所以,我们必须扭转只搞性能指标设计,忽视可靠性设的倾向,在产品研制、设计阶段,认真开展可靠性设计,为产品固有可靠性奠定基础。②随着科学技术的进步和经济技术发展的需要,电子产品日益向多功能、小型化、高可靠方向发展。功能的复杂化,使设备应用的元器件、零部件越来越多,对可靠性要求也越来越高。每一个元器件的失效,都可能使设备或电子系统发生故障。

相关文档
最新文档