中位数和众数测试题及答案
中位数与众数重点知识作业(含答案和解析)

《中位数与众数(第一课时)》课后作业1.已知数据 1,2,x 和 5 的平均数是 2.5,则这组数据的众数是______.【答案】2.【解析】根据题意先求出 x 的值,再根据众数的意义得出答案.2.从某市 5000 名初一学生中,随机地抽取 100 名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数三个统计量中,服装厂最感兴趣的是( ).(A)平均数 (B)中位数 (C)众数 (D)不确定【答案】C.【解析】理解平均数、中位数、众数的意义,体会平均数、中位数、众数三者的特点与差异能根据具体问题选择这些统计量来分析数据.3.已知数据 x,5,0,3,-1 的平均数是 1,那么它的中位数是( ).(A)0 (B)2.5 (C)1 (D)0.5【答案】A.【解析】根据题意先求出 x 的值,再将这数据按照从小到大(或从大到小)的顺序排序,五个数据,位于最中间的是第三个位置上对应的数据,进而得到答案.4.如果一组数据中有一个数据变动,那么( ).(A)平均数一定会变动 (B)中位数一定会变动(C)众数一定会变动 (D)平均数、中位数和众数可能都不变【答案】A.【解析】了解众数、中位数、平均数的意义及求法.5.某校八年级(1)班 50 名学生参加 2009 年贵阳市数学质量监控考试,全班学生的成绩统计请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是______;(2)该班学生考试成绩的中位数是______;(3)该班张华同学在这次考试中的成绩是 83 分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.【答案】 (1)88;(2)86;(3)不能.因为 83 小于中位数.【解析】了解众数、中位数的意义,会求一组数据的众数、中位数, 能根据具体问题选择这些统计量来分析数据.。
平罗县八中八年级数学下册 20.1.2 中位数和众数同步练习含解析新人教版

中位数和众数知识要点:1.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
2.众数:一组数据中出现次数最多的数据就是这组数据的众数一、单选题1.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、402.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的()A.平均数B.方差C.中位数D.极差3.某中学对该校九年级45名女学生进行了一次立定跳远测试,成绩如表:跳远成绩160 170 180 190 200 210人数 3 9 6 9 15 3这些立定跳远成绩的中位数和众数分别是()A.9,9 B.15,9 C.190,200 D.185,2004.一组数据按从小到大排列为2,4,8,x,10,14.若这组数据的中位数为9,则x是()A.7 B.8 C.9 D.105.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a 的值时,参考的统计量是此次调查所得数据的()A.平均数B.中位数C.众数D.方差6.为了增强学生体质,学校发起评选“健步达人”活动,某同学用计步器记录自己一周(七天)每天走的步数,统计如下表:这组数据的众数是()A.1.3 B.1.2 C.0.9 D.1.47.一组数据2,2,4,3,6,5,2的众数和中位数分别是()A.3,2 B.2,3 C.2,2 D.2,48.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()A.3.5,3 B.3,4 C.3,3.5 D.4,39.某校四个绿化小组某天的植树棵树如下:10,10,x,8.若这组数据的众数与平均数相等,那么这组数据的中位数是()A.9 B.10 C.11 D.1210.某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.方差D.众数二、填空题11.5名同学每周在校锻炼的时间(单位:小时)分别为:7,5,8,6,9,这组数据的中位数是______.12.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.43,2.39,2.43,2.40,2.43.这组数据的中位数和众数分别是_____.13.“植树节”时,九(1)班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是____14.某住宅小区四月份1日至5日,每天用水量变化情况如图所示,那么这5天每天用水量的中位数是_____吨.三、解答题15.从某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分四个等级,将调查结果绘制成如下的不完整的条形统计图和扇形统计图.根据图中信息.(1)求共抽取多少名学生;(2)求抽取的所有学生成绩的众数,中位数;(3)求抽取的所有学生成绩的平均数.16.学校在八年级新生中举行了全员参加的数学应用能力大赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:人数60分人数70分人数80分人数90分人数100分人数班级1班0 1 6 2 12班 1 1 3 a 1分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由(写两条支持你结论的理由).17.车间有20名工人,某天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?18.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.答案 1.D 2.C 3.C 4.D 5.B 6.A 7.B 8.A 9.B 10.D 11.712.2.40,2.43. 13.5 14.3215.解:(1)依题意得,共抽取学生12÷30%=40(人)(2)由统计图可知:抽取的所有学生成绩的出现次数最多的是3分,因此众数是3分, 将成绩从从小到大排列后处在第20、21位两个数都是3分,因此中位数是3分, (3)3分的学生人数为40×42.5%=17人,2分的人数有40﹣3﹣17﹣12=8人, 抽取的所有学生成绩的平均数是:(1×3+2×8+3×17+4×12)÷40=2.95(分). 答:抽取的所有学生成绩的平均数为2.95分.16.(1)观察可知2班成绩为90分的有4人,故4a =,60170180490210028310b ⨯+⨯+⨯+⨯+⨯==,2班成绩从小到大排序:60,70,80,80,80, 90,90,90,90,100, 所以中位数8090852c +==, 2班成绩为90分的人数最多,所以众数90d =; (2)2班的成绩比较好.理由如下:通过对比,发现三个班平均分相同,但是2班的中位数要比1班和3班高,2班的众数也要比1班和3班大,所以2班的成绩比较好.17.解:(1()191101116124132152162191201=1320x =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯(个)答:这一天20名工人生产零件的平均个数为13个. (2)中位数为12个,众数为11个.当定额为13个时,有8个达标,6人获奖,不利于提高工人的积极性. 当定额为12个时,有12个达标,8人获奖,不利于提高大多数工人的积极性. 当定额为11个时,有18个达标,12人获奖,有利于提高大多数工人的积极性. ∴当定额为11个时,有利于提高大多数工人的积极性. 18.(1)花费30元的有12人,最多,故众数是30元;(2)一共有40个数据,排序后第20、21个数据的平均数即是中位数,6+12=18<20,6+12+10=28>20,故第20、21个数据都是50元,故中位数是50元;(3)10÷40×2400=600(人),故估计本学期计划购买课外书花费50元的学生有50人第十二章全等三角形12.3角的平分线的性质课时一角的平分线的性质【知识与技能】(1)掌握已知角的平分线的画法.(2)利用角的平分线的定义进行简单的证明与计算.(3)利用全等三角形证明角的平分线.(4)掌握角的平分线的性质.(5)了解角的平分线的性质在生活、生产中的应用.【过程与方法】经历角的平分线的画法和角的平分线的性质的探索过程,体会探索、研究问题的基本方法,培养学生的合作精神,体会转化的数学思想,感受数学来源于生活.【情感态度与价值观】在探究角的平分线的作法及性质的过程中,培养学生探究问题的兴趣,获得解决问题的成功体验,增强解决问题的信心.角的平分线的性质,能灵活运用角的平分线的性质解题.灵活运用角的平分线的性质解题.多媒体课件.复习引入教师提出问题:1.角的平分线的概念.2.点到直线(射线)的距离的概念.学生举手回答.探究1:角的平分线的画法教师引入:工人师傅常常用一种简易平分角的仪器(如图12-3-1),其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是∠DAB的平分线.你能说明它的道理吗?学生分组讨论,说明简易平分角仪器的原理,并写出证明过程.(教师提示:用全等三角形的知识)教师:其实这种平分角的方法告诉了我们作已知角的平分线的一种方法.然后教师引导学生用尺规作图:已知:∠AOB.求作:∠AOB的平分线.先让学生讨论作法,再由教师总结作法,师生共同作图:2.以点O为圆心,适当长为半径画弧,分别交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC.射线OC即为所求,如图12-3-2.教师紧接着提出问题:你们能说明OC为什么是∠AOB的平分线吗?学生进行交流,教师提示(可证明△MOC≌△NOC),然后让学生写出证明过程.教师巡示并指导.探究2:角的平分线的性质教师让学生完成以下活动:1.任意作一个∠AOB,作出∠AOB的平分线OC.在OC上任取一点P,过点P画出OA,OB 的垂线,分别记垂足为D,E,测量PD,PE并作比较,你得到什么结论?2.在OC上再取几个点试一试.3.通过以上测量,你发现了角的平分线的什么性质?学生动手操作,独立思考,然后举手回答自己的发现,学生互相补充,教师指导,一起概括出角的平分线的性质:角的平分线上的点到角的两边的距离相等.教师进一步提问:你们能通过严格的逻辑推理证明这个结论吗?教师首先引导学生分析命题的条件和结论.如果学生感到困难,可以让学生先将命题改写成“如果……那么……”的形式,再引导学生逐字分析结论,进而发现并找出结论中的隐含条件(垂直).最后让学生画出图形,用符号语言写出已知和求证,并独立完成证明过程.接着师生共同概括证明几何命题的一般步骤:一般情况下,我们要证明一个几何命题时,可以按照类似于以下的步骤进行,即1.明确命题中的已知和求证;2.根据题意,画出图形,并用符号表示已知和求证;3.经过分析,找出由已知推出要证的结论的途径,写出证明过程.最后教师归纳:利用角的平分线的性质可直接推导出与角的平分线有关的两条线段相等,但在推导过程中,不要漏掉垂直关系的书写.以后涉及角的平分线上的点到角的两边的垂线段时,可直接得到其相等,不必再通过证两个三角形全等而走弯路.教师出示例题:例1如图12-3-3,在△ABC中,∠C=90°,AM平分∠CAB,BM=5.2 cm,点M到AB的距离为3 cm.求BC的长.师生共同分析:只需补出点M到AB的距离,利用角的平分线的性质得到CM=3 cm,从而求出BC的长.师生共同完成证明过程,教师板书:解:过点M作MN⊥AB于点N,∴MN=3 cm.∵AM平分∠CAB,∠C=90°,∴CM=MN=3 cm.又∵BM=5.2 cm,∴BC=CM+BM=3+5.2=8.2(cm).进而教师让学生独立完成:教材P50练习第2题(学生完成之后,教师点评).本节课我们学习了角的平分线的性质是由三个条件(一条角平分线,两条垂线段)得到一个结论(线段相等),角的平分线的性质可独立地作为证明两条线段相等的依据.一次函数的应用第一课时一次函数是刻画与研究现实世界数量关系的重要工具。
平均数众数中位数测试题及答案-用卷

平均数众数中位数1题号一二三四总分得分一、选择题(本大题共13小题,共39.0分)1.在某公司的面试中,李明的得分情况为:个人形象89分,工作能力93分,交际能力83分.已知个人形象、工作能力和交际能力的权重为3:4:4,则李明的最终成绩是()A. 96.7分B. 97.1分C. 88.3分D. 265分2.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A. 5、6、5B. 5、5、6C. 6、5、6D. 5、6、63.关于一组数据:1,5,6,3,5,下列说法错误的是()A. 平均数是4B. 众数是5C. 中位数是6D. 方差是3.24.某班学生军训射击,有m人各打中a环,n人各打中b环,那么该班打中a环和b环学生的平均环数是()A. a+bm+n B. 12(am+bn) C. am+bnm+nD. 12(am+bn)5.歌唱比赛有二十位评委给选手打分,统计每位选手得分时,会去掉一个最高分和一个最低分,这样做,肯定不会对所有评委打分的哪一个统计量产生影响()A. 平均分B. 众数C. 中位数D. 极差6.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3则得分的众数和中位数分别为()A. 70分,70分B. 80分,80分C. 70分,80分D. 80分,70分7.一组数据5,2,6,9,5,3的众数、中位数、平均数分别是()A. 5,5,6B. 9,5,5C. 5,5,5D. 2,6,58.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A. 1.65、1.70B. 1.65、1.75C. 1.70、1.75D. 1.70、1.709.我市某连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A. ,B. ,C. ,D. ,10.某小组长统计组内5人一天在课堂上的发言次数分别为3,3,0,4,5.关于这组数据,下列说法错误的是()A. 众数是3B. 中位数是0C. 平均数是3D. 方差是2.811.数据2、5、6、0、6、1、8的中位数和众数分别是()A. 0和6B. 0和8C. 5和6D. 5和812.一组数据:1,2,4,2,2,5,这组数据的众数是()A. 1B. 2C. 4D. 513.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0123人数13352923关于这组数据,下列说法正确的是()A. 众数是2册B. 中位数是2册C. 极差是2册D. 平均数是2册二、填空题(本大题共6小题,共18.0分)14.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是___________.15.某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是_______分.16.三个数-1,a,3的平均数是2,则a的值是______ .17.某校男子足球队队员的年龄分布如图所示,根据图中信息可知,这些队员年龄的中位数是______ 岁.18.一组数3,4,7,4,3,4,5,6,5的众数是______.19.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.三、计算题(本大题共1小题,共6.0分)20.某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生______人,并将条形图补充完整;(2)捐款金额的众数是______,平均数是______;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?四、解答题(本大题共1小题,共8.0分)21.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为______,图①中m的值为______;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.答案和解析1.【答案】C【解析】解:根据题意得:89×3+93×4+83×4≈88.3,3+4+4故选C.将李明的各项成绩分别乘以其权,再除以权的和,求出加权平均数即可.本题考查了加权平均数,本题易出现的错误是求89,93,83这三个数的平均数,对平均数的理解不正确.2.【答案】D【解析】【分析】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.根据众数、平均数和中位数的定义分别进行解答即可.【解答】解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,=6;则中位数是6+62=6.平均数是:4×2+5×6+6×5+7×4+8×320故选D.3.【答案】C【解析】解:A、这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;B、5出现了2次,出现的次数最多,则众数是5,故本选项正确;C、把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;[(1-4)2+(5-4)2+(6-4)2+(3-4)2+(5-4)2]=3.2,故本D、这组数据的方差是:15选项正确;故选:C.分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.本题考查平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.4.【答案】C【解析】【分析】本题主要考查加权平均数,掌握得出射击环数的总数和加权平均数的定义是解题的关键.求出该班所有学生射击的总环数,再根据平均数的定义计算可得.【解答】解:根据题意知m人射击的总环数为am,n人射击的总环数为bn,则该班打中a环和b环学生的平均环数是am+bn,m+n故选:C.5.【答案】C【解析】【分析】本题考查了统计量的选择,属于基础题,相对比较简单,解题的关键在于理解这些统计量的意义.去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.【解答】解:统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据的中间的数产生影响,即中位数.故选C.6.【答案】C【解析】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.【答案】C【解析】[分析]此题主要考查了众数、中位数和平均数,关键是掌握三种数的概念.根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=1(x1+x2+…+x n)就叫做这n个数的算术平均数进行分析和计算可得答案.n[解答]解:众数是5,中位数:5,=5,平均数:5+2+6+9+5+36故选C.8.【答案】C【解析】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选:C.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数. 9.【答案】D【解析】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30; 故选:D .根据平均数和众数的定义及计算公式分别进行解答,即可求出答案.此题考查了平均数和众数,平均数是指在一组数据中所有数据之和再除以数据的个数,众数是一组数据中出现次数最多的数,难度不大. 10.【答案】B【解析】【解答】解:将数据重新排列为0,3,3,4,5, 则这组数的众数为3,中位数为3,平均数为0+3+3+4+55=3,方差为15×[(0-3)2+2×(3-3)2+(4-3)2+(5-3)2]=2.8,故选:B .【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式. 11.【答案】C【解析】【分析】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决. 【解答】解:将2、5、6、0、6、1、8按照从小到大排列是: 0,1,2,5,6,6,8, 位于中间位置的数为5, 故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5, 故选C . 12.【答案】B【解析】解:一组数据:1,2,4,2,2,5,这组数据的众数是2, 故选:B .根据众数定义可得答案.此题主要考查了众数,关键是掌握一组数据中出现次数最多的数据叫做众数. 13.【答案】B【解析】解:A 、众数是1册,结论错误,故A 不符合题意; B 、中位数是2册,结论正确,故B 符合题意; C 、极差=3-0=3册,结论错误,故C 不符合题意; D 、平均数是(0×13+1×35+2×29+3×23)÷100=1.62册,结论错误,故D 不符合题意. 故选:B .根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.本题考查了极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键. 14.【答案】5【解析】解:∵一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,∴16(2+5+x +y +2x +11)=12(x +y )=7,解得y =9,x =5,∴这组数据的众数是5. 故答案为5.根据平均数与中位数的定义可以先求出x ,y 的值,进而就可以确定这组数据的众数. 本题主要考查平均数、众数与中位数的定义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数. 15.【答案】93.6【解析】【分析】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.因为早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,利用加权平均数的公式即可求出答案. 【解答】解:由题意知,小明的体育成绩=94×15%+90×35%+96×50%=93.6(分) 故小明的体育成绩是93.6分. 故答案为93.6. 16.【答案】4【解析】【分析】本题主要考查了平均数的计算方法:掌握数据和÷数据的个数=平均数是本题的关键.根据平均数的计算公式列出算式,再进行计算即可得出答案. 【解答】解:∵-1,a ,3的平均数是2,∴(-1+a +3)÷3=2, 解得:a =4; 则a 的值是4; 故答案为4.17.【答案】15【解析】【分析】本题主要考查中位数有关知识,根据中位数的定义即可得. 【解答】解:由图可知共有2+6+8+3+2+1=22人, 则中位数为第11、12人年龄的平均数,即15+152=15(岁),故答案为15.18.【答案】4【解析】解:在这组数据中4出现次数最多,有3次,所以这组数据的众数为4,故答案为:4.根据众数的定义求解可得.本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.19.【答案】135【解析】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.根据中位数的定义,把13个数据从大到小排列后,中位数是第7个数.本题主要考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.20.【答案】(1)50 ,补全条形统计图图形如下:(2)10;13.1×600=132(人)(3)捐款20元及以上(含20元)的学生有:7+450【解析】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50-9-14-7-4=16(人),补全条形统计图图形见答案;(2)由条形图可知,捐款10元人数最多,故众数是10;=13.1,故平均数为13.1;这组数据的平均数为:5×9+10×16+15×14+20×7+25×450(3)见答案.【分析】(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数;(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.本题主要考查了条形统计图,扇形统计图,平均数和众数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21.【答案】(1)40人,30;(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15(岁),16岁出现12次,次数最多,众数为16岁;按大小顺序排列,中间两个数都为15岁,中位数为15岁【解析】【分析】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.(1)频数÷所占百分比=样本容量,m=100-27.5-25-7.5-10=30;(2)根据平均数、众数和中位数的定义求解即可.【解答】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=30;故答案为40人,30.(2)见答案.。
第20章 专题2:中位数和众数-通用版八年级下册数学专题练

第20章专题2:中位数和众数1.数据0,1,1,4,3,3的中位数和平均数分别是()A.2.5和2 B.2和2 C.2.5和2.4 D.2和2.4【答案】B2.以下是某校九年级10名同学参加学校演讲比赛的统计表.则这组数据的中位数和平均数分别为()成绩/分80 85 90 95人数/人 1 2 5 2.,.,.,.,【答案】B3.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为()A.42 B.45 C.46 D.48【答案】C4.某班有6个学习小组,每个小组的人数分别为5,6,5,4,7,5,这组数据的中位数是()A.5 B.6 C.5.5 D.4.5【答案】A5.个相异自然数的平均数为12,中位数为17,这5个自然数中最大一个的可能值的最大值是()A.21 B.22 C.23 D.24【答案】D6.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:则这15名学生一周在校参加体育锻炼时间的中位数6h.锻炼时间/h 5 6 7 8人数 2 6 5 27.已知一组数据5,4,x,3,9的平均数为5,则这组数据的中位数是()A.3 B.4 C.5 D.6【答案】B8.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为()A.5 B.6 C.7 D.9【答案】B9.某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是()A.42件B.45件C.46件D.50件【答案】C10.下面是扬帆中学九年八班43名同学家庭人口的统计表:这43个家庭人口的众数和中位数分别是()家庭人口数(人) 2 3 4 5 6学生人数(人) 3 15 10 8 7A.5,6 B.3,4 C.3,5 D.4,6【答案】B11.为调査某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:则这30名同学每天使用的零花钱的众数和中位数分别是()每天使用零花钱(单位:元) 5 10 15 20 25人数 2 5 8 x 6 A.15,15 B.20,17.5 C.20,20 D.20,15【答案】B12.某中学篮球队12名队员的年龄情况如下表,则这个队队员年龄的众数和中位数分别()年龄(岁)14 15 16 17 18人数(人) 1 4 3 2 2A.15,16 B.15,15 C.15,15.5 D.16,15【答案】A13.数据3,1,x,4,5,2的众数与平均数相等,则x的值是()A.2 B.3 C.4 D.5【答案】B14.某鞋厂为了了解初中生穿鞋的尺码情况,对某中学八年级(2)班的20名男生进行了调查,统计结果如下表:则这20个数据的中位数和众数分别为()尺码37 38 39 40 41 42人数 3 4 4 7 1 1.和.和.和.和【答案】C15.有一组数据:-1,a,-2,3,4,2它们的中位数是1,则这组数据的平均数是__________。
初中数学湘教版七年级下册第6章 数据的分析6.1 平均数、中位数、众数-章节测试习题(12)

章节测试题1.【答题】为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图(如图所示).那么关于该班45名同学一周参加体育锻炼时间的说法错误的是()A. 众数是9B. 中位数是9C. 平均数是9D. 锻炼时间不低于9小时的有14人【答案】D【分析】此题根据众数,中位数,平均数的定义解答.【解答】由图可知,锻炼9小时的有18人,∴9在这组数中出现18次为最多,∴众数是9.把数据从小到大排列,中位数是第23位数,第23位是9,∴中位数是9.平均数是(7×5+8×8+9×18+10×10+11×4)÷45=9,∴平均数是9.由以上可知A、B、C都对,故D错.选D.2.【答题】已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A. a<13,b=13B. a<13,b<13C. a>13,b<13D. a>13,b=13【答案】A【分析】根据平均数的计算公式求出正确的平均数,再与原来的平均数进行比较,得出a的值,根据中位数的定义得出最中间的数还是13岁,从而选出正确答案.【解答】∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;选A.3.【答题】某班数学兴趣小组10名同学的年龄情况如下表:年龄(岁)12 13 14 15人数 1 4 4 1则这10名同学年龄的平均数和中位数分别是()A. 13.5,13.5B. 13.5,13C. 13,13.5D. 13,14【答案】A【分析】根据中位数及平均数的定义求解即可.【解答】将各位同学的成绩从小到大排列为:12,13,13,13,13,14,14,14,14,15,中位数是=13.5,平均数是=13.5.选A.4.【答题】在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A. 7B. 8C. 9D. 10【答案】B【分析】根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.【解答】把这组数据从小到大排列为:7,8,8,8,9,10,最中间两个数的平均数是(8+8)÷2=8,则中位数是8.选B.5.【答题】为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A. 8,8B. 8.4,8C. 8.4,8.4D. 8,8.4【答案】B【分析】根据中位数和平均数的定义求解即可.【解答】解:这组数据按从小到大的顺序排列为:7,8,8,9,10,则中位数为:8,平均数为:=8.4.选B.6.【答题】一次数学模考后,李老师统计了20名学生的成绩.记录如下:有6人得了85分,有5人得了80分,有4人得了65分,有5人得了90分.则这组数据的中位数和平均数分别是()A. 82.5,82.5B. 85,81C. 82.5,81D. 85,82.5【答案】B【分析】根据中位数、平均数的定义分别列出算式,再进行计算即可.【解答】解:∵共有20个数,∴中位数是第10、11个数的平均数,∴中位数是(85+85)÷2=85;平均数是(85×6+80×5+65×4+90×5)=81;选B.7.【答题】一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A. 10,10B. 10,12.5C. 11,12.5D. 11,10【答案】D【分析】根据中位数和平均数的定义结合选项选出正确答案即可.【解答】解:这组数据按从小到大的顺序排列为:5,5,10,15,20,故平均数为:=11,中位数为:10.8.【答题】一组数据:0,1,2,3,3,5,5,10的中位数是()A. 2.5B. 3C. 3.5D. 5【答案】B【分析】根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可.【解答】将这组数据从小到大排列为:0,1,2,3,3,5,5,10,最中间两个数的平均数是:(3+3)÷2=3,则中位数是3;选B.9.【答题】在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则8人体育成绩的中位数是()A. 47B. 48C. 48.5D. 49【答案】C【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,由此计算即可.【解答】解:这组数据的中位数为=48.5.10.【答题】7位同学中考体育测试立定跳远成绩(单位:分)分别是:8,9,7,6,10,8,9,这组数据的中位数是()A. 6B. 8C. 9D. 10【答案】B【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.【解答】把这组数据从小到大排序后为6,7,8,8,9,9,10,其中第四个数据为8,∴这组数据的中位数为8.选B.11.【答题】数字1、2、5、3、5、3、3的中位数是()A. 1B. 2C. 3D. 5【答案】C【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】将数据从大到小排列为:1,2,3,3,3,5,5,则中位数是3.选C.12.【答题】数据0,1,1,3,3,4的中位数和平均数分别是()A. 2和2.4B. 2和2C. 1和2D. 3和2【答案】B【分析】根据中位数和平均数的定义求解即可.【解答】解:这组数据的中位数为:(1+3)÷2=2,平均数为:=2.选B.13.【答题】七(1)班的6位同学在一节体育课上进行引体向上训练时,统计数据分别为7,12,10,6,9,6则这组数据的中位数是()A. 6B. 7C. 8D. 9【答案】C【分析】将该组数据按从小到大依次排列,找到位于中间位置的两个数,求出其平均数即为正确答案.【解答】解:将该组数据按从小到大依次排列为6,6,7,9,10,12,位于中间位置的数为7,9,其平均数为x==8,故中位数为8.选C.14.【答题】为了解长城小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:这40名居民一周体育锻炼时间的中位数是()A. 4小时B. 4.5小时C. 5小时D. 5.5小时【答案】C【分析】中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数的平均数即为中位数.【解答】由统计表可知:统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时.选C.15.【答题】下列数据3,2,3,4,5,2,2的中位数是()A. 5B. 4C. 3D. 2【答案】C【分析】求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】题目中数据共有7个,把数据按从小到大的顺序排列为2,2,2,3,3,4,5,故中位数是按从小到大排列后第4个数是3,故这组数据的中位数是3.选C.16.【答题】某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是()A. 8,8B. 8.4,8C. 8.4,8.4D. 8,8.4【答案】B【分析】根据平均数公式求解即可,即用所有数据的和除以5即可;5个数据的中位数是排序后的第三个数.【解答】解:8,9,8,7,10的平均数为×(8+9+8+7+10)=8.4.8,9,8,7,10排序后为7,8,8,9,10,故中位数为8.选B.17.【答题】一组数据:-1、2、1、0、3,则这组数据的平均数和中位数分别是()A. 1,0B. 2,1C. 1,2D. 1,1【答案】D【分析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】平均数=(-1+2+1+0+3)÷5=1;把这组数据按从大到小的顺序排列是:-1,0,1,2,3,故这组数据的中位数是:1.选D.18.【答题】爱华中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年):200,240,220,200,210.这组数据的中位数是()A. 200B. 210C. 220D. 240【答案】B【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】题目中数据共有5个,按从小到大排列后为:200、200、210、220、240,位于最中间的一个数是210,∴这组数据的中位数是210;选B.19.【答题】一组数据:75、95、85、100、125的中位数是()A. 85B. 95C. 96D. 100【答案】B【分析】根据中位数的定义计算:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】按从小到大的顺序排列为:75,85,95,100,125,根据中位数的定义得;中位数是95.选B.20.【答题】一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为()A. 37B. 35C. 33.8D. 32【答案】B【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】先对这组数据按从小到大的顺序重新排序:28,32,35,37,37,位于最中间的数是35,∴这组数的中位数是35.选B.。
《众数和中位数》习题

《众数和中位数》习题1.某地区2月份一周测得白天气温分别为15℃,17℃,16℃,18℃,15℃,14℃,15℃,,这组数据的中位数是________,众数是________.2.在数据1,2,4,6,6,10,12中众数是________,中位数是________.3.笑笑进行了9次1分钟仰卧起坐的测试,成绩如下,(单位:个):34,35,30,34,28,34,29,33,31这组数据的中位数是________,众数是________.4.下面是五(1)班男生跳远成绩记录2.6,3.2,2.4,3.1,2.7,2.8,2.7,3,3.1,2.8,2.6,2.9,2.5,2.8,2.8.这组数据中的中位数是________,众数是________.5.已知数据5,3,5,4,6,5,14,下列说法正确的是()A.中位数是4B.众数是14C.中位数与众数都是5D.中位数与平均数都是56.如果一组数据85,x,80,90的中位数是85,那么x是________,如果这组数据的众数是80,那么x是________.7.一个射击手连续射靶10次,其中2次射中7环,3次射中8环,4次射中9环,1次射中10环,则平均每次射中________环,这次设计的众数是________,这次射击的中位数是________环.10.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9B.8,8C.8.5,8D.8.5,911.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有().A.1个B.2个C.3个D.4个12.在某次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83则这组数据的众数、平均数与中位数分别为().A.81,82,81B.81,81,76.5C.83,81,77D.81,81,8113.对于数据组3,3,2,3,6,3,6,3,2中,众数是_______;平均数是______;中位数是______.14.某厂生产一批男衬衫,经过抽样调查70名中年男子,得知所需衬衫型号的人如下表所示:(1)哪一种型号衬衫的需要量最少?(2)这组数据的平均数是多少?这组数据的中位数是多少?这组数据的众数是多少?。
20.2.1 中位数和众数 初中数学华东师大版八年级下册同步课时练习(含答案)

20.2.1 中位数和众数知识点1 中位数1.某校篮球队五名主力队员的身高分别是173,180,181,176,178(单位: cm),将这些数据按从小到大的顺序排列为 ,因为数据的个数是奇数,所以这五名运动员身高的中位数是 .2.一组数据1,3,3,4,4,5的中位数是( )A.3B.3.5C.4和3D.43.学习全等三角形时,某班举行了以“生活中的全等”为主题的测试活动,全班学生的测试成绩统计如下表:得分(分)85899396100人数(人)4615132则这些学生得分的中位数是( )A.89分B.91分C.93分D.96分4.某中学八年级(2)班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个):35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是( )A.42,42B.43,42C.43,43D.44,435.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持健康的状态.小明同学用手机软件记录了自己11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在小明每天所走的步数数据中,中位数是 万步.6.一名射击运动员在连续射靶时,2次射中10环,8次射中9环,7次射中8环,2次射中7环,1次射中6环,求这组成绩的平均数和中位数.知识点2 众数7.在某次体育测试中,八年级(1)班5名同学的立定跳远成绩(单位:m)分别为:1.81,1.98,2.10,2.30,2.10.在这组数据中, 出现2次,出现的次数最多,所以这组数据的众数为 .8. 据了解,某定点医院收治的7名新型冠状肺炎患者的新冠病毒潜伏期分别为2天、3天、3天、4天、4天、4天、7天,则这7名患者新冠病毒潜伏期的众数和中位数分别为( ) A.4天,4天B.3天,4天C.4天,3天D.3天,7天9. 在某时段有50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位: km/h)为( )A.60B.50C.40D.1510.受央视《朗读者》节目的影响,某校八年级(2)班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示:每天阅读时间(h)0.511.52人数89103则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是( )A.2 h,1 hB.1 h,1.5 hC.1 h,2 hD.1 h,1 h11.一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为 .12.某校八年级(1)班全体学生2020年初中毕业体育考试的成绩统计如下表:成绩(分)35394244454850人数(人)2566876根据上表中的信息判断下列结论错误的是( )A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分13. 在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示,这些成绩的中位数和众数分别是( )A.96分,98分B.97分,98分C.98分,96分D.97分,96分14.某班7个兴趣小组的人数如下:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( )A.6B.6.5C.7D.815.已知一组数据4,3,2,m,n的众数为3,平均数为2,m>n,则n的值为 .16.已知数据a1,a2,a3,a4,a5的平均数是m,且a1>a2>a3>a4>a5>0,则数据a1,a2,a3,-3,a4,a5的平均数和中位数分别是 .17.某商场购进600箱苹果.在出售之前,先从中随机抽出10箱检查,称得10箱苹果的质量(单位:千克)如下:5.0,5.4,4.4,5.3,5.0,5.0,4.8,4.8,4.0,5.3.(1)请指出这10箱苹果质量的平均数、中位数和众数分别是多少;(2)请你根据上述结果估计600箱苹果的质量为多少千克.18.我国是世界上严重缺水的国家之一.为了倡导“节约用水,从我做起”,小刚从他所在班的50名同学中,随机调查了10名同学一年中的家庭月平均用水量(单位:t),并将调查结果绘成了条形统计图(1)求这10名同学的家庭月平均用水量的平均数、众数和中位数;(2)试估计小刚所在班的50名同学的家庭月平均用水量不超过7 t的有多少户.参考答案1.173,176,178,180,181 178 cm2.B [解析] 按从小到大的顺序排列此组数据为1,3,3,4,4,5,处于中间位置的数是3,4,所以这组数据的中位数是(3+4)÷2=3.5.故选B.3.C [解析] 处于中间位置的数为第20,21两个数,都为93分,所以中位数为93分.故选C.4.B [解析] 把这组数据按从小到大的顺序排列得35,38,40,42,44,45,45,47,则这组数据的中位数为=43.=(35+38+42+44+40+47+45+45)=42.故选B.5.1.3 [解析] ∵共有2+8+7+10+3=30(个)数据,∴这组数据的中位数是第15,16个数据的平均数,而第15,16个数据均为1.3万步,则中位数是1.3万步.故答案为1.3.6.解:这组成绩的平均数为(10×2+9×8+8×7+7×2+6×1)÷(2+8+7+2+1)=8.4(环),中位数为=8.5(环).7.2.10 2.108.A9.C [解析] 由条形图知,40出现的次数最多.故选C.10.B11.3 [解析] 根据题意知=3,解得x=3,则这组数据为1,2,2,3,3,3,7,所以众数为3.故答案为3.12.D13.A [解析] 由统计图可知:按从小到大的顺序排列,第13名同学的分数为96分,故中位数为96分,得分人数最多的是98分,共9人,故众数为98分.故选A.14.C [解析] 根据题意,得=7,解得x=8,∴这组数据的中位数是7.故选C.15.-2 [解析] ∵一组数据4,3,2,m,n的众数为3,平均数为2,m>n,∴m=3,∴4+3+2+3+n=2×5,解得n=-2.故答案为-2.16., [解析] ∵数据a1,a2,a3,a4,a5的平均数是m,∴a1+a2+a3+a4+a5=5m,∴数据a1,a2,a3,-3,a4,a5的平均数为(a1+a2+a3-3+a4+a5)÷6=.数据a1,a2,a3,-3,a4,a5按照从小到大的顺序排列为:-3,a5,a4,a3,a2,a1.处在第3,4位的数据的平均数为,∴数据a1,a2,a3,-3,a4,a5的中位数为.故答案为,.17.解:(1)平均数=(5.0+5.4+4.4+5.3+5.0+5.0+4.8+4.8+4.0+5.3)÷10=4.9(千克).因为5.0出现的次数最多,出现了3次,所以众数是5.0千克.将这10个数按从小到大的顺序排列为:4.0,4.4,4.8,4.8,5.0,5.0,5.0,5.3,5.3,5.4,因为第5个数与第6个数的平均数是5.0,所以这10箱苹果质量的中位数是5.0千克.(2)由(1)得平均每箱苹果的质量为4.9千克,所以估计600箱苹果的质量为4.9×600=2940(千克).18.解:(1)观察条形统计图,可知10名同学的家庭月平均用水量的平均数是(6×2+6.5×4+7×1+7.5×2+8×1)÷10=6.8(t).∵在这组数据中,6.5 t出现了4次,出现的次数最多,∴这10名同学的家庭月平均用水量的众数是6.5 t.∵将这组数据按从小到大的顺序排列,其中处于中间位置的两个数都是6.5 t,则=6.5(t),∴这10名同学的家庭月平均用水量的中位数是6.5 t.(2)∵10名同学的家庭中月平均用水量不超过7 t的有7户,∴小刚所在班的50名同学的家庭月平均用水量不超过7 t的有50×=35(户).。
数据分析基础测试题及答案

数据分析基础测试题及答案一、选择题1.某地区汉字听写大赛中,10名学生得分情况如下表:分数50859095人数3421那么这10名学生所得分数的中位数和众数分别是()A.85和85 B.85.5和85 C.85和82.5 D.85.5和80【答案】A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【详解】把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;在这一组数据中85出现的次数最多,则众数是85;故选:A.【点睛】此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.2.某实验学校女子排球队12名队员的年龄分布如图所示,则这12名队员的年龄的众数、平均数分别是()A.15岁,14岁B.15岁,15岁C.15岁,156岁D.14岁,15岁【答案】A 【解析】【分析】根据众数、平均数的定义进行计算即即可.【详解】观察图表可知:人数最多的是5人,年龄是15岁,故众数是15.这12名队员的年龄的平均数是:1231311421551611412⨯+⨯+⨯+⨯+⨯=故选:A【点睛】本题主要考查众数、平均数,熟练掌握众数、平均数的定义是解题的关键.3.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()A.7,6 B.7,4 C.5,4 D.以上都不对【答案】B【解析】【分析】根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出13(-2+b-2+c-2)的值;再由方差为4可得出数据a-2,b-2,c-2的方差.【详解】解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,∴13(a-2+b-2+c-2)=3,∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,∴13[(a-5)2+(b-5)2+(c-5)2]=4,∴a-2,b-2,c-2的方差=13[(a-2-3)2+(b-2-3)2+(c--2-3)2]= 13[(a-5)2+(b-5)2+(c-5)2]=4,故选B.【点睛】本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.4.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】【分析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.5.某校四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据的众数与平均数相等,则这组数据的中位数是( )A.8 B.9 C.10 D.12【答案】C【解析】【分析】根据这组数据的众数与平均数相等,可知这组数据的众数(因10出现了2次)与平均数都是10;再根据平均数是10,可求出这四个数的和是40,进而求出x的数值;然后把这四个数据按照从大到小的顺序排列,由于是偶数个数据,则中间两个数的平均数就是中位数.【详解】当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为10,根据题意得(10+10+x+8)÷4=10,解得x=12,将这组数据按从小到大的顺序排列为8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10. 故选C . 【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.6.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22s s >甲乙;②22s s <甲乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是( )A .①③B .①④C .②③D .②④【答案】C 【解析】 【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5, x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45, ∴S 2甲<S 2乙,∴甲的射击成绩比乙稳定; 故选:C . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②经过有交通信号灯的路口,遇到红灯是必然事件;③若甲组数据的方差是0.3,乙组数据的方差是0.1,则甲数据比乙组数据稳定;④圆内接正六边形的边长等于这个圆的半径,其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据平行四边形的判定去判断①;根据必然事件的定义去判断②;根据方差的意义去判断③;根据圆内接正多边形的相关角度去计算④.【详解】一组对边平行,另一组对边相等的四边形也有可能是等腰梯形,①错误;必然事件是一定会发生的事件,遇到红灯是随机事件,②错误;方差越大越不稳定,越小越稳定,乙比甲更稳定,③错误;正六边形的边所对的圆心角是60︒,所以构成等边三角形,④结论正确.所以正确1个,答案选A.【点睛】本题涉及的知识点较多,要熟悉平行四边形的常见判定;随机事件、必然事件、不可能事件等的区分;掌握方差的意义;会计算圆内接正多边形相关.8.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.5【答案】C【解析】若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;若众数为5,则数据为1、5、5、7,中位数为5,符合题意,此时平均数为15574+++= 4.5;若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;故选C.9.一组数据5,4,2,5,6的中位数是()A.5 B.4 C.2 D.6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是: 2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.10.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定【答案】B 【解析】 【分析】根据方差的意义求解可得. 【详解】∵乙的成绩方差<甲成绩的方差, ∴乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.11.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2S 乙,2S 丁,则下列判断中正确的是( )A .x x =乙丁,22S S <乙丁B .x x =乙丁,22S S >乙丁 C .x x >乙丁,22S S >乙丁D .x x <乙丁,22S S <乙丁【答案】B 【解析】 【分析】根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】4563555260555x ++++==乙,则()()()()()2222221455563555555525560555S ⎡⎤=⨯-+-+-+-+-⎣⎦乙39.6=,5153585657555x ++++==丁,则()()()()()2222221515553555855565557555S ⎡⎤=⨯-+-+-+-+-⎣⎦丁 6.8=,所以x x =乙丁,22S S >乙丁,故选B . 【点睛】本题考查方差的定义与意义:一般地设n 个数据,1x ,2x ,…n x 的平均数为x ,则方差()()()2222121n S x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.关于数据-4,1,2,-1,2,下面结果中,错误的是( ) A .中位数为1 B .方差为26C .众数为2D .平均数为0【答案】B 【解析】 【分析】 【详解】A .∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;B .4121205x -++-+== ,()()()()222224010102022655s --+--+-+-⨯==,故不正确;C .∵众数是2,故正确;D .4121205x -++-+==,故正确;故选B.13.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为( ) A .1.70,1.75B .1.70,1.70C .1.65,1.75D .1.65,1.70【答案】A【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.详解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选A.点睛:本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.14.一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8 B.5 C.6 D.3【答案】A【解析】【分析】先由平均数的公式计算出a的值,再根据方差的公式计算即可.【详解】∵数据6、4、a、3、2平均数为5,∴(6+4+2+3+a)÷5=5,解得:a=10,∴这组数据的方差是15[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8.故选:A.【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【答案】D【解析】【详解】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222 (12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D.16.下列说法中正确的是().A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查【答案】D【解析】试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.考点:全面调查与抽样调查;众数;方差;随机事件.17.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数【答案】B【解析】【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.18.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()A.3 和 2 B.2 和 3 C.2 和 2 D.2 和4【答案】A【解析】【分析】根据平均数的计算公式先求出x的值,再根据中位数和众数的概念进行求解即可.【详解】∵数据2,x,4,8的平均数是4,∴这组数的平均数为2484x+++=4,解得:x=2;所以这组数据是:2,2,4,8,则中位数是242+=3.∵2在这组数据中出现2次,出现的次数最多,∴众数是2.故选A.【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.19.下列说法正确的是( )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【答案】D【解析】【分析】根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;D,数据5,6,7,7,8的中位数与众数均为7,正确,故选D.【点睛】本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.20.为了解九(1)班学生的体温情况,对这个班所有学生测量了一次体温(单位:℃),小明将测量结果绘制成如下统计表和如图所示的扇形统计图.下列说法错误的是()A.这些体温的众数是8 B.这些体温的中位数是36.35 C.这个班有40名学生D.x=8【答案】A【解析】【分析】【详解】解:由扇形统计图可知:体温为36.1℃所占的百分数为36360×100%=10%,则九(1)班学生总数为410%=40,故C正确;则x=40﹣(4+8+8+10+2)=8,故D正确;由表可知这些体温的众数是36.4℃,故A错误;由表可知这些体温的中位数是36.336.42=36.35(℃),故B正确.故选A.考点:①扇形统计图;②众数;③中位数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—一.填空题
1. 某班8名学生完成作业所需时间分别为:75, 70 , 90 , 70, 70, 58, 80, 55 (单位:分),则这组数据的众数为____ ,中位数为_______ ,平均数为_________
2. 已知一组数据1 , 0, -3, 2, -6, 5,这组数据的中位数为 ___________ .
3. 若数据10,12,9,-1,4,8,10,12,x 的众数是12,则x= __________ .
4. 数据3, 4, 6, 8, x, 7的众数是7,则数据4, 3, 6, 8, 2, x的中位数是____________ .
5. 已知一组数据:x1= 4, x2= 5, x3= 6 , x4= 7,它们出现的次数依次为 2 , 3 , 2 , 1,则这组数据的众数为______ ,中位数为______ ,平均数为_____
二、选择题
1. 一组数据是23 , 27 , 20 , 18 , 12 , x,它的中位数是21,则数据x是()
A. 23
B. 21
C.不小于23数
D.以上都不是
2. 用中位数去估计总体时,其优越性是()
A.运算简便
B.不受较大数据的影响
C.不受较小数据的影响
D.不受个别数据较大或较小的影响
3. 对于数据3,3,2,6,3,10,3,6,3,2.
(1)众数是3; (2)众数与中位数的数值不等;(3)中位数与平均数的数值相等;(4)平均数与众数相等,其中正确的结论是()
A. (1)
B. (1)⑶
C.⑵
D.⑵(4)
4. 已知一组数据从小到大依次为-1,0,4,x,6,15,其中位数为5,则其众数为()
A. 4
B. 5
C. 5.5
D. 6
5. 某班10名学生体育测试的成绩分别为(单位:分)58,60,59,52,58,55,57,58,49,57(体育测试这
次规定满分为60分),你们这组数据的众数,中位数分别是()
A. 58, 57.5
B. 57, 57.5
C. 58, 58
D. 58, 57
三、简答题
1. 某餐厅有7名员工,工资为3000 (经理)、700、500、450、360、340、320
(1 )试求餐厅所有员工工资的众数、中位数、平均数;
(2)用平均数还是用中位数来描述该餐厅员工工资的一般水平比较恰当?
(3)去掉经理的工资后,其他员工的平均工资是多少元是否也能反映该餐厅员工工资的一
般水平?
2. 某商店有220L,215L,185L,182L 四种型号的某种名牌电冰箱,在一周内分别销售了6台,30台,14台,8台.在研究电冰箱销售情况时,商店经理关心的应是哪些数据?哪些数据对于进货最有参考价值?
3. 学校体育节前一位同学在进行投掷训练中,投了20次标枪,其中3次投了45米,8次投
了45.8米,7次投了45.4米,1次投了46.1米,1次犯规,求这位同学每次投掷标枪党的米数的众数、中位数和平均数。
4. 在一次环保知识竞赛中,某班50名同学得分情况如下:
50分,2人;60分,3人;70分,6人;80分,14人;90分,15人;100分,5人;110 分,4人;120分,1人。
分别求出该班学生成绩的众数、中位数和平均数。
5. 有14个数据,由小到大排列,其平均数为34,现有一位同学求得这组数据前8个数的平均数为32,后8个数的平均数为36,求这组数据的中位数。
6. 某公司销售部有营销人员15 人,销售部为了制定某种商品的月销售定额,统计了这15 人某月的销售量如下:
每人销售件数1800 510 250 210 150 120
人数 1 1 3 5 3 2
(1)求这15 位营销人员该月销售量的平均数、中位数、众数。
(2)假设销售部负责人把每位营销人员的月销售额定为320 件,你认为是否合理?为什么?如不合理,请你制定一个合理的销售定额,并说明理由。
答案
一:填空题
1.70 分,70 分,71 分
2.0.5
3.12
4.5
5. 5 5 5.25
二:选择题
1.D
2.D
3.A
4.D
5.C
三:解答题
1•解:(1)餐厅所有员工的平均工资=(3000+700+500+450+360+340+320) - 7=810(元);(2)用中位数来描述该餐厅员工工资的一般水平比较恰当
(3)去掉经理的工资后,其他员工的平均工资 =(700+500+450+360+340+320 ) - 6=44(元). 能反映该餐厅员工工资的一般水平.
2•解:根据题意知:商店经理关心的是哪种型号的冰箱销售最多,
从题可以知道215L型号的电冰箱共销售了30台,是销售量最大的,它是这组数据的众数,
所以进货最有参考价值的数据是众数.
3. 45.8 米45.4 米43.3 米
4. 90 分85 分84.6 分
5. 34
6. (1)320件210件210件(2)不合理。
因为15人中有13人达不到,定为210件较为合理。
因为210 即时中位数,又是众数,是大部分人能达到的定额。