《二次函数》易错题以及分析

合集下载

二次函数常见易错题解析_二次函数易错题

二次函数常见易错题解析_二次函数易错题

二次函数常见易错题解析_二次函数易错题常见易错题解析二次函数是数学中的重要知识点,也是高中数学课程中常见的考点。

在解题过程中,往往容易出现一些易错的情况。

下面是二次函数常见易错题解析,希望帮助同学们更好地理解和掌握这一部分内容。

易错点一:求解二次函数的零点时,难以正确计算平方根。

解析:在求解二次函数的零点时,往往需要计算平方根。

但是,由于平方根涉及到较为复杂的计算过程,容易出现计算错误的情况。

为了避免此类错误,我们可以注意以下几个方面:首先,注意根号内部的计算是否正确,特别是针对负数进行开平方根计算时,要注意虚数的概念;其次,在计算过程中可以采用分步骤进行计算,减少出错的可能性;最后,可以借助计算器等工具来进行计算,以提高准确性。

易错点二:对二次函数的图像特征理解不准确。

解析:二次函数的图像特征是学习和掌握二次函数的关键。

在解决二次函数相关问题时,往往需要根据图像特征进行分析和判断,但是很多同学对于图像的凹凸性、顶点位置等特征理解不准确,从而导致答案出错。

因此,在学习和掌握二次函数图像特征时,要注意以下几个方面:首先,要理解凹凸性的概念,搞清楚何时是凹、何时是凸;其次,要能够正确理解和计算顶点的坐标,特别是对于带有负号的情况,要仔细计算;最后,可以利用绘图工具进行练习,加深对图像特征的理解。

易错点三:对二次函数的平移、缩放等变换理解不准确。

解析:二次函数的平移、缩放等变换是解决二次函数相关题目的常见方法。

但是,很多同学对于变换的理解不准确,从而导致计算错误。

为了避免此类错误,我们可以注意以下几个方面:首先,要熟悉常见的变换规律,如平移、缩放等;其次,在计算过程中要仔细区分横坐标和纵坐标的变化情况;最后,可以通过绘图工具进行辅助,帮助理解变换的效果。

易错点四:对应用题中二次函数的建立和求解不准确。

解析:二次函数的应用是数学中的重要内容,也是考试中常见的题型。

但是,在应用题中,往往需要建立二次函数模型,并进行求解。

二次函数易错题汇编附解析

二次函数易错题汇编附解析

二次函数易错题汇编附解析一、选择题1.已知在平面直角坐标系中,有两个二次函数()()39m x x y =++及()()26y n x x =--图象,将二次函数()()39m x x y =++的图象按下列哪一种平移方式平移后,会使得此两个函数图象的对称轴重叠( ) A .向左平移2个单位长度 B .向右平移2个单位长度C .向左平移10个单位长度 D .向右平移10个单位长度【答案】D 【解析】 【分析】将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离. 【详解】解:∵y =m (x +3)(x +9)=mx 2+12mx +27m ,y =n (x -2)(x -6)=nx 2-8nx +12n ,∴二次函数y =m (x +3)(x +9)的对称轴为直线x =-6,二次函数y =n (x -2)(x -6)的对称轴为直线x =4, ∵4-(-6)=10,∴将二次函数y =m (x +3)(x +9)的图形向右平移10个单位长度,两图象的对称轴重叠. 故选:D . 【点睛】本题考查了二次函数图象与几何变换以及二次函数的性质,根据二次函数的性质找出两个二次函数的对称轴是解题的关键.2.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断 【详解】解:抛物线的开口向下,则a <0; 抛物线的对称轴为x=1,则-2ba=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值 ∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误) 由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0 ∵1x ≠2x ∴a(x 1+x 2)+b=0 ∴x 1+x 2=2b aa a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.3.对于二次函数()21202y ax a x a ⎛⎫=+-<⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点; ②若该函数图象的对称轴为直线0x x =,则必有001x <<; ③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个 B .2个C .3个D .4个【答案】B 【解析】 【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.对于()21202y ax a x a ⎛⎫=+-<⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1 当0x =时,0y =,则二次函数的图象都经过点()0,0 则说法①正确此二次函数的对称轴为1212124ax a a-=-=-+ 0a <Q 1114a∴-+> 01x ∴>,则说法②错误由二次函数的性质可知,抛物线的开口向下,当114x a<-+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 即说法③错误0m >Q44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个 故选:B . 【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.4.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C 【解析】 【分析】利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12bx a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断. 【详解】解:Q 抛物线开口向上,0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误; Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =,即12ba-=, 20a b ∴+=,所以③正确; Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误. 综上所述:③正确;①②④错误. 故选:C . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.5.方程2x 3x 10+-=的根可视为函数3y x =+的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( ) A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C 【解析】 【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围. 【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.6.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c <0;②a ﹣b +c >1;③abc >0;④9a ﹣3b +c <0;⑤c ﹣a >1.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D 【解析】 【分析】根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可. 【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a ,①由图可知:当x=1时,y <0,∴a+b+c <0,正确; ②由图可知:当x=−1时,y >1,∴a −b+c >1,正确; ③abc=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确; ⑤c−a=1−a >1,正确; ∴①②③④⑤正确. 故选:D . 【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.7.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】解:设原数为m ,则新数为21100m ,设新数与原数的差为y则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误. 故答案选:D . 【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.8.小明从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①c >0,②abc <0,③a -b +c >0,④2b >4a c ,⑤2a =-2b ,其中正确结论是( ).A .①②④B .②③④C .③④⑤D .①③⑤【答案】C 【解析】 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】①由抛物线交y 轴于负半轴,则c<0,故①错误; ②由抛物线的开口方向向上可推出a>0;∵对称轴在y 轴右侧,对称轴为x=2ba->0, 又∵a>0, ∴b<0;由抛物线与y 轴的交点在y 轴的负半轴上, ∴c<0,故abc>0,故②错误;③结合图象得出x=−1时,对应y 的值在x 轴上方,故y>0,即a−b+c>0,故③正确; ④由抛物线与x 轴有两个交点可以推出b 2−4ac>0,故④正确; ⑤由图象可知:对称轴为x=2b a -=12则2a=−2b ,故⑤正确; 故正确的有:③④⑤. 故选:C 【点睛】本题考查了二次函数图象与系数关系,观察图象判断图象开口方向、对称轴所在位置、与x 轴交点个数即可得出二次函数系数满足条件.9.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cmS ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A 【解析】 【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论. 【详解】解:由题意得2228AB BC +=,2AB BC =+, 可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确; ②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确; 故选:A . 【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.10.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( ) A .a B .bC .cD .d【答案】D 【解析】 【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决. 【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6,∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0), ∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点, ∴a <0,b <0,c=0,d >0, 故选:D . 【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.11.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;③a 12>;④b >1,其中正确的结论个数是( )A .1个B .2 个C .3 个D .4 个【答案】C 【解析】 【分析】根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决. 【详解】 由图象可得, a >0,b >0,c <0, ∴abc <0,故①错误,当x =1时,y =a +b +c =2,故②正确, 当x =﹣1时,y =a ﹣b +c <0, 由a +b +c =2得,a +c =2﹣b ,则a ﹣b +c =(a +c )﹣b =2﹣b ﹣b <0,得b >1,故④正确,∵12b a ->-,a >0,得122b a >>,故③正确, 故选C . 【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.12.已知抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,则函数y =的大致图象是( ) A . B .C .D .【答案】B【解析】【分析】由题意可求m <﹣2,即可求解.【详解】∵抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,∴△=4﹣4(﹣m ﹣1)<0∴m <﹣2∴函数y =的图象在第二、第四象限,故选B .【点睛】本题考查了反比例函数的图象,二次函数性质,求m 的取值范围是本题的关键.13.如图,已知将抛物线21y x =-沿x 轴向上翻折与所得抛物线围成一个封闭区域(包括边界),在这个区域内有5个整点(点M 满足横、纵坐标都为整数,则把点M 叫做“整点”).现将抛物线()()2120y a x a =++<沿x 轴向下翻折,所得抛物线与原抛物线所围成的封闭区域内(包括边界)恰有11个整点,则a 的取值范围是( )A .1a ≤-B .12a ≤-C .112a -<≤D .112a -≤<- 【答案】D【解析】【分析】画出图象,利用图象可得m 的取值范围【详解】解:∵ ()()2120y a x a =++<∴该抛物线开口向下,顶点(-1,2),对称轴是直线x=-1.∴点(-1,2)、点(-1,1)、点(-1, 0)、点(-1,-1)、点(-1,-2)符合题意,此时x 轴.上的点(-2, 0)、(0, 0)也符合题意,将(0,1)代入()()2120y a x a =++<得到1=a+2.解得a=-1.将(1, 0)代入()()2120y a x a =++<得到0= 4a+2.解得a=1-2∵有11个整点,∴点(0,-1)、点(-2, -1)、点(-2,1)、点(0,1)也必须符合题意. 综上可知:当1-1a<-2≤ 时,点(-1,2)、点(-1,1)、点(-1, 0)、点(-1,-1)、点(-1,-2)、点(-2, 0)、(0,0)、点(0,-1)、点(-2,-1)、点(-2,1)、点(0, 1),共有11个整点符合题意, 故选: D.【点睛】 本题考查了二次函数图象与系数的关系,抛物线与x 轴的交点的求法,利用图象解决问题是本题的关键.14.抛物线y=–x 2+bx+c 上部分点的横坐标x 、纵坐标y 的对应值如下表所示: x… –2 –1 0 1 2 … y … 0 4 6 6 4 …从上表可知,下列说法错误的是A .抛物线与x 轴的一个交点坐标为(–2,0)B .抛物线与y 轴的交点坐标为(0,6)C .抛物线的对称轴是直线x=0D .抛物线在对称轴左侧部分是上升的 【答案】C【解析】【分析】【详解】解:当x=-2时,y=0,∴抛物线过(-2,0),∴抛物线与x 轴的一个交点坐标为(-2,0),故A 正确;当x=0时,y=6,∴抛物线与y 轴的交点坐标为(0,6),故B 正确;当x=0和x=1时,y=6,∴对称轴为x=12,故C 错误; 当x <12时,y 随x 的增大而增大, ∴抛物线在对称轴左侧部分是上升的,故D 正确;故选C .15.若A (-4,1y ),B (-3,2y ),C (1,3y )为二次函数y =x 2+4x -m 的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .1y <2y <3yB .3y <1y <2yC .2y <1y <3yD .1y <3y <2y【答案】C【解析】【分析】分别将点的坐标代入二次函数解析式,然后进行判断即可.【详解】解:y 1=(-4)2+4×(-4)m -=16-16m - =m -,y 2=(-3)2+4×(-3)m - =9-12m - =3m --,y 3=12+4×m - 1=1+4m - =5m -,∵-3m -<m -<5m -,∴y 2<y 1<y 3.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键在于三个函数值的大小不受m 的影响.16.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个【答案】C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.17.下列函数(1)y=x(2)y=2x﹣1 (3)y=1x(4)y=2﹣3x(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y =x 是一次函数,符合题意;(2)y =2x ﹣1是一次函数,符合题意;(3)y =1x是反比例函数,不符合题意; (4)y =2﹣3x 是一次函数,符合题意;(5)y =x 2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B .【点睛】 此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.18.在函数2y x=,3y x =+,2y x =的图象中,是中心对称图形,且对称中心是原点的图象共有( )A .0个B .1个C .2个D .3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】 y=x+3的图象是中心对称图形,但对称中心不是原点;y=x 2图象不是中心对称图形;只有函数2y x=符合条件. 故选:B .【点睛】 本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.19.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】 解:21322y x x =-+=()215322x --,当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P 的横坐标相同,把x=1代入得:解得:y=12-, 平移的最短距离为152=22⎛⎫--⎪⎝⎭, 即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.20.在同一坐标系中,二次函数2y ax bx =+与一次函数y bx a =-的图像可能是( ) A . B .C .D .【答案】C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y 左侧,a ,b 同号,对称轴在y 轴右侧a ,b 异号,以及当a 大于0时开口向上,当a 小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y 轴于正半轴,常数项为负,交y 轴于负半轴.如此分析下来,二次函数与一次函数无矛盾者为正确答案.【详解】解:由方程组2y ax bxy bx a⎧=+⎨=-⎩得ax2=−a,∵a≠0∴x2=−1,该方程无实数根,故二次函数与一次函数图象无交点,排除B.A:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;但是一次函数b为一次项系数,图象显示从左向右上升,b>0,两者矛盾,故A错;C:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;b为一次函数的一次项系数,图象显示从左向右下降,b<0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错.故选C.【点睛】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上.。

初中数学错题本二次函数30道易错题+详解

初中数学错题本二次函数30道易错题+详解
A.y<0 B.0<y<m C.y>m D.y=m 18.二次函数 y=﹣x2+2x﹣5 图象的顶点坐标为( ) A.(﹣1,﹣4) B.(1,﹣4) C.(2,﹣1) D.(﹣2,﹣1) 19.已知抛物线 y=﹣ x2+4x+3,则该抛物线的顶点坐标为( ) A.(1,1) B.(4,11) C.(4,﹣5) D.(﹣4,11) 20.已知二次函数 y=ax2+bx+c 的图象如图所示,则下列结论正确的是( )
A.
B.
C.
D.
3.下列函数中,不是二次函数的是( )
A.y=1﹣ x2 B.y=2(x﹣1)2+4 C.y= (x﹣1)(x+4) D.y=(x﹣2)2﹣x2
4.下列函数关系式中,是二次函数的是( )
A.y=x3﹣2x2﹣1 B.y=x2 C.
D.y=x+1
第 1页(共 30页)
5.下列函数
ห้องสมุดไป่ตู้
,y=3x2,
《二次函数》易错题集
选择题 1.如图,直角梯形 ABCD 中,∠A=90°,∠B=45°,底边 AB=5,高 AD=3,点 E 由 B 沿折线 BCD 向点 D 移动,EM⊥AB 于 M,EN⊥AD 于 N,设 BM=x,矩形 AMEN 的面积为 y,那么 y 与 x 之间的函数关系的图象大致是( )
A.①②③④ B.②③①④ C.③②④① D.④②①③ 10.已知一次函数 y=ax+c 与 y=ax2+bx+c,它们在同一坐标系内的大致图象是 ()
A.
B.
C.
D

11.已知 h 关于 t 的函数关系式为 h= gt2,(g 为正常数,t 为时间),则函数图 象为( )

二次函数易错必考题简答题专训(含解析)

二次函数易错必考题简答题专训(含解析)

二次函数易错必考题简答题专训一.解答题(共50小题)1.在平面直角坐标系中,抛物线y=x2﹣4x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣1,2)在图象G上,求n的值.(2)当n=﹣1时.①若Q(t,1)在图象G上,求t的值.②当k≤x≤3(k<3)时,图象G对应函数的最大值为5,最小值为﹣5,直接写出k的取值范围.(3)当以A(﹣3,3)、B(﹣3,﹣1)、C(2,﹣1)、D(2,3)为顶点的矩形ABCD 的边与图象G有且只有三个公共点时,直接写出n的取值范围.2.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,抛物线的顶点E(﹣1,4),对称轴交x轴于点F.(1)请直接写出这条抛物线和直线AE、直线AC的解析式;(2)连接AC、AE、CE,判断△ACE的形状,并说明理由;(3)如图2,点D是抛物线上一动点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴于点K,DK分别交线段AE、AC于点G、H.在点D的运动过程中,①DG、GH、HK这三条线段能否相等?若相等,请求出点D的坐标;若不相等,请说明理由;②在①的条件下,判断CG与AE的数量关系,并直接写出结论.3.如图,在平面直角坐标系中,直线y=﹣x+n与x轴,y轴分别交于点B,点C,抛物线y=ax2+bx+(a≠0)过B,C两点,且交x轴于另一点A(﹣2,0),连接AC.(1)求抛物线的表达式;(2)已知点P为第一象限内抛物线上一点,且点P的横坐标为m,请用含m的代数式表示点P到直线BC的距离;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC 相似?若存在,直接写出点Q的坐标;若不存在,请说明理由.4.已知抛物线y=ax2﹣2ax+3与x轴交于点A、B(A左B右),且AB=4,与y轴交于C 点.(1)求抛物线的解析式;(2)如图,证明:对于任意给定的一点P(0,b)(b>3),存在过点P的一条直线交抛物线于M、N两点,使得PM=MN成立;(3)将该抛物线在0≤x≤4间的部分记为图象G,将图象G在直线y=t上方的部分沿y =t翻折,其余部分保持不变,得到一个新的函数的图象,记这个函数的最大值为m,最小值为n,若m﹣n≤6,求t的取值范围.5.如图,抛物线y=﹣x﹣1与y轴交于点A,点B是抛物线上的一点,过点B作BC⊥x轴于点C,且点C的坐标为(9,0).(1)求直线AB的表达式;(2)若直线MN∥y轴,分别与抛物线,直线AB,x轴交于点M、N、Q,且点Q位于线段OC之间,求线段MN长度的最大值;(3)当四边形MNCB是平行四边形时,求点Q的坐标.6.在平面直角坐标系内,反比例函数和二次函数y=a(x2+x﹣1)的图象交于点A(1,a)和点B(﹣1,﹣a).(1)求直线AB与y轴的交点坐标;(2)要使上述反比例函数和二次函数在某一区域都是y随着x的增大而增大,求a应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当Q在以AB为直径的圆上时,求a的值.7.如图,对称轴为x=1的抛物线经过A(﹣1,0),B(2,﹣3)两点.(1)求抛物线的解析式;(2)P是抛物线上的动点,连接PO交直线AB于点Q,当Q是OP中点时,求点P的坐标;(3)C在直线AB上,D在抛物线上,E在坐标平面内,以B,C,D,E为顶点的四边形为正方形,直接写出点E的坐标.8.如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P是抛物线上的动点,且满足S△P AO=2S△PCO,求出P点的坐标;(3)连接BC,点E是x轴一动点,点F是抛物线上一动点,若以B、C、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.9.如图(1)已知矩形AOCD在平面直角坐标系xOy中,∠CAO=60°,OA=2,B点的坐标为(2,0),动点M以每秒2个单位长度的速度沿A→C→B运动(M点不与点A、点B重合),设运动时间为t秒.(1)求经过B、C、D三点的抛物线解析式;(2)点P在(1)中的抛物线上,当M为AC中点时,若△P AM≌△PDM,求点P的坐标;(3)当点M在CB上运动时,如图(2)过点M作ME⊥AD,MF⊥x轴,垂足分别为E、F,设矩形AEMF与△ABC重叠部分面积为S,求S与t的函数关系式,并求出S的最大值;(4)如图(3)点P在(1)中的抛物线上,Q是CA延长线上的一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB 的面积为2d,求点P的坐标.10.已知抛物线G:y=x2+(k﹣5)x+1﹣k,其中k为常数.(1)求证:无论k为何值,抛物线G总与x轴有两个交点;(2)若抛物线G的图象不经过第三象限,求k的取值范围;(3)对于一个函数,当自变量x取a时,函数值y也等于a,我们称a为这个函数的对等值.若函数y=x2+(k﹣5)x+1﹣k有两相异的对等值x1,x2,且x1<2<x2,求k的最大整数值.11.生产商对在甲、乙两地生产并销售的某产品进行研究后发现如下规律:每年年产量为x (吨)时所需的全部费用y(万元)与x满足关系式y=x2+5x+90,投人市场后当年能全部售10出,且在甲、乙两地每吨的售价P甲P乙(万元)均与x满足一次函数关系.(注:年利润=年销售额﹣全部费用)(1)当在甲地生产并销售x吨时,满足P甲=﹣x+14,求在甲地生成并销售20吨时利润为多少万元;(2)当在乙地生产并销售x吨时,P乙=﹣x+15,求在乙地当年的最大年利润应为多少万元?12.在平面直角坐标系xOy中,将点P1(a,b﹣a)定义为点P(a,b)的“关联点”.已知:点A(x,y)在函数y=x2的图象上(如图所示),点A的“关联点”是点A1.(1)请在如图的基础上画出函数y=x2﹣2的图象,简要说明画图方法;(2)如果点A1在函数y=x2﹣2的图象上,求点A1的坐标;(3)将点P2(a,b﹣na)称为点P(a,b)的“待定关联点”(其中,n≠0).如果点A (x,y)的“待定关联点”A2在函数y=x2﹣n的图象上,试用含n的代数式表示点A2的坐标.13.对于给定函数y=a1x2+b1x+c1(其中a1、b1、c1为常数,且a1≠0),则称函数y=(a1=a2,b1+b2=0,c1+c2=0)为函数y=a1x2+b1x+c1(其中a1,b1,c1为常数,且a1≠0)的“相关函数”,此“相关函数”的图象记为G.(1)已知函数y=﹣x2+4x+2.①直接写出这个函数的“相关函数”;②若点P(a,1)在“相关函数”的图象上,求a的值;③若直线y=m与图象G恰好有两个公共点,直接写出m的取值范围;(2)设函数y=﹣x2+nx+1(n>0)的相关函数的图象G在﹣4≤x≤2上的最高点的纵坐标为y0,当≤y0≤9时,直接写出n的取值范围.14.每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送花,感恩母亲,祝福母亲.今年节日前夕,某花店采购了一批康乃馨,经分析上一年的销售情况,发现这种康乃馨每天的销售量y(支)是销售单价x(元)的一次函数,已知销售单价为7元/支时,销售量为16支;销售单价为8元/支时,销售量为14支.(1)求这种康乃馨每天的销售量y(支)关于销售单价x(元/支)的一次函数解析式;(2)若按去年方式销售,已知今年这种康乃馨的进价是每支5元,商家若想每天获得42元的利润,销售单价要定为多少元?(3)在(2)的条件下,当销售单价x为何值时,花店销售这种康乃馨每天获得的利润最大?并求出获得的最大利润.15.周师傅家的猕猴桃成熟上市后,她记录了10天的销售数量和销售单价,其中销售单价y(元/千克)与时间第x天(x为整数)的数量关系为y=﹣x+16,日销售量p(千克)与时间第x天(x为整数)的部分对应值如表所示:时间第x天135710日销量p(千克)320360400440500(1)从你学过的函数中,选择合适的函数类型刻画p随x的变化规律,请直接写出p与x的函数关系式及自变量x的取值范围;(2)在这10天中,哪一天销售额达到最大?最大销售额是多少元?(3)周师傅决定每销售1千克桃就捐款a(a>1)元,且希望每天的销售额不低于1500元以维持各项开支,求a的最大值.16.已知:抛物线y=x2﹣2x+m与y轴交于点C(0,﹣2),点D和点C关于抛物线对称轴对称.(1)求此抛物线的解析式和点D的坐标;(2)如果点M是抛物线的对称轴与x轴的交点,求MCD的周长.17.某公司生产的一种商品其售价是成本的 1.5倍,当售价降低5元时商品的利润率为25%.若不进行任何推广年销售量为1万件.为了获得更好的利益,公司准备拿出一定的资金做推广,根据经验,每年投入的推广费x万元时销售量y(万件)是x的二次函数:当x为1万元时,y是1.5(万件).当x为2万元时,y是1.8(万件).(1)求该商品每件的的成本与售价分别是多少元?(2)求出年利润与年推广费x的函数关系式;(3)如果投入的年推广告费为1万到3万元(包括1万和3万元),问推广费在什么范同内,公司获得的年利润随推广费的增大而增大?18.某玩具厂安排30人生产甲、乙两种玩具,已知每人每天生产20件甲种玩具或12件乙种玩具,甲种玩具每件利润18元,当参与生产乙种玩具的工人为10人时,乙种玩具每件利润为40元,在10人的基础上每增加1人,每件乙种玩具的利润下降1元,设每天安排x人生产甲种玩具,且不少于10人生产乙种玩具.(1)请根据以上信息完善下表:玩具工人数(人)每天产量(件)每件利润(元)甲x18乙(2)请求出销售甲乙两种玩具每天的总利润y(元)关于x(人)的表达式;(3)请你设计合理的工人分配方案,使得每天销售甲乙两种玩具的利润最大化,并求出这个最大利润.19.已知抛物线y=x2+(2m﹣1)x﹣2m(m>0.5)的最低点的纵坐标为﹣4.(1)求抛物线的解析式;(2)如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,D为抛物线上的一点,BD平分四边形ABCD的面积,求点D的坐标;(3)如图2,平移抛物线y=x2+(2m﹣1)x﹣2m,使其顶点为坐标原点,直线y=﹣2上有一动点P,过点P作两条直线,分别与抛物线有唯一的公共点E、F(直线PE、PF 不与y轴平行),求证:直线EF恒过某一定点.20.某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.(1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;(2)若支柱每米造价为2万元,求5根支柱的总造价;(3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?21.平面直角坐标系中,已知二次函数的图象经过点A(2,0)和点,直线l经过抛物线的顶点且与y轴垂直,垂足为Q.求该二次函数的表达式.22.如图,直线y=﹣x+1与x轴,y轴分别交于A,B两点,抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).(1)求该抛物线的解析式;(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.23.如图,已知抛物线y=﹣x2+bx+c经过点A(3,0),点B(0,3).点M(m,0)在线段OA上(与点A,O不重合),过点M作x轴的垂线与线段AB交于点P,与抛物线交于点Q,联结BQ.(1)求抛物线表达式;(2)联结OP,当∠BOP=∠PBQ时,求PQ的长度;(3)当△PBQ为等腰三角形时,求m的值.24.如图,将抛物线y=﹣x2+4平移后,新抛物线经过原抛物线的顶点C,新抛物线与x 轴正半轴交于点B,联结BC,tan B=4,设新抛物线与x轴的另一交点是A,新抛物线的顶点是D.(1)求点D的坐标;(2)设点E在新抛物线上,联结AC、DC,如果CE平分∠DCA,求点E的坐标.(3)在(2)的条件下,将抛物线y=﹣x2+4沿x轴左右平移,点C的对应点为F,当△DEF和△ABC相似时,请直接写出平移后得到抛物线的表达式.25.如图,抛物线与x轴相交于点A(﹣3,0)、点B(1,0),与y轴交于点C(0,3),点D是抛物线上一动点,联结OD交线段AC于点E.(1)求这条抛物线的解析式,并写出顶点坐标;(2)求∠ACB的正切值;(3)当△AOE与△ABC相似时,求点D的坐标.26.如图,在平面直角坐标系xOy中,抛物线y=x2+mx+n经过点B(6,1),C(5,0),且与y轴交于点A.(1)求抛物线的表达式及点A的坐标;(2)点P是y轴右侧抛物线上的一点,过点P作PQ⊥OA,交线段OA的延长线于点Q,如果∠P AB=45°.求证:△PQA∽△ACB;(3)若点F是线段AB(不包含端点)上的一点,且点F关于AC的对称点F′恰好在上述抛物线上,求FF′的长.27.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(﹣1,0),B(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)联结AC、BC,求∠ACB的正切值;(3)点P在抛物线上,且∠P AB=∠ACB,求点P的坐标.28.在平面直角坐标系xOy中(如图),已知抛物线y=ax2+(a+)x+c(a≠0)经过点A (﹣3,﹣2),与y轴交于点B(0,﹣2),抛物线的顶点为点C,对称轴与x轴交于点D.(1)求抛物线的表达式及点C的坐标;(2)点E是x轴正半轴上的一点,如果∠AED=∠BCD,求点E的坐标;(3)在(2)的条件下,点P是位于y轴左侧抛物线上的一点,如果△P AE是以AE为直角边的直角三角形,求点P的坐标.29.如图,若m是正数,直线l:y=﹣m与y轴交于点A;直线a:y=x+m与y轴交于点B;抛物线L:y=x2+mx的顶点为C,且L与x轴左交点为D.(1)若AB=12,求m的值,此时在抛物线的对称轴上存在一点P使得△OBP的周长最小,求点P坐标;(2)当点C在直线l上方时,求点C与直线l距离的最大值;(3)在抛物线L和直线a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出m=2020和m=2020.5时“美点”的个数.30.如图1,抛物线W:y=ax2﹣2的顶点为点A,与x轴的负半轴交于点D,直线AB交抛物线W于另一点C,点B的坐标为(1,0).(1)求直线AB的解析式;(2)过点C作CE⊥x轴,交x轴于点E,若AC平分∠DCE,求抛物线W的解析式;(3)若a=,将抛物线W向下平移m(m>0)个单位得到抛物线W1,如图2,记抛物线W1的顶点为A1,与x轴负半轴的交点为D1,与射线BC的交点为C1.问:在平移的过程中,tan∠D1C1B是否恒为定值?若是,请求出tan∠D1C1B的值;若不是,请说明理由.31.在平面直角坐标系中,点到直线的距离即为点到直线的垂线段的长.(1)如图1,取点M(1,0),则点M到直线l:y=x﹣1的距离为多少?(2)如图2,点P是反比例函数y=在第一象限上的一个点,过点P分别作PM⊥x轴,作PN⊥y轴,记P到直线MN的距离为d0,问是否存在点P,使d0=?若存在,求出点P的坐标,若不存在,请说明理由.(3)如图3,若直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B(A在B的左边).且∠AOB=90°,求点P(2,0)到直线y=kx+m的距离最大时,直线y=kx+m 的解析式.32.如图,直线y=﹣x+m与抛物线y=ax2+bx都经过点A(6,0),点B,过B作BH垂直x轴于H,OA=3OH.直线OC与抛物线AB段交于点C.(1)求抛物线的解析式;(2)当点C的纵坐标是时,求直线OC与直线AB的交点D的坐标;(3)在(2)的条件下将△OBH沿BA方向平移到△MPN,顶点P始终在线段AB上,求△MPN与△OAC公共部分面积的最大值.33.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)抛物线的对称轴上有一点P,使PB+PC的值最小,求点P的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.34.如图,抛物线y=﹣x2+bx+c交x轴于A,B两点,交y轴于点C,直线y=﹣x+2经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,设点P的横坐标为m.求△PBC面积最大值和此时m的值;(3)Q是抛物线上一点,若∠ABC=∠CBQ,直线BQ与y轴的交点M,请直接写出M 的坐标.35.利用函数图象探究方程x(|x|﹣2)=的实数根的个数.(1)设函数y=x(|x|﹣2),则这个函数的图象与直线y=的交点的横坐标就是方程x (|x|﹣2)=的实数根.(2)分类讨论:当x≤0时,y=﹣x2﹣2x;当x>0时,y=;(3)在给定的坐标系中,已经画出了当x≤0时的函数图象,请根据(2)中的解析式,通过描点,连线,画出当x>0时的函数图象.(4)在给定的坐标系中画直线y=、观察图象可知方程x(|x|﹣2)=的实数根有个.(5)深入探究:若关于x的方程2x(|x|﹣2)=m有三个不相等的实数根,且这三个实数根的和为负数,则m的取值范围是.36.如图1,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、C(3,0),点B为抛物线顶点,直线BD为抛物线的对称轴,点D在x轴上,连接AB、BC,∠ABC=90°,AB与y轴交于点E,连接CE.(1)求项点B的坐标并求出这条抛物线的解析式;(2)点P为第一象限抛物线上一个动点,设△PEC的面积为S,点P的横坐标为m,求S关于m的函数关系武,并求出S的最大值;(3)如图2,连接OB,抛物线上是否存在点Q,使直线QC与直线BC所夹锐角等于∠OBD,若存在请直接写出点Q的坐标;若不存在,说明理由.37.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+ax+a(a≠0)交x轴于点A和点B(点A在点B左边),交y轴于点C,连接AC,tan∠CAO=3.(1)如图1,求抛物线的解析式;(2)如图2,D是第一象限的抛物线上一点,连接DB,将线段DB绕点D顺时针旋转90°,得到线段DE(点B与点E为对应点),点E恰好落在y轴上,求点D的坐标;(3)如图3,在(2)的条件下,过点D作x轴的垂线,垂足为H,点F在第二象限的抛物线上,连接DF交y轴于点G,连接GH,sin∠DGH=,以DF为边作正方形DFMN,P为FM上一点,连接PN,将△MPN沿PN翻折得到△TPN(点M与点T为对应点),连接DT并延长与NP的延长线交于点K,连接FK,若FK=,求cos∠KDN的值.38.定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.如图,抛物线C1与抛物线C2组成一个开口向上的“月牙线”,抛物线C1与抛物线C2与x轴有相同的交点M,N(点M在点N的左侧),与y轴的交点分别为A,B且点A的坐标为(0,﹣3),抛物线C2的解析式为y=mx2+4mx﹣12m,(m>0).(1)请你根据“月牙线”的定义,设计一个开口向下.“月牙线”,直接写出两条抛物线的解析式;(2)求M,N两点的坐标;(3)在第三象限内的抛物线C1上是否存在一点P,使得△P AM的面积最大?若存在,求出△P AM的面积的最大值;若不存在,说明理由.39.如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.点G是抛物线y =ax2+bx+c位于直线y=﹣x+3下方的任意一点,连接PB、GB、GC、AC.(1)求该抛物线的解析式;(2)求△GBC面积的最大值;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC 相似?若存在,求出点Q的坐标;若不存在,请说明理由.40.如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣+2经过点A,C.(1)求抛物线的解析式;(2)点P在抛物线在第一象限内的图象上,过点P作x轴的垂线,垂足为D,交直线AC于点E,连接PC,设点P的横坐标为m.①当△PCE是等腰三角形时,求m的值;②过点C作直线PD的垂线,垂足为F.点F关于直线PC的对称点为F′,当点F′落在坐标轴上时,请直接写出点P的坐标.41.已知二次函数y=ax2﹣2ax﹣2(a≠0).(1)该二次函数图象的对称轴是直线;(2)若该二次函数的图象开口向上,当﹣1≤x≤5时,函数图象的最高点为M,最低点为N,点M的纵坐标为,求点M和点N的坐标;(3)若该二次函数的图象开口向下,对于该二次函数图象上的两点A(x1,y1)、B(x2,y2),当x2≥3时,均有y1≥y2,请结合图象,直接写出x1的取值范围.42.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为线段OA上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N.①试用含m的代数式表示线段PN的长;②求线段PN的最大值.43.如图,抛物线y=﹣x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.44.已知抛物线y1=ax2+bx+c(a≠0,a≠c)与x轴交于点A(1,0),顶点为B.(Ⅰ)a=1时,c=3时,求抛物线的顶点B的坐标;(Ⅱ)求抛物线y1=ax2+bx+c与x轴的另一个公共点的坐标(用含a,c的式子表示);(Ⅲ)若直线y2=2x+m经过点B且与抛物线y1=ax2+bx+c交于另一点C(,b+8),求当x≥1时,y1的取值范围.45.如图,抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.(1)如图1,求△BCD的面积;(2)如图2,P是抛物线BD段上一动点,连接CP并延长交x轴于E,连接BD交PC 于F,当△CDF的面积与△BEF的面积相等时,求点E和点P的坐标.46.如图,已知二次函数的图象经过点A(4,4),B(5,0)和原点O,P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA相较于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当点P在直线OA的上方时,是否存在一点P,使射线OP平分∠AOy,若存在,请求出P点坐标;若不存在.请说明理由;(4)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,若存在,求出P点的坐标;若不存在,请说明理由.47.如图,已知一次函数y=kx+b的图象经过A(﹣1,﹣5),B(0,﹣4)两点且与x轴交于点C,二次函数y=ax2+bx+4的图象经过点A、点C.(1)求一次函数和二次函数的函数表达式;(2)连接OA,求∠OAB的正弦值;(3)若点D在x轴的正半轴上,是否存在以点D,C,B构成的三角形与△OAB相似?若存在,求出点D的坐标;若不存在,请说明理由.48.如图:抛物线y=x2+bx+c与直线y=﹣x﹣1交于点A,B.其中点B的横坐标为2.点P(m,n)是线段AB上的动点.(1)求抛物线的表达式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平角直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形,在(2)的情况下,在平面内找出所有符合要求的整点R,使P、Q、B、R为整点平行四边形,请直接写出整点R的坐标.49.抛物线y=x2+bx+c与x轴交于点A和B(点A在点B的左侧),与y轴交于点C,OB =OC,点D(2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)点P(m,km+1),m为任意实数,当m变化时,点P在直线l上运动,若点A,D到直线l的距离相等,求k的值;(3)M为抛物线在第一象限内一动点,若∠AMB>45°,求点M的横坐标x M的取值范围.50.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B,C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一动点,过点P作y轴的平行线,交抛物线于点D,是否存在这样的P点,使线段PD的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+MB的最小值以及此时点M、N的坐标,直接写出结果不必说明理由.第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二次函数简答题的初中数学组卷参考答案与试题解析一.解答题(共50小题)1.在平面直角坐标系中,抛物线y=x2﹣4x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣1,2)在图象G上,求n的值.(2)当n=﹣1时.①若Q(t,1)在图象G上,求t的值.②当k≤x≤3(k<3)时,图象G对应函数的最大值为5,最小值为﹣5,直接写出k的取值范围.(3)当以A(﹣3,3)、B(﹣3,﹣1)、C(2,﹣1)、D(2,3)为顶点的矩形ABCD 的边与图象G有且只有三个公共点时,直接写出n的取值范围.【专题】535:二次函数图象及其性质;536:二次函数的应用;69:应用意识.【分析】(1)先求出图象G1和G2的解析式,分点P分别在图象G1和G2上两种情况讨论,可求n的值;(2)①先求出图象G1和G2的解析式,分点P分别在图象G1和G2上两种情况讨论,可求t的值;②结合图象1,可求k的取值范围;(3)结合图象,分类讨论可求解.【解答】解:(1)∵抛物线y=x2﹣4x+n=(x﹣2)2+n﹣4,∴顶点坐标为(2,n﹣4),∵将G1绕坐标原点旋转180°得到图象G2,∴图象G2的顶点坐标为(﹣2,﹣n+4),∴图象G2的解析式为:y=﹣(x+2)2+4﹣n,若点P(﹣1,2)在图象G1上,∴2=9+n﹣4,∴n=﹣3;若点P(﹣1,2)在图象G2上,∴2=﹣1+4﹣n,∴n=1;综上所述:点P(﹣1,2)在图象G上,n的值为﹣3或1;(2)①当n=﹣1时,则图象G1的解析式为:y=(x﹣2)2﹣5,图象G2的解析式为:y=﹣(x+2)2+5,若点Q(t,1)在图象G1上,∴1=(t﹣2)2﹣5,∴t=2±,若点Q(t,1)在图象G2上,∴1=﹣(t+2)2+5,∴t1=﹣4,t2=0②如图1,当x=2时,y=﹣5,当x=﹣2时,y=5,对于图象G1,在y轴右侧,当y=5时,则5=(x﹣2)2﹣5,∴x=2+>3,对于图象G2,在y轴左侧,当y=﹣5时,则﹣5=﹣(x+2)2+5,∴x=﹣2﹣,∵当k≤x≤3(k<3)时,图象G对应函数的最大值为5,最小值为﹣5,∴﹣2﹣≤k≤﹣2;(3)如图2,∵图象G2的解析式为:y=﹣(x+2)2+4﹣n,图象G1的解析式为:y=(x﹣2)2+n﹣4,∴图象G2的顶点坐标为(﹣2,﹣n+4),与y轴交点为(0,﹣n),图象G1的顶点坐标为(2,n﹣4),与y轴交点为(0,n),当n≤﹣1时,图象G1与矩形ABCD最多1个交点,图象G2与矩形ABCD最多1交点,当﹣1<n<0时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有3交点,当n=0时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有2交点,共三个交点,当0<n≤1时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有1交点,当1<n<3时,图象G1与矩形ABCD有1个交点,图象G2与矩形ABCD有2交点,共三个交点,当3≤n<7时,图象G1与矩形ABCD有2个交点,当3≤n<5时,图象G2与矩形ABCD 有2个交点,n=5时,图象G2与矩形ABCD有1个交点,n>5时,没有交点,∵矩形ABCD的边与图象G有且只有三个公共点,∴n=5,当n≥7时,图象G1与矩形ABCD最多1个交点,图象G2与矩形ABCD没有交点,综上所述:当n=0,n=5,1<n<3时,矩形ABCD的边与图象G有且只有三个公共点.【点评】本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,利用数形结合思想解决问题是本题的关键.2.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,抛物线的顶点E(﹣1,4),对称轴交x轴于点F.(1)请直接写出这条抛物线和直线AE、直线AC的解析式;(2)连接AC、AE、CE,判断△ACE的形状,并说明理由;(3)如图2,点D是抛物线上一动点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴于点K,DK分别交线段AE、AC于点G、H.在点D的运动过程中,①DG、GH、HK这三条线段能否相等?若相等,请求出点D的坐标;若不相等,请说明理由;②在①的条件下,判断CG与AE的数量关系,并直接写出结论.【专题】16:压轴题;65:数据分析观念.【分析】(1)抛物线的表达式为:y=a(x+1)2+4=a(x2+2x+1)+4,即可求解;(2)则AC2=18,CE2=2,AE2=20,即可求解;(3)设出点D、G、H的坐标,求出:DG=﹣x2﹣2x+3﹣2x﹣6=﹣x2﹣4x﹣3;HK=x+3;GH=2x+6﹣x﹣3=x+3,即可求解;【解答】解:(1)抛物线的表达式为:y=a(x+1)2+4=a(x2+2x+1)+4,故a+4=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3;将点A、E的坐标代入一次函数表达式并解得:直线AE的表达式为:y=2x+6;同理可得:直线AC的表达式为:y=x+3;(2)点A、C、E的坐标分别为:(﹣3,0)、(0,3)、(﹣1,4),则AC2=18,CE2=2,AE2=20,故AC2+CE2=AE2,则△ACE为直角三角形;。

二次函数易错题汇编含答案

二次函数易错题汇编含答案

二次函数易错题汇编含答案一、选择题1.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

2.已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A .ac >0B .b >0C .a +c <0D .a +b +c =0【答案】D【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a <0,c >0,∴ac <0,故A 错误;B.由对称轴可知:x =2b a -<0, ∴b <0,故B 错误;C.由对称轴可知:x =2b a -=﹣1, ∴b =2a ,∵x =1时,y =0,∴a +b +c =0,∴c =﹣3a ,∴a +c =a ﹣3a =﹣2a >0,故C 错误;故选D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.3.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( )A .4B .3C .2D .1 【答案】B【解析】【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④.【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确;∵抛物线的对称轴为直线x=1,且抛物线开口向上,∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半,∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c ,∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+= 解得:72c =或4c = ∵4c <, ∴72c =,故④错误, ∴正确的有①②③,故选:B .【点睛】 本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.4.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x +34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.5.已知,二次函数y=ax2+bx+a2+b(a≠0)的图象为下列图象之一,则a的值为()A.-1 B.1 C.-3 D.-4【答案】A【解析】【分析】分别对图形进行讨论:若二次函数的图形为第一个,则b=0,其顶点坐标为(0,a2),与图形中的顶点坐标不符;若二次函数的图形为第二个,则b=0,根据顶点坐标有a2=3,由抛物线与x的交点坐标得到x2=-a,所以a=-4,它们相矛盾;若二次函数的图形为第三个,把点(-1,0)代入解析式得到a-b+a2+b=0,解得a=-1;若二次函数的图形为第四个,把(-2,0)和(0,0)分别代入解析式可计算出a的值.【详解】解:若二次函数的图形为第一个,对称轴为y轴,则b=0,y=ax2+a2,其顶点坐标为(0,a2),而a2>0,所以二次函数的图形不能为第一个;若二次函数的图形为第二个,对称轴为y轴,则b=0,y=ax2+a2,a2=3,而当y=0时,x2=−a,所以−a=4,a=−4,所以二次函数的图形不能为第二个;若二次函数的图形为第三个,令x=−1,y=0,则a−b+a2+b=0,所以a=−1;若二次函数的图形为第四个,令x=0,y=0,则a2+b=0①;令x=−2,y=0,则4a−2b+a2+b=0②,由①②得a=−2,这与图象开口向上不符合,所以二次函数的图形不能为第四个.故选A.【点睛】本题考查了二次函数y=ax2+bx+c(a≠0)的图象与系数的关系:a>0,开口向上;a<0,开口向下;抛物线的对称轴为直线x=-;顶点坐标为(-,);也考查了点在抛物线上则点的坐标满足抛物线的解析式.6.若A(-4,1y),B(-3,2y),C(1,3y)为二次函数y=x2+4x-m的图象上的三点,则1y,2y,3y的大小关系是()A .1y <2y <3yB .3y <1y <2yC .2y <1y <3yD .1y <3y <2y【答案】C【解析】【分析】 分别将点的坐标代入二次函数解析式,然后进行判断即可.【详解】解:y 1=(-4)2+4×(-4)m -=16-16m - =m -,y 2=(-3)2+4×(-3)m - =9-12m - =3m --,y 3=12+4×m - 1=1+4m - =5m -,∵-3m -<m -<5m -,∴y 2<y 1<y 3.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键在于三个函数值的大小不受m 的影响.7.二次函数2y ax bx c =++(,,a b c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③0m <203n +<.其中,正确结论的个数是( ) A .0B .1C .2D .3【答案】C【解析】【分析】 首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解.【详解】∵由表格可知当x=0和x=1时的函数值相等都为-2∴抛物线的对称轴是:x=-2b a =12; ∴a 、b 异号,且b=-a ;∵当x=0时y=c=-2∴c 0<∴abc >0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t∴2-和3是关于x 的方程2ax bx c t ++=的两个根;故②正确;∵b=-a ,c=-2∴二次函数解析式:2-a -2=y ax x ∵当12x =-时,与其对应的函数值0y >. ∴3204a ->,∴a 83>; ∵当x=-1和x=2时的函数值分别为m 和n ,∴m=n=2a-2,∴m+n=4a-4203>;故③错误 故选:C .【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量x 与函数值y 的值结合二次函数的性质逐条分析给定的结论是关键.8.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,m ),且与x 铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc >0;②a ﹣b +c >0;③b 2=4a (c ﹣m );④一元二次方程ax 2+bx +c =m +1有两个不相等的实数根,其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a ,b ,c 的正负;根据抛物线的对称轴位置可判别在x 轴上另一个交点;根据抛物线与直线y=m 的交点可判定方程的解.【详解】∵函数的图象开口向上,与y 轴交于负半轴∴a>0,c<0∵抛物线的对称轴为直线x=-2b a=1 ∴b<0∴abc >0;①正确; ∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y<0,即a-b+c<0,所以②不正确;∵抛物线的顶点坐标为(1,m ),∴244ac b a- =m , ∴b 2=4ac-4am=4a (c-m ),所以③正确;∵抛物线与直线y=m 有一个公共点,∴抛物线与直线y=m+1有2个公共点,∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确.故选:C .【点睛】考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.9.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==, 图像是开口向上的抛物线,故选项B 、C 不正确; ②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=, 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.10.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①4a ﹣2b +c >0;②3a +b >0;③b 2=4a (c ﹣n );④一元二次方程ax 2+bx +c =n ﹣1有两个互异实根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 根据二次函数图象和性质,开口向下,可得a<0,对称轴x=1,利用顶点坐标,图象与x 轴的交点情况,对照选项逐一分析即可.【详解】①∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,∴当x =﹣2时,y <0,即4a ﹣2b +c <0,所以①不符合题意;②∵抛物线的对称轴为直线x =﹣2b a=1,即b =﹣2a , ∴3a +b =3a ﹣2a =a <0,所以②不符合题意;③∵抛物线的顶点坐标为(1,n ), ∴244ac b a=n , ∴b 2=4ac ﹣4an =4a (c ﹣n ),所以③符合题意;④∵抛物线与直线y =n 有一个公共点,∴抛物线与直线y =n ﹣1有2个公共点,∴一元二次方程ax 2+bx +c =n ﹣1有两个不相等的实数根,所以④符合题意. 故选:B .【点睛】本题考查了二次函数的图象和性质的应用,二次函数开口方向,对称轴,交点位置,二次函数与一次函数图象结合判定方程根的个数,掌握二次函数的图象和性质是解题的关键.11.抛物线y=-x2+bx+3的对称轴为直线x=-1.若关于x的一元二次方程-x2+bx+3﹣t =0(t为实数)在﹣2<x<3的范围内有实数根,则t的取值范围是()A.-12<t≤3B.-12<t<4 C.-12<t≤4D.-12<t<3【答案】C【解析】【分析】根据给出的对称轴求出函数解析式为y=-x2−2x+3,将一元二次方程-x2+bx+3−t=0的实数根看做是y=-x2−2x+3与函数y=t的交点,再由﹣2<x<3确定y的取值范围即可求解.【详解】解:∵y=-x2+bx+3的对称轴为直线x=-1,∴b=−2,∴y=-x2−2x+3,∴一元二次方程-x2+bx+3−t=0的实数根可以看做是y=-x2−2x+3与函数y=t的交点,∵当x=−1时,y=4;当x=3时,y=-12,∴函数y=-x2−2x+3在﹣2<x<3的范围内-12<y≤4,∴-12<t≤4,故选:C.【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.12.抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc<0;②a+b+c>0;③5a-c=0;④当x<或x>6时,y1>y2,其中正确的个数有()A.1 B.2 C.3 D.4【答案】C【解析】【分析】【详解】解:根据函数的开口方向、对称轴以及函数与y轴的交点可知:a>0,b<0,c>0,则abc<0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误;根据函数对称轴可得:-2b a=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确; 根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.13.定义[a ,b ,c]为函数y=ax 2+bx+c 的特征数,下面给出特征数为[2m ,1-m ,-1-m]的函数的一些结论,其中不正确的是( )A .当m=-3时,函数图象的顶点坐标是(13,83) B .当m>0时,函数图象截x 轴所得的线段长度大于32 C .当m≠0时,函数图象经过同一个点D .当m<0时,函数在x>14时,y 随x 的增大而减小 【答案】D【解析】 分析:A 、把m=-3代入[2m ,1-m ,-1-m],求得[a ,b ,c],求得解析式,利用顶点坐标公式解答即可;B 、令函数值为0,求得与x 轴交点坐标,利用两点间距离公式解决问题;C 、首先求得对称轴,利用二次函数的性质解答即可;D 、根据特征数的特点,直接得出x 的值,进一步验证即可解答.详解:因为函数y=ax 2+bx+c 的特征数为[2m ,1﹣m ,﹣1﹣m];A 、当m=﹣3时,y=﹣6x 2+4x+2=﹣6(x ﹣13)2+83,顶点坐标是(13,83);此结论正确;B 、当m >0时,令y=0,有2mx 2+(1﹣m )x+(﹣1﹣m )=0,解得:x 1=1,x 2=﹣12﹣12m, |x 2﹣x 1|=32+12m >32,所以当m >0时,函数图象截x 轴所得的线段长度大于32,此结论正确;C 、当x=1时,y=2mx 2+(1﹣m )x+(﹣1﹣m )=2m+(1﹣m )+(﹣1﹣m )=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.14.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .BC .32D .52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解.【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B , ∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.15.下面所示各图是在同一直角坐标系内,二次函数y =2ax +(a+c )x+c 与一次函数y =ax+c 的大致图象.正确的( )A .B .C .D .【答案】D【解析】【分析】根据题意和二次函数与一次函数的图象的特点,可以判断哪个选项符合要求,从而得到结论.【详解】令ax 2+(a+c )x+c=ax+c ,解得,x 1=0,x 2=-c a, ∴二次函数y=ax 2+(a+c )x+c 与一次函数y=ax+c 的交点为(0,c ),(−c a ,0), 选项A 中二次函数y=ax 2+(a+c )x+c 中a >0,c <0,而一次函数y=ax+c 中a <0,c >0,故选项A 不符题意,选项B 中二次函数y=ax 2+(a+c )x+c 中a >0,c <0,而一次函数y=ax+c 中a >0,c <0,两个函数的交点不符合求得的交点的特点,故选项B 不符题意,选项C 中二次函数y=ax 2+(a+c )x+c 中a <0,c >0,而一次函数y=ax+c 中a <0,c >0,交点符合求得的交点的情况,故选项D 符合题意,选项D 中二次函数y=ax 2+(a+c )x+c 中a <0,c >0,而一次函数y=ax+c 中a >0,c <0,故选项C 不符题意,故选:D .【点睛】考查一次函数的图象、二次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.16.平移抛物线2:L y x =得到抛物线L ',使得抛物线L '的顶点关于原点对称的点仍在抛物线L '上,下列的平移中,不能得到满足条件的抛物线L '的是( )A .向右平移1个单位,再向下平移2个单位B .向左平移1个单位,再向下平移2个单位C .向左平移32个单位,再向下平移92个单位D .向左平移3个单位,再向下平移9个单位【答案】D【解析】【分析】通过各个选项的平移分别得到相应的函数关系式,再判断原点是否在该抛物线上即可.【详解】解:由A 选项可得L '为:2(1)2y x =--,则顶点为(1,-2),顶点(1,-2)关于原点的对称点为(-1,2),当x =-1时,y =2,则对称点在该函数图像上,故A 选项不符合题意;由B 选项可得L '为:2(1)2y x =+-,则顶点为(-1,-2),顶点(-1,-2)关于原点的对称点为(1,2),当x =1时,y =2,则对称点在该函数图像上,故B 选项不符合题意;由C 选项可得L '为:239()22y x =+-, 则顶点为(-32,-92),顶点(-32,-92)关于原点的对称点为(32,92), 当x =32时,y =92,则对称点在该函数图像上,故C 选项不符合题意; 由D 选项可得L '为:2(3)9y x =+-,则顶点为(-3,-9),顶点(-3,-9)关于原点的对称点为(3,9),当x =3时,y =27≠9,则对称点不在该函数图像上,故D 选项符合题意;故选:D .【点睛】本题考查了二次函数图像的平移,熟练掌握平移的规律“左加右减,上加下减”是解决本题的关键.17.已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc <0;②b 2﹣4ac >0;③3a +c >0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】 试题解析:①由开口向下,可得0,a <又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc ,故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确;③当2x =-时,0,y < 即420a b c -+< (1)当1x =时,0y <,即0a b c ++< (2)(1)+(2)×2得,630a c +<,即20a c +<,又因为0,a <所以()230a a c a c ,++=+< 故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+>所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦ 所以22().a c b +<故④正确,综上可知,正确的结论有2个.故选B .18.已知二次函数y =a (x ﹣h )2+k 的图象如图所示,直线y =ax +hk 的图象经第几象限( )A .一、二、三B .一、二、四C .一、三、四D .二、三、四【答案】D【解析】【分析】 根据二次函数的图象和性质可得a <0,h <0,k >0,以此判断一次函数的图象所经过的象限即可.【详解】解:由函数图象可知,y =a (x ﹣h )2+k 中的a <0,h <0,k >0,∴直线y =ax +hk 中的a <0,hk <0,∴直线y =ax +hk 经过第二、三、四象限,故选:D .【点睛】本题考查了一次函数的图象的问题,掌握二次函数、一次函数的图象和性质是解题的关键.19.已知二次函数y =ax 2+bx+c 的图象如图所示,下列结i 论:①abc >0;②b 2﹣4ac >0;③2a+b =0;④a ﹣b+c <0.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 首先根据开口方向确定a 的取值范围,根据对称轴的位置确定b 的取值范围,根据抛物线与y 轴的交点确定c 的取值范围,根据抛物线与x 轴是否有交点确定b 2﹣4ac 的取值范围,根据x =﹣1函数值可以判断.【详解】 解:抛物线开口向下,0a ∴<, 对称轴12b x a=-=, 0b ∴>,抛物线与y 轴的交点在x 轴的上方,0c ∴>,0abc ∴<,故①错误;抛物线与x 轴有两个交点,240b ac ∴->,故②正确; 对称轴12b x a=-=, 2a b ∴=-, 20a b ∴+=,故③正确;根据图象可知,当1x =-时,0y a b c =-+<,故④正确;故选:C.【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键.20.平移抛物线y=﹣(x﹣1)(x+3),下列哪种平移方法不能使平移后的抛物线经过原点()A.向左平移1个单位B.向上平移3个单位C.向右平移3个单位D.向下平移3个单位【答案】B【解析】【分析】先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.【详解】解:y=﹣(x﹣1)(x+3)=-(x+1)2+4A、向左平移1个单位后的解析式为:y=-(x+2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;B、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即该抛物线不经过原点,故本选项符合题意;C、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;D、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.【点睛】本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.。

易错压轴01 二次函数(十大易错压轴题型+举一反三+易错题通关)(解析版)

易错压轴01 二次函数(十大易错压轴题型+举一反三+易错题通关)(解析版)

易错压轴01二次函数易错压轴一:二次函数的图象与性质例1.已知二次函数2(1)5y x =--+,当a x b ≤≤且0ab <时,y 的最小值为2a ,最大值为2b ,则a b +的值为()A .2B .12C .3D .32【答案】B【分析】本题考查了二次函数的最值问题,二次函数的增减性,由题意可得0a <,0b >,则y 的最小值为2a 为负数,最大值为2b 为正数.最大值为2b 分两种情况:①结合抛物线顶点纵坐标的取值范围,求出 2.5b =,结合图象最小值只能由x a =时求出;②结合抛物线顶点纵坐标的取值范围,图象最大值只能由x b =求出,最小值只能由x a =求出.【详解】解:二次函数2(1)5y x =--+的大致图象如下:①当01a x b <≤≤<时,当x a =时,y 取最小值,即2215()a a =--+,例2.已知Rt ABC △的直角顶点C 与原点O 重合,点A ,B 都落在抛物线24y x =上,则AB 与y 轴的交点为;若OD AB ⊥于点D ,则点D 到点()1,0的最大距离为.则24AM m =,MO m =-,BN =90MAO MOA ∠+∠=︒ ,MOA ∠MAO BON ∴∠=∠,AMO ONB ∴∽ ,AM ON MO NB ∴=,即:2244m n m n=-,1OD AB ⊥ ,14OE =,F 为OE 中点,在Rt DOE △中,1128DF OE ==,练习1.定义:把二次函数()2y a x m n =++与()2y a x m n =---(0a ≠,m 、n 是常数)称作互为“旋转函数”,如果二次函数212y x bx =+-与2214y x cx c =--+(b 、c 是常数)互为“旋转函数”,则下列选项中正确的是()A .2c =-;B .14b c =;C .当x t =时,12y y t +=-;D .不论x 取何值,120y y +=练习2.若关于x 的方程2230x kx k -+-=的一个实数根13x ≥,另一个实数根20x ≤,则关于x 的二次函数223y x kx k =-+-图象的顶点到x 轴距离h 的取值范围是.练习3.已知二次函数()(2y ax a b x b a =-++、b 是常数,0).a ≠(1)若(4)(0),M m m ->在该二次函数的图象上,当0a <时,试判断代数式a b +的正负性;(2)已知对于任意的常数a 、(0)b a ≠,二次函数的图象始终过定点P ,求证:一次函数()()2331y k x k x =++≥图象上所有的点都高于点.P 【答案】(1)a b +为正(2)见解析【分析】本题主要考查了二次函数的图象与性质,解题时要熟练掌握并能灵活运用是关1.已知二次函数()240y ax ax c a =++>图象上的两点()15,y -和()22,x y ,若12y y >,则2x 的取值范围是()A .25x >-B .22x <-C .251x -<<D .252x -<<-2.已知抛物线2y ax bx =+,当3y ≥-时,自变量x 的取值范围是2x m ≤-或2(0)x m m ≥+>,若点(),9P n 在对称轴左侧的抛物线上,则n 的取值范围是.3.已知二次函数223y x x =+-.(1)将223y x x =+-写成()2y a x h k =-+的形式,并写出它的顶点坐标;(2)当40x -<<时,直接写出函数值y 的取值范围;(3)该二次函数的图象与直线y n =有两个交点A ,B ,若6AB >,直接写出n 的取值范围.【答案】(1)()214y x =+-,顶点坐标为()1,4--(2)45y -≤<(3)5n >【分析】(1)利用完全平方公式转化为顶点式,由顶点式写出顶点坐标;易错压轴二:二次函数的图象与系数的关系例1.对于二次函数2y ax bx c =++,定义函数()()2200ax bx c x y ax bx c x ⎧++≥⎪=⎨---<⎪⎩是它的相关函数.若一次函数1y x =+与二次函数24y x x c =-+的相关函数的图象恰好两个公共点,则c 的值可能是()A.1-B.0C.1D.22例2.抛物线2y ax bx c =++的对称轴是直线=1x -,且过点(1,0),顶点位于第二象限,其部分图象如图所示,给出以下判断;①0ab >且0c <;②420a b c -+>;③80a c +>;④直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为12x x ,,则12125x x x x ++=-.其中结论正确的是.练习1.如图,抛物线2(0)y ax bx c a =++≠的图象与x 轴交于(2,0)-,()1,0x ,其中101x <<.有下列五个结论:①0abc >;②0a b c -+>;③20a c +>;④()(2)0a b a b -->;⑤若m ,()n m n <为关于x 的一元二次方程()1(2)10a x x x +-+=的两个根,则21m n -<+<-.其中正确结论的个数是()A .4B .3C .2D .1【答案】B【分析】本题考查了二次函数图象与各项系数的符号,根据二次函数图象判断式子的符号,一元二次方程根与系数的关系,掌握二次函数图象与性质是解题的关键,注意数形结合.根据抛物线开口方向、对称轴的位置及抛物线与y 轴交点位置,可确定a 、b 、c 的符号,练习2.如图,二次函数²y ax bx c =++的图像与x 轴交于点(30),,对称轴为直线1x =,下列结论∶①<0abc ;②420a b c -+>;③30a c +=;④抛物线上有两点11(,)M x y 和22(,)N x y ,若121x x <<,且122x x +>,则12y y >,其中正确的是.(只填写序号)【答案】①③④【分析】本题考查了二次函数图像与系数的关系,二次函数的图像与性质,根据二次函数的图像判断式子的符号,数形结合是本题最大特点.由图像的开口方向、对称轴及图像与y 轴的交点位置可分别确定a 、b 、c 的符号,从而可判定①;由抛物线的对称性可确定当1x <-时,图像位于x 轴下方,从而当2x =-时练习3.已知二次函数()2210y ax ax a =-+≠,图象经过点()1,m -,()1,n ,()3,p .(1)当2m =-时.①求二次函数的表达式;②写出一个符合条件的x 的取值范围,使得y 随x 的增大而增大;(2)若在m ,n ,p 这三个实数中,只有一个是正数,求证:13a ≤-.【答案】(1)①221y x x =-++;②1x <.(2)见解析.【分析】本题考查待定系数法求二次函数解析式及二次函数的图象和性质,熟知二次函数的图象和性质是解题的关键.(1)①利用待定系数法即可解决问题;②根据所得二次函数的图象和性质即可解决问题;(2)由这三个点在抛物线上的位置即可解决问题.【详解】(1)①当2m =-时,将点()1,2--代入函数解析式得,1.已知二次函数2y ax bx c =++(0a ≠)与x 轴的一个交点为()4,0,其对称轴为直线1x =,其部分图象如图所示,有下列5个结论:①0abc <;②240b ac -<;③930a b c ++=;④80a c +=;⑤若关于x 的方程21ax bx c ++=-有两个实数根12,x x ,且满足12x x <,则12x <-,24x >.其中正确结论的个数为()A .5B .4C .3D .22.已知二次函数2(0)y ax bx c a =++<的图象与x 轴的一个交点坐标为(1,0)-,对称轴为直线1x =,下列论中∶①0a b c -+=;②若点()()()1233,,2,,4,y y y -均在该二次函数图象上,则123y y y <<;③若m 为任意实数,则24am bm c a ++≤-;④方程210ax bx c +++=的两实数根为12,x x ,且12x x <,则121,3x x <->.正确结论的序号为.∴与x 轴的另一个交点坐标为(3,0),2(0)y ax bx c a =++<的图象向上平移一个单位长度,即为21y ax bx c =+++的图象,∴21y ax bx c =+++的图象与x 轴的两个交点一个在(1,0)-的左侧,另一个在(3,0)的右侧,∴若方程210ax bx c +++=的两实数根为12,x x ,且12x x <,则121,3x x <->,故④正确;综上可知,正确的有①③④,故答案为:①③④3.在平面直角坐标系中,设二次函数22y ax bx =++(a ,b 是常数,0a ≠).(1)若2a =时,图象经过点()11,,求二次函数的表达式.(2)写出一组a ,b 的值,使函数22y ax bx =++的图象与x 轴只有一个公共点,并求此二次函数的顶点坐标.(3)已知,二次函数22y ax bx =++的图象和直线4y ax b =+都经过点()2m ,,求证:2212a b +≥.易错压轴三:根据二次函数的对称性求函数值例1.如图,抛物线21y a x =与抛物线22y a x bx =+相交于点()1,P m -,过点P 作x 轴的平行线,与两条抛物线分别交于点M ,N ,若点M 是PN 的中点,则12a a 的值是()A .12B .2C .13D .3将()1,P m -,代入1y a x =则12a a b =-,∴()1222a a a =--,∴123a a =,∴123a a =,故选:D .例2.已知二次函数2y ax bx c =++的图像过点(1,0)A -和(0,1)C .(1)若此抛物线的对称轴是直线12x=,点C与点P关于直线12x=对称,则点P的坐标是.(2)若此抛物线的顶点在第一象限,设t a b c=++,则t的取值范围是.练习1.设二次函数24y kx kx c =-+(k ,c 为实数)的图象过点()11,A x y ,()22,B x y ,()33,C x y 三点,且3212x x x <<<,13x x =,124x x +>,下列结论正确的是()A .若0k >,则312y y y =>B .若0k >,则321y y y >>C .若0k <,则123y y y >>D .若0k <,则213y y y >>练习2.已知22x m n =++和2x m n =+时,多项式246x x ++的值相等,则当x m n =+时,多项式的值为.【答案】2【分析】本题考查了二次函数的性质,令246y x x =++,可知对称轴为直线2x =-,根据题意,求出2x m n =+=-,即可求解.【详解】解:∵()224622y x x x =++=++,练习3.自变量x 的函数值我们通常记作()f x ,()f n 表示自变量x n =时,函数()f x 的函数值,已知函数()23f x x ax =-+,其中a 为常数.(1)若2a =,求()5f 的值;(2)若存在唯一一个自变量x 的值,使得另一个函数()()g x f x =,()2g x x =+,试求满足条件的a 的值;(3)若存在实数m 且12m -<≤,使得()()223f m f m =-+,试求实数a 的取值范围.1.设函数()y f x =对一切实数不均满足(5)(5)f x f x +=-,且方程()0f x =恰好有6个不同的实根,则这6个实根的和为()A .10B .12C .18D .30【答案】D【分析】本题考查函数的零点与方程的根的关系,解题的关键是看出函数的图象关于直线5x =对称,得到函数的零点是成对出现的.根据函数()f x 满足(5)(5)f x f x +=-,可得函数的图象关于5x =对称,从而得到方程()0f x =的6个实数解中有3对,每一对的和为10,由此可得结论.【详解】解:对于任意实数,函数()f x 不均满足(5)(5)f x f x +=-∴函数的图象关于5x =对称,∴函数的零点关于5x =对称,∴方程()0f x =的根关于5x =对称,∴方程()0f x =的6个实数解中有3对,∴成对的两个根之和等于2510⨯=,6∴个实根之和是10330⨯=,故选:D .2.已知关于直线1x =对称的抛物线2y x bx c =++经过()123,A n y +,()21,B n y -两点,且点A ,B 分别位于拋物线对称轴的两侧,则位于对称轴左侧的点是(填A 或B ),若此时12y y <,则n 的取值范围是.【答案】B 10n -<</01n >>-【分析】本题考查二次函数的图象和性质.解题的关键是掌握二次函数的增减性.根据抛物线对称轴为1x =,开口向上,根据已知条件分类讨论得出点B 在对称轴的左侧;根据12y y <,进而得出不等式,解不等式即可求解.【详解】解: 抛物线2y x bx c =++关于直线1x =对称,经过()123,A n y +,()21,B n y -两点,且点A ,B 分别位于拋物线对称轴的两侧,若点A 位于对称轴左侧,则23123111n n n n +<-⎧⎪+<⎨⎪->⎩,解得412n n n <-⎧⎪<-⎨⎪>⎩,不等式组无解,不符合题意;若点B 位于对称轴左侧,则23123111n n n n +>-⎧⎪+>⎨⎪-<⎩,解得412n n n >-⎧⎪>-⎨⎪<⎩,∴不等式组的解为12n -<<;此时12y y <,()()11231n n ∴-->+-,解得:0n <,∴10n -<<,综上,12y y <时,则n 的取值范围是10n -<<,故答案为:B ,10n -<<.3.设二次函数2223y x mx m =+-+(m 为常数)的图象为f .【特例感悟】(1)当2m =,30x -≤≤时,二次函数2223y x mx m =+-+(m 为常数)的最小值是______、最大值是______;【类比探索】(2)当直线()0y m m =-<与图象f 在第一象限内交A 、B 两点(点A 在点B 的左边),A 点横坐标a ,点B 的横坐标b ,7a b =,求在a x b ≤≤范围内二次函数2223y x mx m =+-+(m 为常数)的最大值与最小值的差;【纵深拓展】(3)①不论m 为何实数时,图象f 一定会经过一个定点,求出这个定点坐标;②当02x ≤≤时,二次函数2223y x mx m =+-+(m 为常数)的最大值为9,那么图象f 的对称轴与x 轴的交点横坐标会大于0小于2吗?试说明你的理由,并指出满足条件的对称轴与定点之间的距离.【答案】(1)51-,-;(2)最大值与最小值的差为9;(3)①定点坐标为()1,4;②当02x ≤≤时,图象f 的对称轴与x 轴的交点横坐标不能大于0小于2.理由见详解,定点()1,4分别到直线=1x -、3x =的距离都是2.【分析】(1)函数的对称轴为直线2x =-,则2415y x x =+-=-,当0x =时,2411y x x =+-=-,即可求解;(2)由28273a m a m=-⎧⎨=-⎩,整理得2716480m m +-=,得到图象f 的对称轴为4x =,进而求解;(3)①222232(1)3y x mx m x m x =+-+=+-+,当1x =时,无论m 为何实数,都有4y =,即可求解;②当02m ≤-≤时,抛物线开口向上,在0x m ≤≤-时,y 随x 的增大而减小,函数在2m x -≤≤时y 随x 的增大而增大,即可求解;当对称轴为2x m =->时,函数在02x ≤≤时y 随x 的增大而减小,同理可解.本题考查的是二次函数综合运用,涉及到二次函数的图象和性质,确定函数对称轴和分类求解是解题的关键.【详解】解:(1)当2m =,30x -≤≤时,241y x x =+-,函数的对称轴为直线2x =-,则2415y x x =+-=-,当0x =时,2411y x x =+-=-,易错压轴四:二次函数的最值问题例1.已知:()2110422m a a a =--≤≤,()414n b b =≤≤,2m n +=,则下列说法中正确的是()A .n 有最大值4,最小值1B .n 有最大值3,最小值32-C .n 有最大值3,最小值1D .n 有最大值3,最小值52例2.已知二次函数()2211y ax b x =--+(a ,b 为常数且0a >),当21x -≤≤-时,y随x 的增大而增大,则ab 的最大值为.练习1.4.已知二次函数()()22y x x m =---,当0x m ≤≤时,则()A .若4m >时,函数y 有最小值24m-B .若4m >时,函数y 有最小值24mC .若4m <时,函数y 有最小值24m-D .若4m <时,函数y 有最小值24m【答案】A【分析】本题主要考查了二次函数的性质,掌握根据二次函数的性质求二次函数最值的取值范围是解题的关键.先将二次函数解析式化成顶点式,然后根据各选项m 的取值范围,确定对称轴和m 的练习2.已知抛物线1C :228=-y x ,把1C 绕点()1,0旋转180︒,得到抛物线2C ,则2C 的解析式为;在1C 和2C 构成的封闭区域内作直线l y 轴,分别交1C 和2C 与点M ,N ,则MN 的最大值为.【答案】288y x x=-+12【分析】先求出抛物线1C 的顶点为(0,8)-,与x 轴交点为(2,0)和(2,0)-,由旋转的性质可得抛物线2C 的顶点为(2,8),2C 图像上的两点(0,0)和(4,0),设二次函数的顶点式,代入(0,0)即可求出解析式;设2(,28),M m m -则2(,28)N m m m -+,可得24(1)12MN m =--+,进而可求最值;【详解】解:在228=-y x 中,令0y =得2x =或2x =-,∴抛物线1C 的顶点为(0,8)-,与x 轴交点为(2,0)和(2,0)-,将(0,8)-绕点(1,0)旋转180︒,得到抛物线2C 的顶点为(2,8);将(2,0)和(2,0)-绕点(1,0)旋转180︒,分别得到2C 图像上的点(0,0)和(4,0);设抛物线2C 的解析式为2(2)8y a x =-+,把(0,0)代入得:048,a =+,解得2a =-,∴抛物线2C 的解析式为222(2)828y x x x =--+=-+;设2(,28),M m m -则(,2N m m -2228(28)MN m m m ∴=-+--由222828x x x x -+=-可得x ∵在1C 和2C 构成的封闭区域内作直线3131,m ∴-+<<+∴当1m =时,MN 取最大值故答案为:228y x x =-+;练习3.如图,在平面直角坐标系中,二次函数2y x bx c =++的图象经过点0,4A ⎛⎫- ⎪⎝⎭,点11,4B ⎛⎫ ⎪⎝⎭.(1)求此二次函数的解析式;(2)当22x -≤≤时,求二次函数2y x bx c =++的最大值和最小值;(3)点P 为此函数图象上任意一点,其僙坐标为m ,过点P 作PQ x ∥轴,点Q 的横坐标为21m -+.已知点P 与点Q 不重合,且线段PQ 的长度随m 的增大而减小.①求m 的取值范围;②当7PQ ≤时,直接写出线段PQ 与二次函数2123y x bx c x ⎛⎫=++-≤< ⎝⎭的图象只有1个交点时m 的取值范围.m 图象只有1个交点,直线13x =关于抛物线对称轴直线4132m ∴-<<-时,PQ 当423m -≤≤-时,PQ 综上所述,423m -≤≤-PQ 与图象有2个交点,1.如图,矩形ABCD 中,42AB AD ==,,E 为边AD 上一个动点,连接BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90︒得到点F ,连接CF ,则CEF △面积的最小值是()A .4B .154C .3D .114∵矩形ABCD 中,4AB =∴A GEF EHF ∠=∠=∠=∴FEH EBA ∽,EF EG =∴FE FH EHEB EA AB==,2.若点(),1p 在抛物线214y x =上过y 轴上点E 作两条相互垂直的直线与抛物线分别交于A ,B ,C ,D ,且M ,N 分别是线段AB CD ,的中点,EMN 面积的最小值为.3.设二次函数214y ax x c =-+(a ,c 是常数)的图象与x 轴有交点.(1)若图象与x 轴交于A ,B 两点的坐标分别为(10)(30),,,,求函数1y 的表达式,并写出函数图象的顶点坐标.(2)若图象与x 轴只有一个交点,且过()a c ,,求此时a ,c 的值.(3)已知1a =,若函数1y 的表达式还可以写成()()1y x m x n =--(m ,n 为常数,m n ≠且2mn =),设二次函数()()2y x m x n =---,求12y y -的最小值.【答案】(1)2143y x x =-+;()21-,(2)当2a =时,2c =;当2a =-时,2c =-(3)4-【分析】(1)将(10)(30),,,代入214y ax x c =-+,可求13a c =⎧⎨=⎩,进而可得2143y x x =-+,化成顶点式可得顶点坐标;(2)令240ax x c -+=,由图象与x 轴只有一个交点,则()2440ac ∆=--=,即4ac =,将()a c ,代入214y ax x c =-+得,34c a a c =-+,可求2a =或2a =-或0a =(舍去),然后求解作答即可;易错压轴五:二次函数的平移问题例1.若抛物线242y x x =-+-向上平移()0m m >个单位后,在14x -<<范围内与x 轴只有一个交点,则m 的取值范围是()A .2m ≥B .02m <≤C .07m <≤D .27m ≤<【答案】D 【分析】先根据函数图象平移规则“上加下减求得平移后的函数解析式,根据二次函数的性质,结合函数的图象,进而可列出不等式组求解即可.【详解】解:根据题意,平移后的抛物线的表达式为242y x x m =-+-+,∵平移后抛物线的开口向下,对称轴为直线2x =,∴要使在14x -<<范围内与x 轴只有一个交点,只需=1x -时对应图象上的点在x 轴下方,4x =时对应函数图象上的点在x 轴上或x 轴上方,如图,∴1420161620m m ---+<⎧⎨-+-+≥⎩,解得27m ≤<,故选:D .【点睛】本题考查二次函数图象的平移、二次函数与x 轴的交点问题,解答的关键是掌握二次函数的性质,以及与方程、不等式的关系.例2.如图①是杭州亚运会的徽标中的钱江潮头,可近似地看成是顶点在y 轴上的二次函数,如图②所示,已知1OC =,6AB =.当潮头以2个单位每秒的速度向x 轴正方向移动的过程中,若记潮头起始位置所在的二次函数图象与坐标轴三个交点围成的面积为ABC S ,则经过秒后,潮头所在的抛物线与坐标轴的三个交点围成的面积恰好为ABC面积的一半.练习1.已知,二次函数21(,y ax bx a b =+-是常数,且0)a ≠的图象经过()2,1,(4,3)A B ,()4,1C -三个点中的两个点,平移该函数的图象,使其顶点始终在直线1y x =-上,则平移后所得抛物线与y 轴交点的纵坐标()A .有最大值为1B .有最大值为12-C .有最小值为1D .有最小值为12-【答案】B【分析】本题考查了二次函数图象的平移,一次函数的图象和性质,待定系数法的应用;首先判断出抛物线经过点A 、C ,利用待定系数法求出抛物线解析式,根据题意设出平移后的抛物线解析式,令0x =,得到纵坐标与平移距离之间的函数关系式,进而可得答案.【详解】解:∵()2,1,(4,3)A B 在直线1y x =-上,练习2.对某一个函数给出如下定义:若存在实数0m >,对于任意的函数值,都满足m y m -≤≤,则称这个函数是有界函数....,在所有满足条件的m 中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.将函数()212,0y x x t t =-+-≤≤≥的图象向上平移t 个单位,得到的函数的边界值n 满足是9542n ≤≤时,则t 的取值范围是.练习3.已知二次函数的图像L 过点0,2⎛⎫⎪⎝⎭,顶点坐标为()1,2-.(1)求这个二次函数的表达式;(2)L 与x 轴相交于A ,B 两点(点A 在点B 左侧),求A ,B 两点坐标;(3)将L 向上平移个()0k k >单位长度,与x 轴相交于1A ,1B 两点,若点(),0K k 在线段11A B 上,求k 的取值范围.1.如图,抛物线22y x x =+与直线2y x =+交于A 、B 两点,与直线2x =交于点P ,将抛物线沿着射线AB平移P经过的路程为()A.6B.132C.254D.142.如图,抛物线2286y x x =-+-与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作1C ,将1C 向右平移得2C ,2C 与x 轴交于点B 、D .若直线y x m =+与1C 、2C 共有2个不同的交点,则m 的取值范围是.当1y x m =+与抛物线1C :2286y x x =-+-相切时,令21286y x x x m =-+-=+,即2276x x m -+--根据相切可知方程有两个相等的解,即27∆=-解得118m =,当2y x m =+过点()1,0A 时,即:201m =+,解得21m =-,3.在平面直角坐标系xOy 中,已知抛物线2y x bx c =++与x 轴交于点(1,0)A -,(5,0)B .(1)求抛物线的表达式.(2)若抛物线22y x bx c mx =++-,当2123m x m -≤≤+时,y 有最大值12,求m 的值.(3)若将抛物线2y x bx c =++平移得到新抛物线2y x bx c n =+++,当23x -<<时,新抛物线与直线1y =有且只有一个公共点,直接写出n 的取值范围.①点时,则485191251n n +-+≥⎧⎨--+≤⎩解得69n -≤≤;②当抛物线245y x x =--与直线易错压轴六:二次函数与一元二次方程例1.将抛物线223y x x =-++中x 轴上方的部分沿x 轴翻折到x 轴下方,图像的其余部分不变,得到的新图像与直线y x m =+有4个交点,则m 的取值范围是()A .5m ≤-B .2154m -≤<-C .2134m -<<-D .3m ≥-【答案】C【分析】本题考查抛物线与x 轴的交点:把求二次函数2y ax bx c =++(a 、b 、c 是常数,0a ≠)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.解方程2230x x -++=得()1,0-,()3,0,再利用折叠的性质求出折叠部分的解析式为()()13y x x =+-,即()22313y x x x =---≤≤,然后求出直线y x m =+经过点()3,0时m 的值和当直线y x m =+与抛物线()22313y x x x =---≤≤有唯一公共点时m 的值,即可得解.掌握抛物线与x 轴交点坐标的求法及抛物线与直线交点坐标的求法是解题的关键.也考查了二次函数图像与几何变换.【详解】解:对抛物线223y x x =-++,当0y =时,得:2230x x -++=,解得:=1x -或3x =,∴抛物线与x 轴的交点为()1,0-、()3,0,∵将抛物线223y x x =-++中x 轴上方的部分沿x 轴翻折到x 轴下方,图像的其余部分不变,∴新图像中当13x -≤≤时,解析式为()()13y x x =+-,即2=23y x x --,如图,当直线y x m =+经过点()3,0时,此时直线y x m =+与新函数图像有3个交点,把()3,0代入直线y x m =+,解得:3m =-,将直线y x m =+向下平移时,有4个交点,例2.已知点()0,0.3A ,)B,()2,0.3C 在二次函数()20y ax bx c a =++≠的图象上,则方程20.70ax bx +-=的解为【答案】23-或3【分析】本题考查了二次函数的性质,。

(易错题精选)初中数学二次函数真题汇编附答案解析

(易错题精选)初中数学二次函数真题汇编附答案解析

(易错题精选)初中数学二次函数真题汇编附答案解析一、选择题1.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a;∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.2.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时, (4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.3.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上, 0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确; Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.4.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.5.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【答案】D【解析】分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.详解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣13)2+83,顶点坐标是(13,83);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣12﹣12m,|x2﹣x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.6.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( )A .0<t <5B .﹣4≤t <5C .﹣4≤t <0D .t ≥﹣4【答案】B【解析】【分析】先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解;【详解】解:∵对称轴为直线x =2,∴b =﹣4,∴y =x 2﹣4x ,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4,∴二次函数y 的取值为﹣4≤y <5,∴﹣4≤t <5;故选:B .【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.7.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

二次函数易错题(Word版 含答案)

二次函数易错题(Word版 含答案)

二次函数易错题(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=1 2 x﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上.(1)求此二次函数的表达式;(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由.【答案】(1)y=12x2﹣32x﹣2;(2)﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)Q的坐标为(53,﹣289)或(﹣113,929).【解析】【分析】(1)根据题意先求出点B、C的坐标,进而利用待定系数法即可求解;(2)由题意过点P作PH//y轴交BC于点H,并设点P(x,12x2﹣32x﹣2),进而根据S=S△PHB+S△PHC=12PH•(x B﹣x C),进行计算即可求解;(3)根据题意分点Q在BC下方、点Q在BC上方两种情况,利用解直角三角形的方法,求出点H的坐标,进而分析求解.【详解】解:(1)对于直线y=12x﹣2,令x=0,则y=﹣2,令y=0,即12x﹣2=0,解得:x=4,故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=12,故抛物线的表达式为y=12x2﹣32x﹣2①;(2)如图2,过点P作PH//y轴交BC于点H,设点P(x,12x2﹣32x﹣2),则点H(x,12x﹣2),S=S△PHB+S△PHC=12PH•(x B﹣x C)=12×4×(12x﹣2﹣12x2+32x+2)=﹣x2+4x,∵﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)①当点Q在BC下方时,如图2,延长BQ交y轴于点H,过点Q作QC⊥BC交x轴于点R,过点Q作QK⊥x轴于点K,∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形,则点C是RQ的中点,在△BOC中,tan∠OBC=OCOB=12=tan∠ROC=RCBC,则设RC=x=QB,则BC=2x,则RB22(2)x x5=BQ,在△QRB中,S△RQB=12×QR•BC=12BR•QK,即122x•2x=125,解得:KQ5∴sin∠RBQ=KQBQ55x=45,则tanRBH=43,在Rt △OBH 中,OH =OB•tan ∠RBH =4×43=163,则点H (0,﹣163), 由点B 、H 的坐标得,直线BH 的表达式为y =43(x ﹣4)②, 联立①②并解得:x =4(舍去)或53, 当x =53时,y =﹣289,故点Q (53,﹣289); ②当点Q 在BC 上方时,同理可得:点Q 的坐标为(﹣113,929); 综上,点Q 的坐标为(53,﹣289)或(﹣113,929). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、解直角三角形、面积的计算等,注意分类讨论思维的应用,避免遗漏.2.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D . (1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式.(3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为(33,3或(33,3-或(13,3或(13,3+-或31,2⎛⎫- ⎪⎝⎭【解析】 【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M,M′的坐标即可解决问题.(3)分OD是平行四边形的边或对角线两种情形求解即可.【详解】解:(1)∵抛物线L:y=ax2﹣4ax(a>0),∴抛物线的对称轴x=﹣42aa=2.(2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=12,∴抛物线L′的解析式为y=﹣12(x﹣2)2+2=﹣12x2+2x.(3)如图3中,由题意OD=2.当OD 为平行四边形的边时,PQ =OD =2,设P (m ,12m 2﹣2m ),则Q [m ﹣2,﹣12(m ﹣2)2+2(m ﹣2)]或[m +2,﹣12(m +2)2+2(m +2)], ∵PQ ∥OD , ∴12m 2﹣2m =﹣12(m ﹣2)2+2(m ﹣2)或12m 2﹣2m =﹣12(m +2)2+2(m +2), 解得m =33,∴P 33或(333或(133和33, 当OD 是平行四边形的对角线时,点P 的横坐标为1,此时P (1,﹣32), 综上所述,满足条件的点P 的坐标为33或(333或(133)和33)或(1,﹣32). 【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题3.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a 是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a 是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a,∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =222122a a a ≤+=2,(当a =22时取等号) ∴0<﹣b ≤24, ∴﹣2≤b <0, 即b 的取值范围是﹣24≤b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.4.如图1,抛物线21:C y x b =+交y 轴于()0,1A .(1)直接写出抛物线1C 的解析式______________.(2)如图1,x 轴上两动点,M N 满足:m n X X n -==.若,B C (B 在C 左侧)为线段MN 上的两个动点,且满足:B 点和C 点关于直线:1l x =对称.过B 作BB x '⊥轴交1C于B ',过C 作CC x '⊥轴交1C 于C ',连接B C ''.求B C ''的最大值(用含n 的代数式表示).(3)如图2,将抛物线1C 向下平移78个单位长度得到抛物线2C .2C 对称轴左侧的抛物线上有一点M ,其横坐标为m .以OM 为直径作K ,记⊙K 的最高点为Q .若Q 在直线2y x =-上,求m 的值.【答案】(1)21y x =+;(2)1|n -;(3)14m =-或12m =- 【解析】 【分析】(1)将()0,1A 带入抛物线1C 解析式,求得b 的值,即可得到抛物线1C 的解析式; (2)设(),0B q ,则()2,0C q -,求()2B C ''并进行化简,由1n q -≤<且12,qn <-得21n q -<,则当()2maxB C''⎡⎤⎢⎥⎣⎦时,取min 2q q n ==-,带入()2B C '',即可求得()maxB C '';(3)依题意将抛物线1C 向下平移78个单位长度得到抛物线2C ,求得2C 解析式,根据解析式特点设21,8M m m ⎛⎫+ ⎪⎝⎭,得到222218OM m m ⎛⎫=++ ⎪⎝⎭,由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭,设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,化简得到22211084k m k m ⎛⎫++-= ⎪⎝⎭,由Q 点在2y x =-上,得2Q k x m =-=-,继而得到231048m m -+=,解得14m =-或12m =-. 【详解】解:(1)将()0,1A 带入抛物线21:C y x b =+,得b=1, 则21:1C y x =+,(2)设(),0B q ,则()2,0C q -, ∴()22222(2)(2)B C q q q q ''⎡⎤=--+--⎣⎦2204020q q =-+()2201q =-,∵1n q -≤<且12,q n <-21n q -<∴,∴()2maxB C''⎡⎤⎢⎥⎣⎦时,min 2q q n ==-,即()22220(21)20(1)B C n n ''=--=-,∴()max1|B C n ''=-,(3)根据题意,将抛物线1C 向下平移78个单位长度得到抛物线2C , ∴221:8C y x =+, ∴21,8M m m ⎛⎫+⎪⎝⎭, ∴222218OM m m ⎛⎫=++ ⎪⎝⎭,∴由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭, 设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭, ∴222111428OM k m ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 化简上式得:22211084k m k m ⎛⎫++-= ⎪⎝⎭, ∵Q 点在2y x =-上,则2Q k x m =-=-, ∴k m =-为上述方程的一个解, ∴分析可知1()04k m k m ⎛⎫+-= ⎪⎝⎭, 21148m m m -=+∴,∴231048m m -+=, 解得:114m =-,212m =-(经检验114m =-,212m =-是方程231048m m -+=的解), 故14m =-或12m =-.【点睛】本题主要考查二次函数的图像及性质、图像平移的性质、及二次函数与一元二次方程的综合应用、最值求法等知识.解题关键是熟练掌握二次函数的性质,充分利用数形结合的思想.5.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值; ②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】 【分析】(1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可; ②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围. 【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩, ①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=, 解得:m=2当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32, 解得:或m=2.综上所述:m=2-或m=2+或m=2-②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-, 当x=2时,有最大值,最大值y=72. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-的相关函数的最大值为432,最小值为12-; (3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2-4x-n与y轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x 2-4x-n 经过点M (12-,1), ∴14+2-n=1,解得:n=54. ∴1<n≤54时,线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有2个公共点. 综上所述,n 的取值范围是-3<n≤-1或1<n≤54. 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值是解题的关键.6.如图,抛物线2(0)y ax bx c a =++≠与坐标轴的交点为()30A -,,()10B ,,()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式.(2)若E 为第二象限内一点,且四边形ACBE 为平行四边形,求直线CE 的解析式. (3)P 为抛物线上一动点,当PAB ∆的面积是ABD ∆的面积的3倍时,求点P 的坐标.【答案】(1)223y x x =+-;(2)33y x =--;(3)点P 的坐标为()5,12-或()3,12.【解析】【分析】(1)本题考查二次函数解析式的求法,可利用待定系数法,将点带入求解;(2)本题考查二次函数平行四边形存在性问题,可根据题干信息结合平行四边形性质确定动点位置,进一步利用待定系数法求解一次函数解析式;(3)本题考查二次函数与三角形面积问题,可先根据题干面积关系假设动点坐标,继而带入二次函数,列方程求解.【详解】(1)∵抛物线2y ax bx c=++与坐标轴的交点为()30A-,,()10B,,()0,3C-,∴9303a b ca b cc-+=⎧⎪++=⎨⎪=-⎩,解得123abc=⎧⎪=⎨⎪=-⎩∴抛物线的解析式为223y x x=+-.(2)如图,过点E作EH x⊥轴于点H,则由平行四边形的对称性可知1AH OB==,3EH OC==.∵3OA=,∴2OH=,∴点E的坐标为()2,3-.∵点C的坐标为()0,3-,∴设直线CE的解析式为()30y kx k=-<将点()2,3E-代入,得233k--=,解得3k=-,∴直线CE的解析式为33y x=--.(3)∵2223(1)4y x x x=+-=+-,∴抛物线的顶点为()1,4D--.∵PAB∆的面积是ABD∆的面积的3倍,∴设点P为(),12t.将点(),12P t代入抛物线的解析式223y x x=+-中,得22312t t+-=,解得3t=或5t=-,故点P的坐标为()5,12-或()3,12.【点睛】本题考查二次函数与几何的综合,利用待定系数法求解解析式时还可以假设交点式,几何图形存在性问题求解往往需要利用其性质,假设动点坐标,列方程求解.7.如图,抛物线2y x bx c=-++的图象与x轴交于A、B两点(点A在点B的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为3,0,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0 【解析】【分析】(Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求2FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解.【详解】 解:(Ⅰ)依题意()()2330{3b c c --+⨯-+== 解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4y x x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称设Q 的横坐标为a则()11a x --=--∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++当2x =-时,d 取最大值,此时,(2,0)M -∴2(3)1AM =---=设直线AC 的解析式为y kx b =+ 则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3yx 将2x =-代入3yx ,得1y = ∴(2,1)E -,∴1EM = ∴11111222AEM S AM ME ∆=⋅=⨯⨯= (Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合,∴3OQ =∵2223(1)4y x x x∴()1,4D -过D 作DK y ⊥轴于K ,则1DK =,4OK =∴431OK OK OQ =-=-=∴DKQ 是等腰直角三角形,2DQ =∴224FG DQ ==设()2,23F m m m --+,则(,3)G m m + ()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m =当4m =-时,2235m m --+=-当1m =时,2230m m --+=.∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.8.如图,已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,过点A 的直线l 与抛物线交于点C ,其中点A 的坐标是()1,0,点C 的坐标是()2,3-,抛物线的顶点为点D .(1)求抛物线和直线AC 的解析式.(2)若点P 是抛物线上位于直线AC 上方的一个动点,求APC ∆的面积的最大值及此时点P 的坐标.(3)若抛物线的对称轴与直线AC 相交于点E ,点M 为直线AC 上的任意一点,过点M 作//MN DE 交抛物线于点N ,以D ,E ,M ,N 为顶点的四边形能否为平行四边形?若能,求出点M 的坐标;若不能,请说明理由.【答案】(1)y=-x 2-2x+3,y=-x+1;(2)最大值为278,此时点P(12-,154);(3)能,(0,1),)或【解析】【分析】(1)直接利用待定系数法进行求解,即可得到答案;(2)设点P(m ,-m 2-2m+3),则Q(m ,-m+1),求出PQ 的长度,结合三角形的面积公式和二次函数的性质,即可得到答案;(3)根据题意,设点M(t ,-t+1),则点N(t ,-t 2-2t+3),可分为两种情况进行分析:①当点M 在线段AC 上时,点N 在点M 上方;②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方;分别求出点M 的坐标即可.【详解】解:(1)∵抛物线y=-x 2+bx+c 过点A(1,0),C(-2,3),∴10423b c b c -++=⎧⎨--+=⎩,,解得:23b c =-⎧⎨=⎩,. ∴抛物线的解析式为y=-x 2-2x+3.设直线AC 的解析式为y=kx+n .将点A ,C 坐标代入,得023k n k n +=⎧⎨-+=⎩,,解得11k n =-⎧⎨=⎩,. ∴直线AC 的解析式为y=-x+1.(2)过点P 作PQ ∥y 轴交AC 于点Q .设点P(m ,-m 2-2m+3),则Q(m ,-m+1).∴PQ=(-m 2-2m+3)-(-m+1)=-m 2-m+2.∴S △APC =S △PCQ +S △APQ =12PQ·(x A -x C )=12(-m 2-m+2)×3=23127()228m -++. ∴当m=12-时,S △APC 最大,最大值为278,此时点P(12-,154). (3)能.∵y=-x 2-2x+3,点D 为顶点,∴点D(-1,4),令x=-1时,y=-(-1)+1=2,∴点E(-1,2).∵MN ∥DE ,∴当MN=DE=2时,以D ,E ,M ,N 为顶点的四边形是平行四边形.∵点M 在直线AC 上,点N 在抛物线上,∴设点M(t,-t+1),则点N(t,-t2-2t+3).①当点M在线段AC上时,点N在点M上方,则MN=(-t2-2t+3)-(-t+1)=-t2-t+2.∴-t2-t+2=2,解得:t=0或t=-1(舍去).∴此时点M的坐标为(0,1).②当点M在线段AC(或CA)延长线上时,点N在点M下方,则MN=(-t+1)-(-t2-2t+3)=t2+t-2.∴t2+t-2=2,解得:t=1172-+或t=1172--.∴此时点M的坐标为(117-+,317-)或(117--,317+).综上所述,满足条件的点M的坐标为:(0,1),(117-+,317-)或(1172--,3172+).【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式和二次函数的性质解题;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.9.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)求直线AC的函数解析式;(3)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;【答案】(1)y=﹣2 3 x2﹣43x+2;(2)223y x=+;(3)存在,(35,22-)【解析】【分析】(1)直接用待定系数法即可解答;(2)先确定C点坐标,设直线AC的函数解析式y=kx+b,最后用待定系数法求解即可;(3)连接PO,作PM⊥x轴于M,PN⊥y轴于N,然后求出△ACP面积的表达式,最后利用二次函数的性质求最值即可.【详解】解:(1)∵抛物线y=ax2+bx+2过点A(﹣3,0),B(1,0),∴093202a ba b=-+⎧⎨=++⎩解得2343ab⎧=-⎪⎪⎨⎪=-⎪⎩,∴二次函数的关系解析式为y=﹣23x2﹣43x+2;(2)∵当x=0时,y=2,∴C(0,2)设直线AC的解析式为y kx b=+,把A、C两点代入得0=32k bb-+⎧⎨=⎩解得232kb⎧=⎪⎨⎪=⎩∴直线AC的函数解析式为223y x=+;(3)存在.如图: 连接PO,作PM⊥x轴于M,PN⊥y轴于N设点P坐标为(m,n),则n=224233m m--+),PN=-m,AO=3当x=0时,y=22400233-⨯-⨯+=2,∴点C 的坐标为(0,2),OC=2 ∵PAC PAO PCO ACO S S S S =+-212411322()3223322m m m ⎛⎫=⨯⋅--++⨯⋅--⨯⨯ ⎪⎝⎭ =23m m --∵a=-1<0∴函数S △PAC =-m 2-3m 有最大值∴b 当m=()33212-=--⨯- ∴当m=32-时,S △PAC 有最大值n=222423435223332322m m ⎛⎫--+=-⨯-⨯+= ⎪⎝⎭ ∴当△ACP 的面积最大时,P 的坐标为(35,22-). 【点睛】 本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、二次函数极值等知识点,根据题意表示出△PAC 的面积是解答本题的关键.10.如图,已知二次函数22(0)y ax ax c a 的图象与x 轴负半轴交于点A (-1,0),与y 轴正半轴交与点B ,顶点为P ,且OB=3OA ,一次函数y=kx+b 的图象经过A 、B .(1) 求一次函数解析式;(2)求顶点P 的坐标;(3)平移直线AB 使其过点P ,如果点M在平移后的直线上,且3tan 2OAM ∠=,求点M 坐标;(4)设抛物线的对称轴交x 轴与点E ,联结AP 交y 轴与点D ,若点Q 、N 分别为两线段PE 、PD 上的动点,联结QD 、QN ,请直接写出QD+QN 的最小值.【答案】(1) 一次函数的解析式为:y=3x+3(2)顶点P 的坐标为(1,4)(3) M 点的坐标为:15,2(,39⎛⎫- ⎪⎝⎭或 23-)(4)最小值为5【解析】【分析】 (1)根据抛物线的解析式即可得出B (0,3),根据OB=3OA ,可求出OA 的长,也就得出了A 点的坐标,然后将A 、B 的坐标代入直线AB 的解析式中,即可得出所求;(2)将(1)得出的A 点坐标代入抛物线的解析式中,可求出a 的值,也就确定了抛物线的解析式进而可求出P 点的坐标;(3)易求出平移后的直线的解析式,可根据此解析式设出M 点坐标(设横坐标,根据直线的解析式表示出纵坐标).然后过M 作x 轴的垂线设垂足为E ,在构建的直角三角形AME 中,可用M 点的坐标表示出ME 和AE 的长,然后根据∠OAM 的正切值求出M 的坐标.(本题要分M 在x 轴上方和x 轴下方两种情况求解.方法一样.)(4)作点D 关于直线x=1的对称点D′,过点D′作D′N ⊥PD 于点N ,根据垂线段最短求出QD+QN 的最小值.【详解】(1)∵A (-1,0),∴OA=1∵OB=3OA ,∴B (0,3)∴图象过A 、B 两点的一次函数的解析式为:y=3x+3(2)∵二次函数22(0)y ax ax c a =-+<的图象与x 轴负半轴交与点A (-1,0),与y 轴正半轴交与点B (0,3),∴c=3,a=-1∴二次函数的解析式为:223y x x =-++∴抛物线223y x x =-++的顶点P (1,4)(3)设平移后的直线的解析式为:3y x b =+∵直线3y x b =+过P (1,4)∴b=1∴平移后的直线为31y x =+∵M 在直线31y x =+,且3tan 2OAM ∠=设M (x,3x+1)① 当点M 在x 轴上方时,有31312x x +=+,∴13x = ∴11,23M ⎛⎫ ⎪⎝⎭②当点M 在x 轴下方时,有31312x x +-=+,∴59x =- ∴25(,9M - 23-)(4)作点D关于直线x=1的对称点D’,过点D’作D’N⊥PD于点N当-x2+2x+3=0时,解得,x=-1或x=3,∴A(-1,0),P点坐标为(1,4),则可得PD解析式为:y=2x+2,令x=0,可得y=2,∴D(0,2),∵D与D′关于直线x=1对称,∴D′(2,2).根据ND′⊥PD,设ND′解析式为y=kx+b,则k=-12,即y=-12x+b,将D′(2,2)代入,得2=-12×2+b,解得b=3,可得函数解析式为y=-12x+3,将两函数解析式组成方程组得:13222y xy x⎧=-+⎪⎨⎪=+⎩,解得25145xy⎧=⎪⎪⎨⎪=⎪⎩,故N(214 ,) 55,由两点间的距离公式:d=2221445 2255⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,∴所求最小值为45【点睛】本题主要考查了一次函数解析式的确定、二次函数解析式的确定、函数图象的平移等知识点.同时考查了应用轴对称和垂线段最短解决线段和的最小值问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数》易错题以及分析一、选择题(每小题3分,共30分)1、在下列函数关系式中,(1)22x y -=;(2)2x x y -=;(3)3)1(22+-=x y ;(4)332--=xy ,二次函数有( )A.1个B.2个C.3个D.4个 2、若32)2(--=m x m y 是二次函数,且开口向上,则m 的值为( )A.5±B.5C. —5D.0 3、把抛物线23x y =向上平移2个单位,向向右平移3个单位,所得的抛物线解析式是( ) A. 2)3(32-+=x y B. 2)3(32++=x y C. 2)3(32--=x y D.2)3(32+-=x y4、下列二次函数的图象与x 轴没有交点的是( )A. xx y 932+= B. 322--=x x yC. 442-+-=x x yD.5422++=x x y5、已知点(-1,1y ),(2,213y -),(21,3y )在函数12632++=x x y 的图象上,则1y 、2y 、3y 的大小关系是( )A.321y y y >> B.312y y y >> C.132y y y >>D. 213y y y >>6、已知抛物线cbx axy ++=2经过原点和第一、二、三象限,那么,( ) A.000>>>c b a ,, B. 000=<>c b a ,,C.000><<c b a ,,D. 000=>>c b a ,,7、若二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为( )A.0或2B.0C. 2D.无法确定8、一次函数b ax y +=与二次函数cbx ax y ++=2在同一坐标系中的图象可能是( )A BC D 【答案】C【解析】根据一次函数的图象得出a 、b 的符号,进而判断二次函数的草图是否正确,A 和B 中a 的符号已经发生矛盾,故不选,C 符合,D 中由一次函数得b 0<,而由二次函数得b 0>,矛盾,也舍去,故选C.【易错点】对于如何判断二次函数中一次项系数b的符号理解不深,故常选错.9、当k 取任何实数时,抛物线22)(21k k x y +-=的顶点所在的曲线是( ) A .2x y = B.2x y -= C.2x y =(>x ) D.2x y =(0<x )【答案】A【解析】由给出的顶点式得出抛物线的顶点为(2,k k ,),在2x y =上,故选A.【易错点】当二次函数解析式中出现参数时,学生往往不知所措,过多得关注了k 字母而没有看到这是一个顶点式的抛物线,故选不出答案.10、抛物线3522+-=x x y 与坐标轴的交点共有( )A.4个B.3个C.2个D.1个【答案】B 【解析】由acb42->0得出抛物线与x 轴有2个交点,与y 轴一个交点,共3个,故选B.【易错点】仅仅得出与与x 轴的2个交点就选择C ,审题不严谨..二、填空题(每小题3分,共24分) 11、函数7)5(2++-=x y 的对称轴是_____________,顶点坐标是_________,图象开口_______,当x________时,y 随x 的增大而减小,当5-=x 时,函数有最____值,是______.【答案】直线5-=x ,(-5,7),向下,5-≥,大,7.【解析】根据二次函数顶点式的基本性质即可完成这一题.【易错点】在增减性填空时往往写成5->x ,忽略等号. 12、抛物线2ax y =与22x y =形状相同,则a=_________.【答案】2±.【解析】形状相同,即a 相同,故a =2±. 【易错点】只写-2,忽略+2.13、二次函数)2)(3(-+-=x x y 的图象的对称轴是__________. 【答案】直线21-=x . 【解析】根据二次函数的交点式得抛物线与x 轴的两个交点的横坐标为-3和2,故对称轴为直线21223-=+-=x . 【易错点】直接将二次函数转化为一般式,再根据公式求解,导致计算错误较多. 14、当x =________时,函数4)2(2+-=x y 有最_____值,是________. 【答案】2,小,2.【解析】4)2(2+-x 当2=x 有最小值4,故4)2(2+-=x y 在此时有最小值2.【易错点】最小值容易写成4,而不是2.15、抛物线cbx xy ++-=2的图象如图所示,则此抛物线的解析式为______________. 【答案】4)1(2+--=x y【解析】根据图象可设抛物线为kx y +--=2)1(,把点(3,0)代入求出4=k 即可.【易错点】从对称轴角度出发,过分注重对称性来解题,使题复杂化.(第15题图) (第16题图)(第17题图)16、如图是抛物线c=2的一部分,对称轴是+bxy+ax直线x=1,若其与x轴的一个交点为(3,0),则由图象可知,不等式02>ax的解集是bx+c+_____________.【答案】3x或<x-1>【解析】根据图象得出抛物线的对称轴为直线2311+==x x ,得11-=x故图象与x 轴的另一个交点为(-1,0),不等式的解集即为二次函数0>y 时x 的取值范围,故由图象得出在x 轴的上方,故31>-<x x 或 【易错点】没有将不等式问题转化为二次函数>y 的问题,另外不会观察图象也是导致本题得分率低的一个重要原因. 17、如图是二次函数cbx axy ++=2(0≠a )在平面直角坐标系中的图象,根据图形判断:①0>c ;②<++c b a ;③02<-b a ;④aca b482>+,其中正确的是__________(填写序号).【答案】②④【解析】根据二次函数c 的符号判定方法,得出①错;观察图象,当1=x 时,图象上的点在x 轴下方,故②正确;由0,0<>b a 得出③正确;因为acb 42->0,而0>-8a ,ac b42-a8->,移项得④正确.【易错点】对二次函数中通过数形结合判断字母和代数式符号的方法没有掌握.18、如图,从地面竖直向上跑出一个小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式为2530t t h -=,那么小球从抛出至落到地面所需的时间是_____秒.【答案】6【解析】令0=h ,得05302=-tt ,解得60或=t ,因0>t ,故6=t .【易错点】没有将实际生活问题传化成二次函数问题.三、简答题(共56分)19、(8分)已知二次函数c bx axy ++=2,当x =0时,y =4;当x =1时,y =9;当x =2时,y =18,求这个二次函数.【答案】把当x =0,y =4;x =1,y =9;x =2,y =18代入c bx ax y ++=2得,…1分⎪⎩⎪⎨⎧++=++==4241894b a cb ac ,……………………4分解得⎪⎩⎪⎨⎧===432c b a ,…………………………7分∴4322++=x x y ……………………8分【易错点】本题考查学生利用三元一次方程组求解二次函数解析式的能力,而部分学生往往出现三元一次方程组解答出错,计算能力不高的情况.20、(8分)二次函数的图象顶点是(-2,4),且过(-3,0);(1)求函数的解析式;(2)求出函数图象与坐标轴的交点,并画出函数图象.【答案】(1)由题意得,设4)2(2++=x a y 把(-3,0)得,0=4+a ………………2分∴4-=a ,∴4)2(42++-=x y ……………………3分(2)令0=x ,则12444-=+⨯-=y ,∴与y 轴的交点为(0,-12)……4分令0=y ,则04)2(42=++-x , 解得 11-=x ,32=x ∴与x 轴的交点为(-1,0)和(-3,0)………………6分图象略.………………………………………………………8分【易错点】本题考查利用顶点式求二次函数解析式、二次函数与坐标轴的交点及函数图象画法.学生出错较多的地方是与坐标轴交点求解不齐全.21、(10分)利用图象判断方程23212-=x x 是否有解,若有解,请写出它的解.(结果精确到0.1) 【答案】∵23212-=x x ,∴设23212+-=x x y ,则方程的解即函数图象与x 轴两个交点的横坐标.∴由图象得 8.01≈x,2.52≈x【易错点】本题考查利用图象法求方程的近似解.学生不理解为何要用图象法求方程的近似解,进而会直接用公式法求解.22、(10分)某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价销售,根据市场调查,每降价5元,每星期可多售出20件.(1)求商家降价前每星期的销售利润是多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少?最大销售利润是多少?【答案】(1)(130-100)×80=2400元…………………………………3分(2)设每件降价x 元,商家每星期的利润为y 元,则………………4分)480)(30(x x y +-==24004042++-x x =-42)5(-x +2500…………7分∴当5=x 时,y 有最大值,为2500………………………………………9分即降价5元、售价为125元时,销售利润最大,为2500元.………………10分【易错点】本题是二次函数最值问题的实际应用,若学生把售价定为x 元,则无形中增加了题目的难度,所以本题中设置合理的未知数是至关重要的,而学生往往不会这一点而导致此题错解.23、(10分)如图,隧道的截面是由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8m ,宽AB 为2m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系.y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6m 。

(1)求抛物线的解析式;(2)一辆货车高4.2m ,宽2.4米,它能通过该隧道吗?通过计算说明你的结论;(2)如果该隧道内设双行道,为了安全起见,还在隧道正中间设有0.4m 的隔离带,则该辆货运卡车还能通过该隧道吗?通过计算说明你的结论。

【答案】(1)设抛物线的解析式为c bx axy ++=2, 由对称轴是y 轴得b =0,由EO=6,得6=c ,……1分又抛物线经过点D (4,2),所以:16a +426=+b , 解得41-=a ,………………3分∴所求抛物线的解析式为:6412+-=x y .……………………4分(2)取x =±2.1,代入(1)所求得的解析式中, 求得5.464.5>=y ,∴这辆货运卡车能通过隧道.……………………7分(3)根据题意,把6.2±=x 代入解析式,得31.4=y ∵5.431.4< ∴货运卡车不能通过.………………………………10分【易错点】本题是二次函数在隧道问题中的实际应用,解答这类问题,关键是要通过分析题意运用二次函数及性质知识建立数学模型.易错点出现在第(2)小题中,误将x =±4.2代入抛物线解析式中,而在第(3)小题中没有考虑隔离带也有对称性,而误将x =±8.2代入抛物线解析式中.24、(10分)如图,矩形ABCD 中,AB=6cm ,BC=12cm ,点M 从点A 出发沿AB 边向点B 以1cm/秒的速度向B 点移动,点N从点B 开始沿BC 边以2cm/秒的速度向点C 移动. 若M, N 分别从A , B 点同时出发,设移动时间为t (0<t<6),△DMN 的面积为S.(1) 求S 关于t 的函数关系式,并求出S 的最小值;(2) 当△DMN 为直角三角形时,求△DMN 的面积.【答案】(1)由矩形面积减三个三角形面积即可S=612⨯—2)6(2t t --2122)212(6t t --=3662+-t t (2)分27)3(2+-=t …………………………3分∴当3=t (在60<<t 范围内)时,S 有最小值27.………………4分(2)当△DMN 为直角三角形时,∵∠MDN<90°,∴可能∠NMD 或∠MND 为90°.当∠NMD=90°时,DN 2=DM 2+MN 2,∴(12-2t)2+62=122+t 2+(6-t)2+(2t)2,解得t=0或—18,不在范围0<t<6内,∴不可能.………………6分当∠MND=90°时,DM 2=DN 2+MN 2,∴122+t 2=(12-2t)2+62+(6-t)2+(2t)2,解得t=1.5或6,(6不在范围0<t<6内舍).……8分 ∴S=27)35.1(2+-==41172cm . …………………………………………10分【易错点】本题是二次函数在动态题中的应用,用t 的代数式表示相关线段的长度是解答本题的重要之处.本题难点在第(2)题中,学生知晓要分类讨论,却不知运用最简单勾股定理即可解决问题,说明对直角三角形的本质掌握还不够透彻.。

相关文档
最新文档