第十一章 非参数检验
研究生统计学讲义第8讲非参数检验与Ridit分析

所谓秩(rank), 又称等级, 实际上就是按数值大小顺 序作1, 2, 3, …, 等级的一种编码. 秩和检验常用于有序分 类变量或不符合用参数检验的资料. 两个或多个有序分 类变量(等级资料)的比较, 如临床疗效分为治愈, 显效, 好转, 无效; 尿糖分为-, +, ++, +++, ++++;针 麻效果分为Ⅰ,Ⅱ,Ⅲ,Ⅳ级等.
-9
-7
-6 — -4
-5 -11
(1) H0:配对差值总体中位数Md=0; H1:配对差值总体中位数Md ≠0 .α=0.05. 差值 -20 36 -5 -2 2 0… -10 -48
rank -8 10 - 3 -1.5 1.5 … -5 -11
a.在n≤25时,可查统计用表11,用T值与T界值进行比 较.若T值在上、下界范围内,则 P 值大于相应概率; 若T值为上、下界值或范围外,则 P 值小于相应概 率. 由于n=11(因为有0),T+=11.5、T-=54.5,则统计量T =11.5. 查统计用表12,11.5在(10,56)内,双侧P>0.05, 以=0.05水准不拒绝H0,差值总体中位数与0的差异 有无统计意义,尚不能认为两法检测谷-丙转氨酶的结
值范围是0~15,
而P(T=0)=P(T=15)=1/32=0.03125,双侧概率为 0.03125×2=0.06250,已大于0.05。所以当n≤5时,用 符号秩和检验不能得出双侧概率P<0.05,故 n 必须大 于5。
1.配对设计资料比较的符号秩和检验
①例对9.1
子 编 1 2 3 4 5 6 7 8 9 10 11 12
ti为第i个相同秩次的个数
解法2:软件计算
第十一章-非参数检验

本例: R=10<R0.05=14,n=12, P<0.05,拒绝H0,故认为A,B两种 照射方式造成的急性皮肤损伤程度不 同,B照射的损伤程度比A照20射24年严9月重2。1日
(ii)大样本(n>10)时, 可采用正态近似
u | R n(n 1) / 4 | 10 12(12 1) / 4 2.275 n(n 1)(2n 1) / 24 12(12 1)(2 12 1) / 24
在0.05检验水平拒绝H0,接受H1,认为三组脾淋巴 细胞对HPA刺激的增值反应不全相同。
2024年9月21日
频数表法: 属于同一组段的 观察值,一律取平均秩次(组 中值),再以该组段频数加权 ,计算Hc值。 表 分娩时孕周与乳量的关系
乳 量
早 产
足月 产
过期 产
合计
秩次 范围
平均
秩和
秩次 早产 足月产 过期产
查标准正态分布表,得 P 值 校正公式:(当相同秩次个数较多时)
| R n(n 1) / 4 |
u
n(n 1)(2n 1) / 24 (ti3 ti ) / 48
10 12(12 1) / 4 2.282
12(12 1)(212 1) / 24 [(33 3) (33 3)]/ 48
2024年9月21日
⑴ H0: 两样本来自相同总体; H1: 两样本来自不同总体(双侧)
=0.05
或H1: 样本A高于样本B(单侧)
⑵ 编秩:两样本混合编秩次,求得R1、R2.T。
相同观察值(即相同秩,ties),不同组------平均秩次。 ⑶ 确定P值作结论:
①查表法 (n0≤10,n2 n1≤10) 查附表9
第十一章非参数检验

第十一章 非参数检验前面有关章节讨论的参数检验都要求总体服从一定的分布,对总体参数的检验是建立在这种分布基础上的。
例如,两样本平均数比较的t 检验和多个样本平均数比较的F 检验,都要求总体服从正态分布,推断两个或多个总体平均数是否相等。
本章引入另一类检验——非参数检验(non-parametric test )。
非参数检验是一种与总体分布状况无关的检验方法,它不依赖于总体分布的形式,应用时可以不考虑被研究的对象为何种分布以及分布是否已知。
非参数检验主要是利用样本数据之间的大小比较及大小顺序,对两个或多个样本所属总体是否相同进行检验,而不对总体分布的参数如平均数、标准差等进行统计推断。
当样本观测值的总体分布类型未知或知之甚少,无法肯定其性质,特别是观测值明显偏离正态分布,不具备参数检验的应用条件时,常用非参数检验。
非参数检验具有计算简便、直观,易于掌握,检验速度较快等优点。
非参数检验法从实质上讲,只是检验总体分布的位置(中位数)是否相同,所以对于总体分布已知的样本也可以采用非参数检验法,但是由于它不能充分利用样本内所有的数量信息,检验的效率一般要低于参数检验方法。
例如,非配对资料的秩和检验,其效率为t 检验的86.4%,就是说以相同概率判断出差异显著,t 检验所需的样本个数要少13.6%。
非参数检验内容很多,本章只介绍常用的符号检验(sign test ),秩和检验(rank-sum test )和等级相关分析(rank correlation analysis )三种。
第一节 符号检验一、配对资料的符号检验(一)配对资料符号检验的意义 配对资料符号检验是根据样本各对数据之差的正负符号多少来检验两个总体分布位置的异同,而不去考虑差值的大小。
每对数据之差为正值用“+”表示,负值用“-”表示。
可以设想如果两个总体分布位置相同,则正或负出现的次数应该相等。
若不完全相等,至少不应相差过大,否则超过一定的临界值就认为两个样本所来自的两个总体差异显著,分布的位置不同。
第11章 非参数检验——卡方检验

2
a
n(ad bc)2
bc d a cb
d
第11章 非参数检验——卡方2检验
一、卡方检验概述 二、吻合性检验 三、独立性检验
一、卡方检验原理
(一)定义 检验频数资料的实际观测次数分布与理论次数分布之
间差异是否显著的方法。
(二)目的 检验每一组实际观察次数与理论次数是否吻合; 检验四格表中分类标志是否独立。
一、卡方检验原理
(三)公式
实际观测次数
2 ( f0 fe )2 fe
理论次数
(四)性质 1. 非负 2. 形状受df影响,当df趋近∞时,2分布为正态。 3. 实际观测次数与理论次数差异越大,2值越大;反
之,则2越小。
二、吻合性检验
实得分布与理论分布是否吻合; 判断实得分布与原有分布是否之一。 例1,例2, 例3。
三、独立性检验
检验两种分类标志下现象间是否相互独立。
2 × 2列联表
df =(r-1)(c-1)
例4
f (横行总次数) * (纵列总次数) N
2
a
n(ad bc)2
bc d a cb
d
当df=1,f<5时,采用公式校正
例5
三、独立性检验
检验两种分类标志下现象间是否相互独立。 2 × 2列联表 df =(r-1)(c-1)
非参数验课件

秩次和秩和
“秩”即按数据大小排定的次序号,又称秩次号。编秩 就是将观察值按顺序由小到大排列,并用序号代替原始 变量值本身。用秩次号代替原始数据后,所得某些秩次 号之和,即按某种顺序排列的序号之和,称为秩和。设 有以下两组数据:
A组 4.7 6.4 2.6 3.2 5.2 B组 1.7 2.6 3.6 2.3 3.7
•编秩后,按差值的正负给秩次冠上符号。
分析步骤:
(3)求差值为正或负的秩和 差值为正的秩和以T+表示 差值为负的秩和以T-表示。 T++T-=n(n+1)/2 T=min(T+,T-)
(4)确定P值和作出推断结论:
当n≤50时,查T界值表
T在界值范围内
P>α
T在界值范围外或相等 P<α
例1 临床某医生研究白癜风病人的白介素IL6水平(u/l)在白斑部位与正常部位有无差异 ,调查的资料如表1所示:
表2 尿氟含量X(1)
2.15 2.10 2.20 2.12 2.42 2.52 2.62 2.72 2.99 3.19 3.37 4.57
12名工人尿氟含量测定的结果 差值d=X-2.15 (2) 0 -0.05 0.05 -0.03 0.27 0.37 0.47 0.57 0.84 1.04 1.22 2.42
对总体的分布类型 不作任何要求
不受总体参数的影响, 比较分布或分布位置 适用范围广;可用于任 何类型资料(等级资料, 或“>50mg” )
参数检验与非参数检验比较
参数检验 要求资料服从 某种分布
检验效率高
非参检验
1. 对资料的分布没有特殊要求,总体为 偏态、总体分布未知的计量资料(尤 其在n<30的情况)
第十一章 非参数检验简述

不如参数检验。
• 两独立样本非参数检验方法
– 秩和检验法
– 中数检验法
• 两相关样本非参数检验方法
– 符号检验法 – 符号等级检验法 • 克—瓦式单向方差分析
第一节 两独立样本非参数检验方法
一、秩和检验 • 两个样本的容量都小于或等于10时
– 将所有数据由小到大赋予秩次 – 求样本容量较小的一组数据的秩次之和“T” – 将T值与临界值作比较。若 T1 < T < T2 则差异 不显著
Z T n ( n 1) / 4 n ( n 1)( 2 n 1) 24
第三节 单向秩次方差分析
• 方法:将所有样本的数据合在一起,按从 小到大编秩次,然后计算各样本的秩次和。 如果各组没有显著性差异,各组秩次和应 当相等或趋于相等;如果各组秩次和相差 较大,那么各组有显著性差异的可能性较 大。
例题
序号
1 2 3 4 5 n
甲校 128 114 103 92 85 5
原始分数 乙校 90 91 106
丙校 89 80 101
3
3
• 2.37
Z ( r 0 .5 ) n / 2 1 2 n ( 9 0 . 5 ) 31 / 2 1 2 31 2 . 16
二、符号秩次检验
• 威尔科克松(F.Wilcoxon)提出了既考虑差 数符号,又考虑差数大小的符号秩次检验 法。
• 当样本容量n<25时,可用查表法进行符 号秩次检验。 • 当样本容量n>25时,可用正态分布近似 处理。检验统计量为:
Z
( r 0 .5 ) n / 2 1 2 n
例题
• 32名被试中有1名被试对两种包装打出相 同的分数,有22名被试认为A包装比B包 装好,另有9名被试认为B包装比包装A好。 问:被试对两种包装的偏好程度有无显 著差异?
《卫生统计学》课后思考题答案

《卫生统计学》思考题参考答案第一章绪论1、统计资料可以分为那几种类型?举例说明不同类型资料之间是如何转换的?答:(1)1定量资料(离散型变量、连续型变量)、2无序分类资料(二项分类资料、无序多项分类资料)、3有序分类资料(即等级资料);(2)例如人的健康状况可分为“非常好、较好、一般、差、非常差”5个等级,应归为等级资料,若将该五个等级赋值为5、4、3、2、1,就可按定量资料处理。
2、统计工作可分为那几个步骤?答:设计、收集资料、整理资料、分析资料四个步骤。
3、举例说明小概率事件的含义。
答:某人打靶100次,中靶次数少于等于5,那么该人一次打中靶的概率≤0.05,即可称该人一次打中靶的事件为小概率事件,可以视为很可能不发生。
第二章调查研究设计1、调查研究有何特点?答:(1)不能人为施加干预措施(2)不能随机分组(3)很难控制干扰因素(4)一般不能下因果结论2、四种常用的抽样方法各有什么特点?答:(1)单纯随机抽样:优点是操作简单,统计量的计算较简便;缺点是当总体观察单位数量庞大时,逐一编号繁复,有时难以做到。
(2)系统抽样:优点是易于理解、操作简便,被抽到的观察单位在总体中分布均匀,抽样误差较单纯随机抽样小;缺点是在某些情况下会出现偏性或周期性变化。
(3)分层抽样:优点是抽样误差小,各层可以独立进行统计分析,适合大规模统计;缺点是事先要进行分层,操作麻烦。
(4)整群抽样:优点是易于组织和操作大规模抽样调查;缺点是抽样误差大。
3、调查设计包括那些基本内容?答:(1)明确调查目的和指标(2)确定调查对象和观察单位(3)选择调查方法和技术(4)估计样本大小(5)编制调查表(6)评价问卷的信度和效度(7)制定资料的收集计划(8)指定资料的整理与分析计划(9)制定调查的组织措施4、调查表中包含那几种项目?答:(1)分析项目直接整理计算的必须的内容;(2)备查项目保证分析项目填写得完整和准确的内容;(3)其他项目大型调查表的前言和表底附注。
语言统计第十一章 非参数检验

第一步: 陈述零假设H0和备择假设H1
第二步: 设定显著水平a
第三步:计算每一对观测值之差,并记下 差的符号〔即正值还是负值〕 。
第四步:不考虑差的正负号,按其绝对值 从小到大排序〔即赋予每个差一个 “秩 〞 〕 。 如果差为零, 即两观测值相同,那 么排除在外, 不再参加以后的分析〔观测值 的对子的个数N就相应减少一个〕 ; 如差 相同, 那么像曼惠特尼U检验那样,将其 在不并列的情况下所应占得等级的平均值
决定使用哪个检验:
原那么—当使用t检验的条件满足时,应尽量使用t 检验,因为它毕竟能更充分地利用数据中的信息, 因而能更容易发现总体之间存在的真正差异。
总之,如果t检验的条件得到了满足或根本满足, 就尽量使用t检验,反之,如果数据为顺序数据, 或虽是等距数据,但所来自的总体严重偏态,就 应使用U检验。
例如,我们请两个人在一个0-7〔0表示 “完全可 以接受〞,7表示完全不可以接受〞 〕 的量表上 对15个句子的可接受程度 〔acceptability〕 打分, 结果如表11.3所示。
我们现在检验一下在0.05的显著水平上两人所打 的分是否有显著差异 〔双尾〕 。 我们先计算每 对分数之差, 记下差的符号 〔表中第四列〕, 其中4个差为正号,8个为负号,即S=4.由于有3 个差为零,所以有效数据只有12对,即N=12.查 表得临界值为2,由于S值大于临界值, 所以不 能推翻零假设,因而两人的分数没有显著差异。
符号检验的原理是:如果样本所来自的总休的分 布没有差异,那么正差的个数就应大体等于负差 的个数。符号检验的目的就是检验一下正负差的 个数之间有无显著差异。
符号检验的步骤是: 记录下每一对观测值 〔等 级〕 之差的方向, 而不是差本身 〔如一对观测 值相等, 即其差为零, 就将其排除在外, 观测 值的对子数N也随之减少〕,然后计算符号出现 次数较少的观测值的对子个数,记为S作为检验 统计值。附表9给出了S的临界值,如果S值小于 或等于临界值,就可以推翻零假设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
李金德
一、非参数检验
第一节 非参数检验的基本概念及特 点
(一)什么是“非参数” 非参数模型:缺乏总体分布模式的信息。 (二)非参数检验的定义 非参数检验:不需要假设总体是否为正态分布或 方差是否为齐性的假设检验称非参数检验。
(三)非参数检验的优点和缺点
1、优点: 一般不涉及总体参数,其假设前提也比参数假 设检验少得多,适用面较广。 计算简便。
(一)秩统计量
秩统计量指样本数据的排序等级。 假设从总体中反复抽取样本,就能得到一个 对应于样本容量n1和n2的秩和U的分布。这是 一个间断而对称的分布。
当n1和n2都大于10时,秩和的U分布近似于 正态分布。
(二)计算过程
(1)排序:所有数据混合由小到大等级排列;
1、小样本:两个样本容量均小于10(n110,n210)
随机区组设计:弗里德曼双向等级方差分析
一、秩和检验法
第二节 两个独立样本的非参数检验方 法
秩和检验法也叫Mann-Whitney-Wilcoxon检验,简称 M-W-W检验,也称Mann-Whitney U检验。
秩和即秩次的和或等级之和。 与参数检验法中独立样本的t检验法相对应。; 当两个样本都为定序(顺序)变量时,也需使用秩 和法进行差异显著性检验。
查秩和检验表,当n1=5,n2=6, T1=19, T2=41, 因为 19<25<41, 即T1<T<T2,
所以接受虚无假设,拒绝研究假设,差异不 显著。说明两种训练的成绩无显著差异。
分布近期近似正态分布,其平均数为:
n1 n1 n2 1 T 2
2、大样本:当n1和n2都大于10时,秩和的U
2)统计多个样本在中数上下的次数,列出列联表。 实验组 10 5 15 控制组 5 10 15 ∑ 15 15 30
>
>Mdn 的次数 <Mdn 的次数 ∑
3)求 2 值
2
30 10 10 5 5 3.33 15 15 15 15
2
(3)比较与决策
3.33 <
1)建立假设 单侧检验 H0:P+<PH1: P+ >P2)标记配对数据之差的符号。见上表。 3)统计符号总数N。符号总数中不包含0,只包 括正号和负号个数和,即 N n n =2+6=8 4)将n+和n-中的较小者记为r,即
r minn , n
n 2
5)比较与决策
著差异
(1)提出假设 H0: Amdn B mdn ,即两组中位数相等,或两组成绩无显 H1 : Amdn B mdn ,即两组中位数不等,或两组成绩有
显著差异
(2)计算统计量
1)求混合中数。将数据按大小排列,确定中数。
Mdn X N 1 X 311 X 16 16.9
2 2
(二)、计算过程
1、小样本(样本容量N≤25时) (1)对于两样本每对数据之差(Xi-Yi),不计大 小,只记符号。n+、n_分别表示差值正、负 号的多少,零不计。 (2)记N= n++n_,r=min(n+, n_); (3)根据N与r, 直接查符号检验表。在某一显 著性水平下,若r值大于表中的临界值时,表 示差异不显著,这与查其他参数检验临界值表 时不同。
实习组:
68,50,84,78,46,92
假设两组学生初始水平相同,则两种训练方式有无显 著差异?
(1)建立假设 H 0: R R
1
2
H1: R1 R2
,即两样本无显著差异 ,即两样本有显著差异
(2)计算统计量
1)将数据从小到大排列,见下表。
2)混合排列等级,即将两组数据视为一组进 行等级排列,见上表。 3)计算各组的秩和,并确定值,即 T =min (T1,T2)=min(25,41)=25
女生:(n2=17)
25,30,28,34,23,25,27,35,30,29,29,33,35,37,24,34,32
检验过程:
(1)建立假设
H0: R1 R2 H1: R1 R2 (2)计算统计量
1)求秩和。先混合排列等级,再计算和。排序 如下:5, ,27, .5, .5, .5,21.5,21.5,13.5,4, .5, .5, , 1.5, . 3 23 1 8 8 11 11 17 男生:
r与临界值(CR)比 P值 较 r>r0.05 P>0.05 r0.01<r≤r0.05 0.01<P≤0.05 r≤r0.01 P≤0.01 差异显著性 不显著 显 著 极显著
查附表15,N=8时,临界值为0(0.05水平), 而实得r = n+= 2> r0.05。所以差异不显著,接受虚 无假设,不能认为新法显著优于传统方法。
例11-4:用配对设计方法对9名运动员不同方法 训练,每一个对子中的一名运动员按传统方法训 练,另一名运动员接受新方法训练。课程进行一 段时间后对所有运动员进行同一考核,结果如下。 能否认为新训练方法显著优于传统方法
配 对 传统 X 新法 Y Xi—Yi 1 85 90 -5 2 88 84 4 3 87 87 0 4 86 85 1 5 82 90 -8 6 82 94 -12 7 70 85 -15 8 72 88 -16 9 80 92 -12
13.5 4 11.5 11.5 17 174
2)求Z值
n1 n1 n 2 1 14 (14 17 1) T= 224 2 2
T
n1n 2 n1 n 2 1 1417 (14 17 1) 25.2 12 12
2、缺点:
统计效能远不如参数检验方法。由于当数据满 足假设条件时,参数统计检验方法能够从其中广 泛地充分地提取有关信息。非参数统计检验方法 对数据的限制较为宽松,只能从中提取一般的信 息,相对参数统计检验方法会浪费一些信息。
(四)非参数检验的特点
1、它不需要严格的前提假设; 2、特别适用于顺序数据; 3、适用于小样本,且方法简单; 4、最大的不足是不能充分利用资料的全部信 息;
实验组:(n1=16) 16.7, 16.8, 17.0, 17.2, 17.4, 16.8, 17.1, 17.0, 17.2, 17.1,
17.2, 17.5, 17.2, 16.8, 16.3, 16.9
控制组:(n2=15) 16.6, 17.2, 16.0, 16.2, 16.8, 17.1, 17.0, 16.0, 16.2, 16.5, 17.1, 16.2, 17.0, 16.8, 16.5
Z
T - T
T
174 224 1.98 25.2
3)比较与决策
Z 1.98 Z 0.05 / 2 ,p<0.05,拒绝虚无假设,差异
达到显著性水平。说明男女在注意稳定性上有显
著差异。
二、中数检验法
(一)适用条件
中数检验法对应着参数检验中两独立样本平均
数之差的t检验。
中数检验法的基本思想是将中数作为集中趋势
8.5, .5, , , , .5, .5, .5, .5, , , , .5, , , , .5 19 15 27 5 8 13 29 19 17 17 25 29 31 6 27 23
女生: T= .5 23.5 3 27 1.5 8.5 8.5 21.5 21.5 1
(二)计算过程
1、排序:将两个样本数据混合从小到大排列;
2、确定中数:求混合排列的中数;
3、做四格表:分别找出每一样本中大于和小于混 合中数的数据个数,列成四格表。 4、进行卡方检验。若卡方检验结果显著,则说明 两样本的集中趋势(中数)差异显著。
例11-3:为了研究RNA核糖核酸是否可以作为记 忆促进剂,以老鼠为对象分成实验组与控制组,实 验组注射RNA,控制组注射生理盐水,然后在同样条 件下学习走迷津,结果如下(以所用时间作为指 标),试检验两组结果是否有显著差异?
表11-1 两种训练方式的成绩
模拟器组 (5人) 考核成绩 56 62 42 72 76 实习组 (6人) 68 50 成绩排列 42 56 62 72 76 46 50 等级 1 4 5 7 8 2 3 等级和
T1=25
84 78 46 92
68 78 84 92
6 9 10 11
T2=41
(3)比较与决策
5、不能处理“交互作用”,即多因素情况。
四种测量变量及适宜的统计量 测量变量 数学性质 描述统计量 分类变量 众数 =,≠ 频率 列联系数 顺序变量 中数 百分位数 =, >, Kendallτ ≠, (肯德尔秩相关) < Spearman rs
(斯皮尔曼等级相关)
适合的统计检验 非参数检验
非参数检验 参数检验 非参数检验 参数检验 非参数检验
N 2
2
例11-5 :在教学评价活动中,要求学生对教师的
教学进行7点评价(即1-7分),表格(P348)是
某班学生对一位教师期中与期末的两次评价结果,
试问两次结果差异是否显著?
解: 1)建立假设
单侧检验 H0:P+<PHa: P+ >P2)确定正、负号数目,正负号总数N的r值 。 统计符号总数N。符号总数中不包含0,只包括 正号和负号个数和,即 N n n = 8 + 19 = 27 将n+和n-中的较小者记为r,即
2、大样本(样本容量N>25时)
n+和n-服从二项分布,当N>25时,将二项分布近 似看成正态分布。根据二项分布的原理,有:
p q 1 2
Np
1 N 2
Npq N