LDPC信道编译码算法研究

LDPC信道编译码算法研究
LDPC信道编译码算法研究

河北工业大学本科毕业设计(论文)前期报告

毕业设计(论文)题目: LDPC信道编译码算法研究

专业(方向):通信工程

学生信息: 学号:112198 姓名:杨昌兆班级:通信112

指导教师信息: 姓名:高军萍职称:副教授

报告提交日期:2015年3月11日

文献综述

通信系统最基本目的就是将信息从信源高效、可靠、以及安全地传送到信宿,所以有噪声干扰的通信信道不可避免地会对信道中传输的信息产生一定程度的干扰,这就可能降低通信的可靠性。以前人们认为通信系统的可靠性与有效性是一对无法调和的矛盾,一方的改善总会导致另一方受到损害,直到Shannon 信息和编码理论的奠基性论文“通信的数学理论”于1948年发表之后,人们才逐渐改变了这一观点。他在论文中首次提出了在有扰信道上实现可靠通信的一些方法,这就是通过信源信道的编码。

目前广泛使用的信道编码技术有,奇偶校验码、行列监督码、恒比码、汉明码、循环码(CRC)等编码技术。信道编码的本质是增加通信的可靠性,或者说增加整个系统的抗干扰性。对信道编码有以下要求:1.透明性:要求对所传消息的内容不加任何限制;2.有纠错能力;3.效率高:为了与信道频谱匹配和具有纠错能力,通常要向原信号添加一些码,要求加入最少的比特数而得到最大的利益;4.包含适当的定时信息。LDPC码就是其中的一种方式,它具有很多优势和特点。

根据 Shannon 提出的信道编码理论[1],他指出只要信息的传输速率低于信道容量C,就必然会存在一种编码方法,能使得信息出现差错的概率趋于0;这就是著名的信道编码定理。但遗憾的是Shannon 信道编码理论并没有指出具体的那一种编码方式能够实现码元传输速率逼近信道容量。

直到1962 年,Gallager在他的博士论文中提出了LDPC编码[2][3],但由于当时的计算能力,人们认为LDPC码不实用。直到Turbo码的出现,LDPC码才重新受到了人们的重视[5][6]。Tanner在他的一篇的文章中正式提出了用图模型来描述码字的概念,从而将LDPC码的校验矩阵对应到被称为Tanner图[7][8]的双向二部图上。采用Tanner图构造的LDPC码,通过并行译码可以显著地降低译码复杂度。Turbo码的发现重新引发了众多学者对LDPC码的研究兴趣。

后来MacKay和Neal利用随机构造的Tanner图研究了LDPC码的性能,发现采用和积译码算法的正则LDPC码具有和Turbo码相似的译码性能,在长码时甚至超过了Turbo码[9][10],这一结果引起了信道编码界的极大关注。此后,Davey和MacKay从减少Tanner图上小环路的概念出发提出了基于GF (q),q >2的LDPC码[11][12],进一步提高了LDPC码的译码性能。

在MacKay和Neal重新发现LDPC码优异性能的同时,Spielman和Sipser提出了基于二部扩展图的扩展码[13][14]。在对扩展码的研究过程中,他们证明了一个随机构造的Tanner图以很大的概率为好的扩展图,而由好的扩展图构造的线性纠错码是渐进好码,从而证明了采用随机Tanner图构造的LDPC码以很大概率是渐进好码。Luby等人将采用非正则Tanner图构造的扩展图用于删除信道,称之为Tornado码[15]。由于采用了非正则的Tanner图,Tornado码具有更大的扩展性和更好的收敛性,纠删性能更强。此后,采用优化度序列设计的非正则Tanner图被用于构造LDPC码,称为非正则LDPC码,与正则LDPC码相比,非正则LDPC码的性能得到显著的提高[16][17][18][19]。

同时,Wiberg结合Turbo码和网格图的研究,将Tanner 图推广到包含隐含状态变量的因子图[11][20],对Turbo码和LDPC码的研究在因子图的基础上得到统一。Wiberg对因子图的研究发现,对任意系统,无环图的状态复杂度是最大的,有环图的状态复杂度则会大大降低,从而证明了基于有环Tanner图的LDPC 码具有较低的译码复杂度。

近两年,Richardson等人应用密度进化理论来测度LDPC码的性能[21]。他们在对LDPC码的研究过程中发现,译码信息的迭代传递过程中存在着译码阈值现象,即当信噪比大于译码阈值时,迭代译码可使误码率趋于零,反之无论采用多长的LDPC码,经过多少次迭代译码,总存在一定的错误概率。应用中心极限定理,Richardson等人又证明了有限随机有环图的译码阈值可以逼近无环图的译码阈值。通过无环图上的密度进化理论,可以精确地计算无环图上LDPC码的译码阈值,分析其译码收敛条件,从而近似估算有环Tanner图上LDPC码的性能。研究表明,译码阈值的大小与LDPC码的构造参数密切相关,采用优化度序列设计的非正则LDPC码可以有效地改善阈值,因此密度进化理论可以用于指导LDPC码的优化设计。

此后Chung等通过对密度进化理论的研究,又进一步提出了应用高斯逼近原理来简化译码阈值计算和收敛性分析,从而使测度LDPC码性能的模型由多参数动态系统的密度进化理论模型简化为单一参数动态系统的高斯逼近模型[16][19]。

综上,本课题要基于在有限带宽信道条件下设计一种有效的编码译码方式,而且要求系统码编译码算法相对简单,信道的性能好,能有效克服噪声信号的干扰,减少信息传输过程中的损耗和错误,这就是LDPC 信道编译码算法研究。

参考文献:

[1] 刘玉君,信道编码[M].郑州:河南科学技术出版社,2001.9

[2] 袁东风,张海刚.LDPC码的理论与应用[M].北京:人民邮电出版社,2008

[3] 符初生,周亮,文红.LDPC码原理与应用[M].四川:电子科技大学出版社,2006

[4] 张建国.LDPC码的应用研究[J].通信技术.2003年11期2

[5] 贺鹤云,LDPC码基础与应用[M].北京:人民邮电出版社,2009

[6] 孙韶辉.慕建君.王新梅,低密度校验码研究及其新进展[J]-西安电子科技大学学报(自然科学

版)2001(03)

[7]R.G. Gallager. Low density parity-check codes. Cambridge, MA:MIT Press, 1963.

[8] R.M. Tanner. A recursive approach to low complexity codes. IEEE Trans. Inf. Theory, 27:533-547, Sept. 1981.

[9] D.J.C. MacKay. Good error correcting codes based on very sparse matrices. IEEE Trans. Inf.Theory, 45(2): 399-431, 1999.

[10] D.J.C. MacKay and R.M. Neal. Near Shannon limit performance of low-density parity check codes. Electron. Lett., 32:1645-1646, Aug. 1996.

[11] M.C. Davey. Error-correction using low-density parity-check codes. Ph.D. dissertation, University Cambridge, Cambridge, UK, Dec. 1999.

[12] M.C. Davey and D.J.C. Mackay. Low density parity check codes GF(q). IEEE Comm. Letters, 2(6):165-167, June 1998.

[13] D.A. Spielman. Linear-time encodeable and decodable error-correcting codes. IEEE Trans. Inf. Theory, 42(6):1723-1731, Nov. 1996.

[14] M. Sipser and D.A. Spielman. Expander codes. IEEE Trans. Inf. Theory, 42(6):1710-1722, Nov. 1996.

[15] M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, D.A.Spielman, and V. Stemann. Practical loss-resilient codes. In Proc. 29th Annu. Symp. Theory of Computing, pp.150-159, 1997.

[16] S.-Y. Chung, G.D. Forney, Jr., T.J. Richardson, and R. Urbanke. On the design of

low-density parity-check codes within 0.0045dB of the Shannon limit. IEEE Comm. Letters,

5(2):58-60, Feb. 2001.

[17] M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D.A. Spielman. Analysis of low-density codes and improved designs using irregular graphs. In Proc. 30th Annu. Symp. Theory of Computing, pp.249-258, 1998.

[18] T.J. Richardson, M.A. Shokrollahi, and R.L. Urbanke. Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory, 47(2):619-637, Feb. 2001.

[19] S.-Y. Chung, T.J. Richardson, and R.L. Urbanke. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation. IEEE Trans. Inf. Theory, 47(2):657-670, Feb. 2001.

[20] N. Wiberg, H.-A. Loeliger, and R. K?etter. Codes and iterative decoding on general graphs. European Trans. Telecomm., 6:513-525, 1995.

[21] T.J. Richardson and R.L. Urbanke. The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans. Inf. Theory, 47(2): 599-618, Feb. 2001.

前期报告

一、课题方案及工作计划

信道通信模型

1、LDPC信道编码算法研究

在 Mackay 和 Neal从新发现 LDPC 优异性能的同时,Spielman 和 Sipser 提出了基于二分图的扩展码。他们证明了一个随机构造的Tanner 图以很大的概率为好的扩展图,而由好的扩展图构造的线性纠错码是渐进好码,从而证明了采用随机Tanner图构造的 LDPC 码以很大概率是渐进好码。Luby 等人采用非正则 Tanner 图构造的扩展图用于删除信道,称之为Tornado码。由于采用了非正则的Tanner 图,Tornado 码具有更大的扩展性以及更好的收敛性,纠错能力更强。此后,采用优化度序列设计的非正则Tanner图被用于构造LDPC码,称为非正则LDPC码,与正则LDPC码相比,非正则LDPC码的性能得到显著的提高。同时,Wiberg结合Turbo码和网格码的研究,将Tanner图推广到包含隐含状态变量的因子图,对Turbo 码和LDPC码的研究在因子图的基础上得到统一。Wiberg对因子图的研究发现,无环图的状态复杂度是最大的,有环图的状态复杂度则会大大降低,从而证明了基于有环Tanner图LDPC码具有较低的译码复杂度。Wiberg同时还证明了最小和算法和和积算法在本质上的同一性,在格码译码中,最小和算法退化为Viterbi译码算法,和积算法退化为BCJR译码算法。2001年以来,LDPC码和通信系统中的其它先进技术的结合正在成为一个热点,Ben Lu等人提出的基于LDPC码的STC(Space-Time Coded)OFDM 系统,结合了空间分集,选择性衰落分集等技术,以较低的计算复杂度达到了较好的系统性能。

2、LDPC信道译码算法研究

Gallager 提出了 LDPC 码,并给出了两种译码算法:硬判决算法和软判决算法。译码算法应用了迭代思想,Gallager 是最早提出迭代译码思想的。已经证明迭代消息传送算法对于高性能低复杂度的编码方案是有效的。硬判决算法简单易行,但是性能较差;软判决算法性能较好,但实现复杂度太高。于是作为二者的折中,又提出了消息传递算法。Kschischang F R 等对消息传递算法作了推广,将它扩展为一种更加通用的算法:和积算法,并指出和积算法实际上包含了大量的实用译码算法(如前向/后向算法、BP 算法、Viterbi算法等)。Fossorier M P C研究了降低复杂度的LDPC码的迭代译码算法,提出了APP-Based 和

BP-Based 算法。在此基础上Jinghu Chen 和 Fossorier M P C提出了两种改进的BP-Based算法的密度演进算法及其离散形式。在性能分析及译码相关的一些方面,MacKay D J C和Hesketh C P研究了LDPC码采用BP算法译码时译码性能随实际嗓声变化的敏感程度,得出了噪声估计失配与译码性能的函数关系。Luby M G等给出了一种新的方法来分析LDPC码。Richardson T J和Urbanke R L提出了一种“密度寻优”的算法来近似估计噪声门限(在该门限以下可望成功地采用置信传播算法),同时给出了一种通用的方法,用来确定在具有离散或连续输出字符集的任何二元输入无记忆信道中采用message-passing算法译码的LDPC码的性能。

按照老师在任务书中的要求,我将依照计划做好各个时期的工作。具体安排如下:

第1周:熟悉课题,理解课题研究方向,明确课题研究目的,查阅与课题相关的文献资料。

第2周:整理文献资料,根据课题任务制定工作计划及设计步骤。

第3周:研究与课题相关的关键技术。

第4周:进行文献综述,制定设计方案,撰写并提交前期报告。

第5、6周:LDPC信道编译码算法原理及方法。

第7周:分析不同LDPC编译码算法特点并确定本课题使用算法。

第8、9周:建立算法模型,利用MATLAB实现算法,并对算法进行分析。

第10周:撰写并提交中期报告。

第11、12周:完善算法并比较分析处理结果。

第13周:整理材料,撰写并提交论文初稿。

第14、15周:进一步完善程序、修改论文,毕业设计论文定稿。

第16、17周:论文评审、答辩。

二、目前完成情况

根据本科毕业设计工作进度的安排,前两周首先熟悉课题,理解课题研究方向,明确课题研究目的,查阅与课题相关的文献资料。通过对相关文献的查阅和整理,对LDPC信道编译码算法的历史以及发展现状进行了学习和研究,目前为止,本次毕业设计的前期工作已经基本完成,各种文献资料的查阅与整理工作即将告一段落,对于本课题的设计方案也已经有了初步的规划与框架。主要对LDPC信道编译码算法有了比较多的了解,初步确定了课题的总体设计方案,完成了前期报告的初稿。并在老师的指导下,进行进一步的完善,完成毕业设计前期报告。

三、从中得到的启示

通过对本课题的初步了解,以及查阅一些相关资料,我知道了LDPC信道编译码算法主要是为了解决如何在通信中加强通信系统的可靠性问题,在通信中,我们为了减少错码,必须对码元进行信道编码,通过编码我们虽然增加了码元冗余度,但是我们换的了码元传输可靠性能的提高,这样的代价往往是值得的。LDPC信道编译码算法的研究现在已经取得了很大突破,对信道编译码理论做出了很大贡献。也是现代科研的热门话题。

COFDM信道编码与同步技术的研究

武汉理工大学 宽带网络技术论文COFDM信道编码与同步技术的研究

目录 摘要 (2) ABSTRACT (3) 1. COFDM概述 (4) 1.1 COFDM简介 (4) 1.2 COFDM基本原理简介 (4) 2. COFDM的编码 (6) 2.1 RS码 (6) 2.2卷积码 (7) 2.3 交织 (7) 3. COFDM中的同步技术 (9) 3.1 COFDM中采样钟同步的实现 (9) 3.2符号同步和载波同步 (10) 4. 总结 (12) 5. 参考文献 (13)

摘要 编码正交频分复用(COFDM)是一种多载波数字通信调制技术,它具有频谱利用率高和可对抗多径时延扩展等特点,因此通常被认为是超3代移动通信系统中的核心技术。其基本原理是将频域中的一个宽带信道划分成多个重叠的子信道进行窄带传输。在接收端,虽然频谱相互重叠,但是只要保证各子信道上信号的正交性,就可以将各信道上的信号正确分离。 本文重点研究了COFDM通信系统中的编码技术,包括RS码、卷积码、交织码。还研究了COFDM通信系统中的同步技术,详细分析了钟同步、符号同步和载波同步的原理和实现方法。 关键词:编码正交频分复用、编码、同步、频谱

ABSTRACT Coded orthogonal frequency division multiplexing (COFDM) is a multi-carrier modulation digital communication technology, combined with high spectrum efficiency, combat multi-path delay spread and other characteristics, which is generally considered over the 3rd generation mobile communication system core technology. The basic principle is the frequency domain, a broadband channel into multiple overlapping narrowband sub channels for transmission. At the receiving end-device, the channel's signal can be properly separated while the orthogonal of sub-channel can be ensured despite of the spectral overlap. This paper introduces the COFDM coding techniques in communications systems, including RS codes, convolution codes, interleaved code. COFDM, and studied synchronization in communication systems, introduce a detailed analysis of clock synchronization, symbol synchronization and carrier synchronization of the principle and method. KEYWORDS: COFDM, code, synchronization, spectrum

通信原理(第7版)复习资料

通信原理复习资料 第一章 绪论 1、模拟通信系统模型 模拟通信系统是利用模拟信号来传递信息的通信系统 2、数字通信系统模型 数字通信系统是利用数字信号来传递信息的通信系统 3、数字通信的特点 优点: (1)抗干扰能力强,且噪声不积累 (2)传输差错可控 (3)便于处理、变换、存储 (4)便于将来自不同信源的信号综合到一起传输 (5)易于集成,使通信设备微型化,重量轻 (6)易于加密处理,且保密性好 缺点: (1)需要较大的传输带宽 (2)对同步要求高 4、通信系统的分类 (1)按通信业务分类:电报通信系统、电话通信系统、数据通信系统、图像通信系统 (2)按调制方式分类:基带传输系统和带通(调制)传输系统 (3)按信号特征分类:模拟通信系统和数字通信系统 (4)按传输媒介分类:有线通信系统和无线通信系统 (5)按工作波段分类:长波通信、中波通信、短波通信 (6)按信号复用方式分类:频分复用、时分复用、码分复用 ★★5、通信系统的主要性能指标:有效性和可靠性 有效性:指传输一定信息量时所占用的信道资源(频带宽度和时间间隔), 是“速度”问题; 模拟通信系统模型 信息源 信源编码 信道译码 信道编码信 道数字调制 加密 数字解调解密 信源译码 受信者 噪声源 数字通信系统模型

可靠性:指接收信息的准确程度,也就是传输的“质量”问题。 (1)模拟通信系统: 有效性:可用有效传输频带来度量。 可靠性:可用接收端解调器输出信噪比来度量。 (2)数字通信系统: 有效性:用传输速率和频带利用率来衡量。 可靠性:常用误码率和误信率表示。 码元传输速率R B :定义为单位时间(每秒)传送码元的数目,单位为波特(Baud ); 信息传输速率R b :定义为单位时间内传递的平均信息量或比特数,单位为比特/秒。 6、通信的目的:传递消息中所包含的信息。 7、通信方式可分为:单工、半双工和全双工通信 ★8、信息量是对信息发生的概率(不确定性)的度量。一个二进制码元含1b 的信息量;一个M 进制码元含有log 2M 比特的信息量。 9、信息源的熵,即每个符号的平均信息量:)x (p log )x (p I i 2n 1 i i ∑=- = 结论:等概率发送时,信息源的熵有最大值。 第二章 信道与噪声 一 确知信号与随机过程 1、确知信号:是指其取值在任何时间都是确定的和可预知的信号,通常可以用数学公式表示它在任何时间的取值。 2、确知信号的类型 (1)按照周期性区分:周期信号和非周期信号 (2)按照能量区分:能量信号和功率信号: 特点:能量信号的功率趋于0,功率信号的能量趋于¥ 3、确知信号在频域中的性质有四种,即频谱、频谱密度、能量谱密度和功率谱密度。 4、确知信号在时域中的特性主要有自相关函数和互相关函数。 ★ 5、自相关函数反映一个信号在不同时间上取值的关联程度。能量信号的自相关函数R (0)等于信号的能量;功率信号的自相关函数R (0)等于信号的平均功率。 6、随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。 ★7、随机过程具有随机变量和时间函数的特点,可以从两个不同却又紧密联系的角度来描述:①随机过程是无穷多个样本函数的集合②随机过程是一族随机变量的集合。 ★8、随机过程的统计特性由其分布函数或概率密度函数描述。 9、高斯过程的概率分布服从正态分布,它的完全统计描述只需要它的数字特征。 ★★10、瑞利分布、莱斯分布、正态分布是通信中常见的三种分布:正弦载波信号加窄带高斯噪声的包络为莱斯分布;当大信噪比时,趋近于正态分布;小信噪比时近似为瑞利分布。 11、窄带随机过程:若随机过程x (t )的谱密度集中在中心频率f c 附近相对窄的频带范围Df 内,即满足Df << f c 的条件,且 f c 远离零频率,则称该x (t )为窄带随机过程。 ★★12、宽平稳随机过程的定义:P ??. ★★13、各态历经性定义及应用:P ?? 宽平稳与各态历经性的关系。 二、信道分类: (1)无线信道 - 电磁波(含光波)

信道编码技术研究开题报告

毕业设计开题报告 题目信道编码技术研究 一、研究背景 近些年来,数字通信领域尤其是移动通信,卫星通信和计算机通信有了巨大的增长。在这些系统中,信息被表示成一个二进制的码元序列。然后这些二进制的码经过调制并被送到传输信道中传输。 由于环境干扰和传输介质的物理缺陷,数据在传输中可能损坏并发生错误。因此为了确保一个可靠的传输,信息在传输过程中需要增加保护措施。差错控制编码就是这样的一种应用,在数字通信中用于保护信息不被噪声低干扰和检错纠错上,以此来减少误码数,进而提高通信的质量。 二、国内外研究现状 随着现代通信技术和计算机技术的迅速发展,每天都在不断涌现新的通信业务和信息业务,同时用户对通信质量和数据传输速率的要求也在不断提高。1948年,数学家Shannon 提出了嫡及了信道容量的概念,同时他还提出了著名的信道编码定理从而奠定了信息理论的基础.当今社会,信道编码技术的纠错码包含有RS编码、卷积码、和Turbo码等。RS编码即里德-所罗门码,它能够纠正多个错误的纠错码。卷积码非常适用于纠正随机错误,但是,解码算法本身的特性却是:如果在解码过程中发生错误,解码器可能会导致突发性错误。为此在卷积码的上部采用RS码块,RS码适用于检测和校正那些由解码器产生的突发性错误。所以卷积码和RS码结合在一起可以起到相互补偿的作用。Turbo码是一种先进的信道编码技术,由于其不需要进行两次编码,所以其编码效率比传统的RS+卷积码要好。在现今社会,信道编码广泛使用于卫星通信、无人机测控、深空通信、移动通信、水声通信等数字通信系统,甚至被采纳到某些无线通信的标准之中,如GSM、IS-95和CDMA2000的标准。随着信道编码理论和数字通信技术不断发展,信道编码技术会在通信工程领域得到越来越广泛的应用。 三、论文进行的主要工作 1.信道编码:为了与信道的统计特性相匹配,并区分通路和提高通信的可靠性,而在信源编码的基础上,按一定规律加入一些新的监督码元,以实现纠错的编码。 数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象。所以通过信道编码这一环节,对数码流进行相应的处理,使系统具有一定的纠错能力和抗干扰能力,可极大地避免码流传送中误码的发生。 2.卷积码:将k个信息比特编成n个比特,但k和n通常很小,特别适合以串行形式进行传输,时延小。卷积码编码器以二元码为例,输入信息序列为u=(u0,u1,…),其多项式表示为u(x)=u0+u1x+…+ulxl+…。编码器的连接可用多项式表示为g(1,1)(x)=1+x+x2和g(1,2)(x)=1+x2,称为码的子生成多项式。它们的系数矢量g(1,1)=(111)和g(1,2)=(101)称作码的子生成元。以子生成多项式为阵元构成的多项式矩阵G(x)=[g(1,1)(x),g(1,2)(x)],称为码的生成多项式矩阵。由生成元构成的半无限矩阵。

LDPC信道编译码算法研究

河北工业大学本科毕业设计(论文)前期报告 毕业设计(论文)题目: LDPC信道编译码算法研究 专业(方向):通信工程 学生信息: 学号:112198 姓名:杨昌兆班级:通信112 指导教师信息: 姓名:高军萍职称:副教授 报告提交日期:2015年3月11日 文献综述 通信系统最基本目的就是将信息从信源高效、可靠、以及安全地传送到信宿,所以有噪声干扰的通信信道不可避免地会对信道中传输的信息产生一定程度的干扰,这就可能降低通信的可靠性。以前人们认为通信系统的可靠性与有效性是一对无法调和的矛盾,一方的改善总会导致另一方受到损害,直到Shannon 信息和编码理论的奠基性论文“通信的数学理论”于1948年发表之后,人们才逐渐改变了这一观点。他在论文中首次提出了在有扰信道上实现可靠通信的一些方法,这就是通过信源信道的编码。 目前广泛使用的信道编码技术有,奇偶校验码、行列监督码、恒比码、汉明码、循环码(CRC)等编码技术。信道编码的本质是增加通信的可靠性,或者说增加整个系统的抗干扰性。对信道编码有以下要求:1.透明性:要求对所传消息的内容不加任何限制;2.有纠错能力;3.效率高:为了与信道频谱匹配和具有纠错能力,通常要向原信号添加一些码,要求加入最少的比特数而得到最大的利益;4.包含适当的定时信息。LDPC码就是其中的一种方式,它具有很多优势和特点。 根据 Shannon 提出的信道编码理论[1],他指出只要信息的传输速率低于信道容量C,就必然会存在一种编码方法,能使得信息出现差错的概率趋于0;这就是著名的信道编码定理。但遗憾的是Shannon 信道编码理论并没有指出具体的那一种编码方式能够实现码元传输速率逼近信道容量。 直到1962 年,Gallager在他的博士论文中提出了LDPC编码[2][3],但由于当时的计算能力,人们认为LDPC码不实用。直到Turbo码的出现,LDPC码才重新受到了人们的重视[5][6]。Tanner在他的一篇的文章中正式提出了用图模型来描述码字的概念,从而将LDPC码的校验矩阵对应到被称为Tanner图[7][8]的双向二部图上。采用Tanner图构造的LDPC码,通过并行译码可以显著地降低译码复杂度。Turbo码的发现重新引发了众多学者对LDPC码的研究兴趣。 后来MacKay和Neal利用随机构造的Tanner图研究了LDPC码的性能,发现采用和积译码算法的正则LDPC码具有和Turbo码相似的译码性能,在长码时甚至超过了Turbo码[9][10],这一结果引起了信道编码界的极大关注。此后,Davey和MacKay从减少Tanner图上小环路的概念出发提出了基于GF (q),q >2的LDPC码[11][12],进一步提高了LDPC码的译码性能。

水声通信系统中的信道编码技术研究

水声通信系统中的信道编码技术研究 信道编码定理为人们探索信道的最佳编码方案提供了理论依据,但并没有指明如何获得好码。目前,出现了多种信道编码方案,如RS 码、卷积码、级联码等。本文简要介绍了RS 码和卷积码的基本原理,并进行了相应的计算机仿真,并给出了加入了RS 码和卷积码水声通信系统的水池实验数据,结果表明利用信道编码技术能够提高水声通信系统的误码性能。 (一)Reed -Solomon 码 1960 年I.S Reed 和G .Solomond 提出RS 码,又称Reed -Solomon 码,RS 码是一类纠错能力很强的多进制BCH 码。 RS 码是在GF(q)上长度为N=q-1的本原BCH 码。冗余根据可纠正错误确定,通常等于2t 个字符。这样,编码具有k=q-2t-1个信息字符。这种码具有N 个信息字符,可纠正t 个错误。长度为N ,设计距离为=q-k δ的RS 码的生成多项式为: )())()(()(1321-----=δααααx x x x x g (1) 本论文系统中实现的编码器按图1工作。开始编码前,向A0~A13或A0~A11单元写入信息字符(分别对应1个或2个可纠错码)。P0~P15单元记载类构造器算出的校验多项式的系数值。然后校验多项式系数和信息字相乘并相加,如图所示。运算的结果得出校验字符,存入A0(此时,信息字符向左移位)。生成过程继续,直到A15出现信息字高位元素。这样,在编码中,为纠正1个错误,必须进行2次迭代;为纠正2个错误,必须进行4次。 ∑ 图1 RS 码编码器的结构 纠错码的译码问题,一直是编码理论中最感兴趣的课题之一。RS 在短和中的码长下,具有很好的纠错性能,构造容易,故得到广泛应用。 RS 的译码基本上分为3步:第一步是由接收到的R(x)计算出伴随式;第2步由伴随式找出错误图样E(x);第3步由R(x)- E(x)得到可能发送的码字C(x)。 记q(x)为信息多项式,则发送码字C(x)=q(x)g(x),接收到的码字:

通信原理(陈启兴版)第1章课后习题答案

第1章引言 1.1 学习指导 1.1.1 要点 本章的要点有通信系统的数学模型,通信系统的分类及通信方式,信息及其度量,通信系统的主要性能指标。 1.通信系统的数学模型 通信系统是指传递消息所需的一切技术设备(含信道)的总和。通信系统的作用就是将信息从信源发送到一个或多个目的地。 (1)一般模型 以图1-1所示的功能框图来表示。 图1-1通信系统的一般模型 信息源。信源所产生的信息可以是声音、图像或文本。信息源一般包含变换器,将信源的输出变换成电信号。例如,用作变换器的话筒,可以将语音信号变换成电信号,而摄像机则将图像信号变换成电信号。这些设备输出的信号一般称为基带信号。在接收端,使用类似的变换器就可以将接收到的电信号变换成适合用户的形式,如声音信号、图像等。 发送设备。发送设备将原始基带电信号变换成适合物理信道或其他传输介质传输的形式。例如在无线电和电视广播中,通信部门规定了各发射台的频率范围,因此,发射机必须将待发送的信息信号转换到适合的频率范围来发送,以便与分配给此发射机的频率相匹配。这样,由多个无线电台发送的信号就不会彼此干扰。又如果信道是光纤组成的,那么发送设备就要将处理好的基带信号转换光波信号再发送。因此发送设备涵盖的内容很多,可能包含变换、放大、滤波、编码调制等过程。对于多路传输系统,发送设备中还包括多路复用器。 信道。信道用于将来自发送设备的信号发送到接收端的物理介质。信道可以分为两大类:无线信道和有线信道。在无线信道中,信道可以是大气、自由空间和海水。有线信道有双绞电话线、同轴电缆及光纤等。信道对不同种类的信号有不同的传输特性,但都会对在信道中传输的信号产生衰减,信道中的噪声和由不理想接收机引入的噪声会引起接收信号的失真 接收设备。接收设备的功能是恢复接收信号中所包含的消息信号。使用和发送端相

数字通信系统中信道编码技术的研究

数字通信系统中信道编码技术的研究 xx (xx,湖北武汉,xx) 摘要:目前,中国固定和移动两大网络的规模都已位居世界第2位,上网用户也在不断增加,中国的信息通信制造业也得到很大的发展。中国将加快建设新一代信息通信网络技术、生产体系。在信息通信网络的高速发展下,要有效地提高传输速率,然而在实际信道上传输数字信号时,由于信道特性的不理想以及加性噪声和人为干扰的影响,系统输出的数字信息不可避免地会出现差错。因此,为了保证通信内容的可靠性和准确性,每一个数字通信系统对输出信息码的差错概率即误码率都有一定的要求。 为了降低误码率,常用的方法有两种:一种是降低数字信道本身引起的误码,可采取的方法有:选择高质量的传输线路、改善信道的传输特性、增加信号的发送能量、选择有较强的抗干扰能力的调制解调方案等; 另一种方法就是采用差错控制措施,使用信道编码。在许多情况下,信道的改善是不可能的或是不经济的,这时只能采用信道编码方法。因此实现信道编码方法具有重要的意义。 关键词:信道;误码率;信道编码 1. 信道编码 在数字电视和通信系统中,为提高信息传输可靠性,广泛使用了具有一定纠错能力的信道编码技术,如奇偶校验码、行列监督码、恒比码、汉明码、循环码(CRC)等编码技术。信道编码的本质是增加通信的可靠性,或者说增加整个系统的抗干扰性。对信道编码有以下要求:1.透明性:要求对所传消息的内容不加任何限制;2.有纠错能力;3.效率高:为了与信道频谱匹配和具有纠错能力,通常要向原信号添加一些码,要求加入最少的比特数而得到最大的利益;4.包含适当的定时信息。在这些要求中,除编码的必须信息外,所作的处理主要有两条:一是要求码列的频谱特性适应通道的频谱特性从而使传输过程中能量损失最小,提高信噪比。减少发生差错的可能性;二是增加纠错能力,使得即便出现差错,也能得到纠正。 2.三种不同系统的无线信道 (1)数字微波中继通信系统中的无线信道 一般意义下的数字微波中继系统主要用于固定站点之间的无线通信,通常使用1GHZ以上的频段,采用视距通信。为了能够传输更远的距离,需要微波站建设在海拔较高的地方,通常在站点设计时使用微波链路满足自由空间传播条件,即视线距离地面有足够的余隙,此时信号的衰减近似看作只有由于距离的增加而带来的信号能量的扩散,信道条件比较稳定。 (2)短波电离层信道 对于短波电离层信道,电离层随机扰动和多径效应是最主要的特点。电离层扰动本质上决定了短波电离层反射通信的特点,即信道不稳定,信号的起伏和衰落较大。多径效应是指无线信号经过

信道编码 北京邮电大学教材 通信原理 PPT

信道编码基本概念 线性分组码 循环码 卷积码 交织技术 Hailiang Xiong Shandong University

?实际信道中传输数字信号时,由于信道传输特性的不理想及加性噪声的影响,我们接收到的数字信号不可避免地会发生错误。 ?合理设计基带信号,选择调制解调方式等可以使误比特率降低;但如果得到的误比特率仍无法满足要求,则必须采用信道编码,即差错控制编码来降低误比特率。 Hailiang Xiong Shandong University

?信道编码的基本做法: 在发送端给被传输的信息序列附加上一定的监督码元,这些多余的监督码元和信息码元之间有某种确定的关连规则(约束关系)。 接收端则按照这种既定的规则检验信息码元与监督码元之间的关系,一旦传输中发生错误,则信息码元和监督码元之间的关系将受到破坏,从而可以发现错误甚至纠正错误。 Hailiang Xiong Shandong University

1.信道编码在通信系统中的位置和作用 Hailiang Xiong Shandong University

2.信道编码的基本分类:线性码和非线性码;分组码和非分组 码(依据构造,编译码过程,性能指标)。 ?三种主要的信道编译码原理 线性分组码 循环码 卷积码 3.了解其他类型的信道编码以及相关编码界限 ?信道编码的性能分析 ?信道编码的发展与应用 Hailiang Xiong Shandong University

9.1 信道编码的基本概念 1. 信道传输所引起的差错类型 随机差错:一般无记忆信道中发生噪声独立随机的干扰每个传输码元——接收码元中错误也是独立随机出现。高斯白噪声信道、 卫星信道、光纤信道、微波视距中继传播信道 突发差错:一般有记忆信道中发生噪声、干扰具有相关性——错误成对成串出现。实际衰落信道、无线移动信道、短波信道等 混合信道:信道中既有独立随机错误也有突发性错误发生 Hailiang Xiong Shandong University

星间链路信道编码技术研究

摘要 星间链路的通信信道由于传输距离遥远加上存在来自各个方面的无线电干扰,使信号传输时延大,造成信号能量衰减严重。因此有必要在星间链路通信中采用信道编码。Turbo码与LDPC码以其各自逼近香农限的优越性能被引入到CCSDS标准并在卫星通信领域被广泛应用。 本文首先研究了Turbo码的编码原理及译码算法,在此基础上完成了Turbo码编译码系统的设计并对影响Turbo码性能的参数进行了分析和仿真。然后对LDPC码的编译码进行了系统的分析和研究,并结合星间链路信道的特点,选用QC-LDPC码字,设计了LDPC码编译码方案并对仿真结果进行了分析。 在此基础上,本文还根据Log-BP算法,结合PSO优化算法给出了改进的LDPC码译码算法并对该算法进行了仿真验证,仿真结果表明该算法性能与Log-BP算法相比在一定条件下可获得0.1dB的额外编码增益。 最后,论文根据对LDPC码的分析,运用Verilog语言在Quartus II环境下完成了LDPC码编译码器的FPGA设计,设计选用QC-LDPC码字和最小和算法,译码部分采用部分并行结构。论文对该设计进行了初步的编译码性能测试并对对译码器的码速率及占用资源进行了详细分析。综合结果表明在资源消耗上比以往设计有了很大改进。 关键词:星间链路,Turbo码,LDPC码,译码算法,部分并行译码结构

Abstract The inter-satellite channel of ISL has large signal transmission time and serious signal attenuation because of long transmission distance and wireless interference from many aspects. Therefore it is necessary to using channel coding in inter-satellite channel. Turbo codes and LDPC codes have been introduced to CCSDS standard with their excellent performances of approaching to Shannon Limit and widely used in Satellite Communication. This thesis firstly researches the basic theory of Turbo codes and the method of Turbo codes encoding and decoding, and then analyses the factors which impact the performance of Turbo codes. The analyses are proved by the simulation results. Then this thesis offers a comprehensive study on the performance of LDPC codes. The author then presents a scheme of LDPC codes encoding and decoding with QC-LDPC codes combined with characteristics of ISL channel whereafter the simulation results are given and analysed. Ulteriorly, the author presents a new decoding algorithm based on Log-BP and PSO algorithm followed by simulation results, which shows that performance of proposed decoding algorithm is 0.1dB better than that of standard Log-BP decoding at certain conditions. Finally, this thesis finishes the design FPGA program for LDPC codes encoding and decoding based on Quartus II system with Verilog language. The hardware decoding algorithm is SPA algorithm and is designed by partly parallel structure. Based on it, the author tests the system's primary encoding and decoding performance and analyses the decoder's decoding rate and expended resources, which shows a great improvement on hardware resources consumption compared to previous architectures. Keywords:ISL, Turbo Codes, LDPC Codes, Decoding Algorithm, Partly Parallel Decoding Structure

通信原理(第六版)课后思考题及习题答案

第一章绪论 1.1以无线广播和电视为例,说明图1-1模型中的信息源,受信者及信道包含的具体内容是什么 在无线电广播中,信息源包括的具体内容为从声音转换而成的原始电信号,收信者中包括的具体内容就是从复原的原始电信号转换乘的声音;在电视系统中,信息源的具体内容为从影像转换而成的电信号。收信者中包括的具体内容就是从复原的原始电信号转换成的影像;二者信道中包括的具体内容分别是载有声音和影像的无线电波 1.2何谓数字信号,何谓模拟信号,两者的根本区别是什么 数字信号指电信号的参量仅可能取有限个值;模拟信号指电信号的参量可以取连续值。他们的区别在于电信号参量的取值是连续的还是离散可数的 1.3何谓数字通信,数字通信有哪些优缺点 传输数字信号的通信系统统称为数字通信系统;优缺点: 1.抗干扰能力强; 2.传输差错可以控制; 3.便于加密处理,信息传输的安全性和保密性越来越重要,数字通信的加密处理比模拟通信容易的多,以话音信号为例,经过数字变换后的信号可用简单的数字逻辑运算进行加密,解密处理; 4.便于存储、处理和交换;数字通信的信号形式和计算机所用的信号一致,都是二进制代码,因此便于与计算机联网,也便于用计算机对数字信号进行存储,处理和交换,可使通信网的管理,维护实现自动化,智能化; 5.设备便于集成化、微机化。数字通信采用时分多路复用,不需要体积较大的滤波器。设备中大部分电路是数字电路,可用大规模和超大规模集成电路实现,因此体积小,功耗低; 6.便于构成综合数字网和综合业务数字网。采用数字传输方式,可以通过程控数字交换设备进行数字交换,以实现传输和交换的综合。另外,电话业务和各种非话务业务都可以实现数字化,构成综合业务数字网;缺点:占用信道频带较宽。一路模拟电话的频带为4KHZ带宽,一路数字电话约占64KHZ。 1.4数字通信系统的一般模型中的各组成部分的主要功能是什么 数字通行系统的模型见图1-4所示。其中信源编码与译码功能是提高信息传输的有效性和进行模数转换;信道编码和译码功能是增强数字信号的抗干扰能力;加密与解密的功能是保证传输信息的安全;数字调制和解调功能是把数字基带信号搬移到高频处以便在信道中传输;同步的功能是在首发双方时间上保持一致,保证数字通信系统的有序,准确和可靠的工作。1-5按调制方式,通信系统分类? 根据传输中的信道是否经过调制,可将通信系统分为基带传输系统和带通传输系统。 1-6 按传输信号的特征,通信系统如何分类? 按信号特征信道中传输的信号可分为模拟信号和数字信号,相应的系统分别为模拟通信系统和数字通信系统。 1-7按传输信号的复用方式,通信系统如何分类? 频分复用,时分复用,码分复用。 1-8单工,半双工及全双工通信方式是按什么标准分类的?解释他们的工作方式并举例说明他们是按照消息传递的方向与时间关系分类。单工通信是指消息只能单向传输的工作方式,通信双方只有一个进行发送,另一个只能接受,如广播,遥测,无线寻呼等。半双工通信指通信双方都能进行收发信息,但是不能同时进行收发的工作方式,如使用统一载频的普通对讲机。全双工通信是指通信双方能同时进行收发消息的工作方式,如电话等。 1-9通信系统的主要性能指标是什么? 分为并行传输和串行传输。并行传输是将代表信息的数字信号码元以组成的方式在两条或两条以上的并行信道上同时传输,其优势是传输速度快,无需附加设备就能实现收发双方字符同步,缺点是成本高,常用于短距离传输。串行传输是将代表信息的数字码元以串行方式一

实验六 线性分组码的信道编码和译码

1.MATLAB 2. MATLAB 1.256M P4CPU 2.MATLAB 1. K N NK NK N K r=NK52 N=5K=2f

c()=m()G G 30T CH 0T GH H H G : C y 2) e S (5,2) 21 2.1a G b G nk H;c 2a G b G nk H

c S d e e c=y+e 1. 2.G 3.G 1. 2. close all; clc; G=input('G, :G=[10111;01101]\n G='); G; [k,n]=size(G); r=n-k; m=input('m, m=[00011011]\n m='); l=length(m); if(mod(l,k)) disp(''); else ge=l/k; temp1=[]; for i=1:ge temp1(i,:)=m(k*(i-1)+1:i*k); end m=temp1; c=mod(m*G,2); A=G(:,k+1:n);H=[A',eye(r)]; disp(''); H disp(''); c end disp(''); pause y=input('y,:y=[00 00001101101111001 0]\n y='); temp2=[]; for i=1:ge temp2(i,:)=y(1,n*(i-1)+1:i*n); end y=temp2 s=mod(y*H',2); e=s*pinv(H'); for i=1:ge for j=1:n if(e(i,j)>0.5-eps) e(i,j)=1;

信道编码方法与循环码编、译码实现

科技信息 SCIENCE&TECHNOLOGYINFORMATION2013年第7期0前言 20世纪50年代以来,数字计算机和数字通信得到极大的发展, 我们已感受到计算机和通信的这种进步所产生的广泛而深刻的影响。 而这种现代的优越性除了技术进步之外,我们应该强调的是由于新的 数学思想和工具的运用。 由于热噪声的干扰使之产生错误,会造成传输中的数据信号失 真。串行数据的差错检验是保证数据传输正确的必要手段。因为循环 码的编码和译码设备较简单,且纠、检错能力强,所以循环码是差错码 中最常用的一种编码。 循环码是线性分组码中最重要的一种子类,它除了具有分组码的 线性外,还具有循环性,其码字结构一般用符号(n ,k )表示,其中n 是 该码组中的码元数,k 是信息码元位数,r=n-k 是监督码元位数。 基于PLD 的EDA 技术的发展和应用领域也不断地扩大与深入, EDA 将迅速成为电子设计领域中的极其重要的组成部分。EDA 技术 在电子信息、通信、自动控制及计算机应用等领域的重要性日益突出。1循环码编、译码的具体实现 1.1可编程逻辑器件的设计流程 1.1.1设计输入 设计输入分为原理图输入和语言输入。常用的方法是:顶层用原 理图,底层用语言,设计采用层次化设计。相应的仿真则先是功能模块 的仿真,后是时序仿真,均调试无误后,进行系统级仿真。 1.1.2功能仿真 设计输入完成后,进行功能仿真,验证电路功能是否有效。此时, 只运行仿真网表的提取,产生仿真网表文件而不作布局布线。在仿真 时需加入激励信号,该激励信号可以用波形编辑器直接产生波形文 件。 1.1.3设计项目编译 主要完成器件的选择及适配,逻辑的综合及器件的装入,延时信 息的提取。编译器可以检查项目中的错误并进行逻辑综合,将设计实 现到具体的器件中去,并为模拟和编程产生各种输出文件。 1.1.4时序仿真 编译后,下一步是进行时序仿真,利用软件提供的timing analyzer 。计算点到点的器件延时矩阵,确定器件引脚上信号的建立时 间与保持时间要求,还可计算最高的时钟频率。 1.1.5编程下载 完成设计后,软件产生一个编程文件,对于SRAM 工艺的PLD ,上 电后,由这片配置EEPROM 对PLD 器件加载数据,一般几个毫秒后, PLD 即可正常工作。 1.1.6器件测试 JTAG 是1980年Joint Test Action Group 开发的用于测试高密度 引线器件和高密度电路板上的器件的标准。其测试可用BSDL —— —VHDL 的子集来描述测试的方法及步骤,产生的BDL 文件用于测试 分析器件。 1.2总原理框图 循环码编译码系统的总原理图如图1,由五部分组成:定时单元、 信码发生器显示部分、编码器、模拟信道部分、译码器。 1.3各功能模块原理图及仿真1.3.1定时单元模块本单元提供时序信号及译码器所需的帧信号SW 及K1、K2、K3等。原理图如图2,仿真波形如图3。JK 触发器J 、K 连在一起,相当于T 触发器。触发器JK1、JK2、JK3、JK4及D5的输出分别为Q1、Q2、Q3、Q4、Q5。K1为信息位串行输入控制信号,K2为纠错信号输入控制,K3为寄存器清零信号。SW 是每30个CP 维持1个脉冲的高电平;K1是每30个CP 维持6个脉冲的高电平;K2也是每30个CP 维持6个脉冲的高电平,但K2是在K1出现高电平后的15个脉冲时,来控制错码位置信号输出,K3紧接着K2的下降沿,是系统的清零控制信号。图2定时单元模块原理图图3定时单元模块仿真图1.3.2信码发生器模块本单元给编码器提供信号源,手控开关置于+5V 时,发光二极管亮,代表输入“1”码元;若开关置于“0”,代表输出“0”码元。信码从“000000”到“111111”共有26种状态,代表64个码字。每个码字均由手控开关组成。在SW 信号作用下,与门开启,手控信号IN1~IN6并行 信道编码方法分析与循环码编、译码实现Coder and Decoder of CRC 马德凯崔荣喜商梅敬 (山东电力集团公司东营供电公司,山东东营257091) 【摘要】介绍了循环码编译系统的特点。从一个(15,6)循环码编译实验系统入手,分析研究其编、译码实现方法,并在仿真软件QUARTUS II 上具体实现。在实验中,输入6位信息码元CDIN ,经编码器编码后,可得到码长为15的输出信号CDOUT ,信道无错码条件下,把CDOUT 作为译码器的输入。 【关键词】循环码;可编程逻辑器件;EDA ;信道编码 【Abstract 】The CRC(Cyclic Redundancy Check)coder and decoder system was introduced.Starting from a(15,6)CRC coder system,the experiment analyzed its encoding,decoding method,and achieved simulation on QUARTUS II.In the experiment,inputting a 6bit informational code CDIN to the coder,a output code of 15bit may be obtained.Under the condition that the channel has no error,take CDOUT as the input of the decoder,the output signal is same to CDIN. 【Key words 】CRC ;L ogic device schematic ;EDA ;C hannel coding 图1 循环码编译码系统框图 ○IT论坛○100

信道编码之线性编码译码matlab

clc; clear all; k=input('输入信息元\n'); g=[1,0,0,1,0,0,1;0,1,0,1,1,1,0;0,0,1,0,1,1,1]; [row,col]=size(g); rest=rem(length(k),row); if(rest==0) %输入的信元0补余,保证满足能和生成矩阵相乘的形式 co=1; else co=1; rest1=row-rest+length(k); k(length(k):rest1)=0; end for n=1:row:length(k); %编码过程 c(co,:)=k(n:n+row-1)*g; co=co+1; end [row,col]=size(c); for n=1:row %编码后的码字展开 c1(col*n-col+1:col*n)=c(n,:); end y=c1;%过高斯信道 % c=mod(c,2); h=[1,1,0,1,0,0,0;0,1,1,0,1,0,0;0,1,1,0,0,1,0;1,0,1,0,0,0,1]; gni=pinv(g); %生成矩阵的逆矩阵,译码用 [row,col]=size(h); co=1; for n=1:col:length(y); %整合接收码字与校验矩阵相乘验证传输正确性 cy(co,:)=y(n:n+col-1); co=co+1; end t=cy*h'; t=mod(t,2); if(t==0) disp('接收码字正确'); m=cy*gni; %译码 [row,col]=size(m); for n=1:row k1(col*n-col+1:col*n)=m(n,:); end k1=round(abs(k1)) else disp('接收码字错误'); End

信道编码技术研究

信道编码技术研究 摘要:信道编码是通过信道编码器和译码器实现的用于提高信道可靠性的理论和方法。本文介绍了几种主要的信道编码技术,分析了他们的原理以及它在各个方面的应用和研究,并对各种编码方法的优缺点进行了总结,对信道编码的未来进行了展望。 关键词:信道编码、原理、研究 1 信道编码原理 信道编码是为了与信道的统计特性相匹配,并区分通路和提高通信的可靠性,而在信源编码的基础上,按一定规律加入一些新的监督码元,以实现纠错的编码。信道编码大致分为两类:①信道编码定理,从理论上解决理想编码器、译码器的存在性问题,也就是解决信道能传送的最大信息率的可能性和超过这个最大值时的传输问题。②构造性的编码方法以及这些方法能达到的性能界限。编码定理的证明,从离散信道发展到连续信道,从无记忆信道到有记忆信道,从单用户信道到多用户信道,从证明差错概率可接近于零到以指数规律逼近于零,正在不断完善。编码方法,在离散信道中一般用代数码形式,其类型有较大发展,各种界限也不断有人提出,但尚未达到编码定理所启示的限度,尤其是关于多用户信道,更显得不足。在连续信道中常采用正交函数系来代表消息,这在极限情况下可达到编码定理的限度。不是所有信道的编码定理都已被证明。只有无记忆单用户信道和多用户信道中的特殊情况的编码定理已有严格的证明;其他信道也有一些结果,但尚不完善。 信道编码还有以下几类方式:按字码的功能分为纠错码和检错码;按监督码元与信息码元分为线性码和非线性码;按照对信息码元和监督码元的约束关系的不同又分为分组码和卷积码,按照信息码元在编码后是否保持原来的形式分类,有系统码和非系统码。 线性分组码是差错控制码,由于认识此种码的思路与概念直观而条理清晰,并对编码中的一些重要参量和纠错能力提供一系列明确的概念,从而也为介绍其它差控码奠定有力基础。分组码是一组固定长度的码组,可表示为(n , k),通常它用于前向纠错。在分组码中,监督位被加到信息位之后,形成新的码。在编

线性分组码的信道编码和译码

clear %编码 G=input('请输入生成矩阵G,例如:G=[1 0 1 1 1;0 1 1 0 1]\n G='); [k,n]=size(G); r=n-k; m=input('请输入需传送信息m,如m=[0 0 0 1 1 0 1 1]\n m='); l=length(m); if(mod(l,k)) disp('输入的信息有误'); else ge=l/k; %将输入序列转化成矩阵m temp1=[]; for i=1:ge temp1(i,:)=m(k*(i-1)+1:i*k); end m=temp1; %求校验矩阵H c=mod(m*G,2); A=G(:,k+1:n); H=[A',eye(r)]; disp('校验矩阵');H disp('译码矩阵');c end disp('敲回车键继续'); pause %解码 y=input('输入接收序列y,如:y=[0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0]\n y='); temp2=[]; for i=1:ge temp2(i,:)=y(1,n*(i-1)+1:i*n); end y=temp2 s=mod(y*H',2); e=s*pinv(H'); for i=1:ge for j=1:n

if(e(i,j)>0.5-eps) e(i,j)=1; else e(i,j)=0; end end end cc=mod(y+e,2); %cc=xor(y,e) sc=cc(:,1:2); disp('差错图样'); e disp('估计值'); cc disp('译码序列'); sc

相关文档
最新文档