电路理论基础(哈尔滨工业大学陈希有第3版)10

合集下载

电路理论教程答案陈希有

电路理论教程答案陈希有

电路理论教程答案陈希有【篇一:《电路理论基础》(第三版陈希有)习题答案第一章】电路电流的参考方向是从a指向b。

当时间t2s时电流从a流向b,与参考方向相同,电流为正值;当t2s时电流从b流向a,与参考方向相反,电流为负值。

所以电流i的数学表达式为2a t?2s? i??-3at?2s ?答案1.2解:当t?0时u(0)?(5?9e0)v??4v0其真实极性与参考方向相反,即b为高电位端,a为低电位端;当t??时u(?)?(5?9e??)v?5v0其真实极性与参考方向相同,即a为高电位端,b为低电位端。

答案1.3解:(a)元件a电压和电流为关联参考方向。

元件a消耗的功率为pa?uaia则ua?pa10w??5v ia2a真实方向与参考方向相同。

(b) 元件b电压和电流为关联参考方向。

元件b消耗的功率为pb?ubib则ib?pb?10w1a ub10v真实方向与参考方向相反。

(c) 元件c电压和电流为非关联参考方向。

元件c发出的功率为pc?ucic则uc?pc?10w10v ic1a真实方向与参考方向相反。

答案1.4解:对节点列kcl方程节点③: i4?2a?3a?0,得i4?2a?3a=5a节点④: ?i3?i4?8a?0,得i3??i4?8a?3a节点①: ?i2?i3?1a?0,得i2?i3?1a?4a节点⑤: ?i1?i2?3a?8a?0,得i1?i2?3a?8a??1a若只求i2,可做闭合面如图(b)所示,对其列kcl方程,得 i28a-3a+1a-2a0解得i2?8a?3a?1a?2a?4a答案1.5解:如下图所示(1)由kcl方程得节点①:i1??2a?1a??3a节点②:i4?i1?1a??2a节点③:i3?i4?1a??1a节点④:i2??1a?i3?0若已知电流减少一个,不能求出全部未知电流。

(2)由kvl方程得回路l1:u14?u12?u23?u34?19v回路l2:u15?u14?u45?19v-7v=12v回路l3:u52?u51?u12??12v+5v=-7v回路l4:u53?u54?u43?7v?8v??1v若已知支路电压减少一个,不能求出全部未知电压。

电路理论基础(陈希有)习题解答10-14

电路理论基础(陈希有)习题解答10-14

uC (0 ) uC (0 ) 24V iL (0 ) iL (0 ) 2A
由 KVL 得开关电压:
6
6 3
Ri
u(0 ) uC (0 ) 8 iL (0 ) (24 8 2)V 8V
(b)
答案 10.3 解: t 0 时电容处于开路, i 0 ,受控源源电压 4i 0 ,所以 等 效 电 阻
由换路定律得:
t0
4 4
时 电 感 处 于 短 路 , 故
Ri
(b)
8
3 i L (0 ) 9A 3A ,由换路定律得: 63 iL (0 ) iL (0 ) 3A
求等效电阻的电路如图(b)所示。 ,
等效电阻
Ri (4 // 4) // 8 1.6
时间常数
求稳态值的电路如图(b)所示。 i ( ) 2 2 10V 3 3 4 Ri iL ( ) 4 2 2
(b) (c)
(b)
Ri (
时间常数
6 3 3 1.5 )k 3k 6 3 3 1.5
3 6 3
答案 10.13
解:当 t 0 , r 列 KVL 方程得:
-1-
答案 10.1
解: t
0 时,电容处于开路,故 uC (0 ) 10mA 2k 20V
t 0 时,求等效电阻的电路如图(b)所示。
i 6 3 4i

iL (t ) iL (0 )e t / 3e 2t A (t 0)
电感电压
由换路定律得:
u1 (t ) L
由换路定律得
L / Ri 0.5s
由三要素公式得: 解 得 A 答案 10.9 解:当 t 原始值

陈希有电路理论教程答案

陈希有电路理论教程答案

陈希有电路理论教程答案【篇一:电路理论基础课后答案(哈工大陈希有)第12章】图题12.1解:分别对节点①和右边回路列kcl与kvl方程:?iq?ir?ilc?c??u???u?q/clc将各元件方程代入上式得非线性状态方程:??q?f(?)?f(q/c)12???q/c方程中不明显含有时间变量t,因此是自治的。

题12.2图示电路,设u,列出状态方程。

?f(q),u?f(q)111222r图题12.2r4解:分别对节点①、②列kcl方程:节点①:??i?(u?u)/ri1?q 1s123节点②:??(u?u)/r?u/ri2?q 212324将u?f(q),u?f(q)111222代入上述方程,整理得状态方程:?q??f(q)/r?f(q)/r?i?1113223s??q?f(q)/r?f(q)(r?r)/(rr)2113223434?题12.322出电路的状态方程。

uu1解:分别对节点①列kcl方程和图示回路列kvl方程得:图题12.3?qiu (1)?1?2?3/r3????u?u(2)?2s3u3为非状态变量,须消去。

由节点①的kcl方程得:u?u3u31?i?i?i??i?0 2342rr34解得u?(u?ri)r/(r?r)?[f(q)?rf()]r/(r?r) 314233411422334将?及u3代入式(1)、(2)整理得:?q??f(q)/(r?r)?f()r/(r?r)?1113422334????f(q)r/(r?r)?f()rr/(r?r)?u211334223434s????题12.4,试分别写出用前向欧拉法、后向欧拉法和梯形法计算响?sin(?t) us图题12.4l解:由kvl列出电路的微分方程:ul?d???ri?u??)??sin(?t) sdt前向欧拉法迭代公式:????h[?)??sin(?t)]k?1kkk后向欧拉法迭代公式:????h[?)??sin(?t)]k?1kk?1k?1梯形法迭代公式:????0.5[)??(?t))??sin(?t)]k?1kkkk?1k?1题12.5?1f,u(0)?7v,u?10v电路及非线性电阻的电压电流关系如图所示。

《电路理论基础》(第三版 陈希有)习题答案第八章

《电路理论基础》(第三版  陈希有)习题答案第八章

答案8.1解:)/1()(T t A t f -= T t <<0⎰⎰-==T T dt T t A T dt t f T A 000)/1(1)(1A T t t T A T5.0]2[02=-=⎰-=Tk dtt k T t A T a 0)cos()/1(2ω0)sin(2)]sin()/1(2[020=+⨯-=⎰T T dt t k T k A t k Tk T t A ωωωω ⎰-=Tk dtt k T t A T b 0)sin()/1(2ωπωωωωωk A kT A dt t k T k A t k Tk T t A T T==-⨯--=⎰2)cos(2)]cos()/1(2[020 所以∑∞=+=1sin 5.0)(k t k k AA t f ωπ频谱图如图(b)所示。

.0答案8.2解:电流i 的有效值57.1)2/13.0()2/67.0()2/57.1(12222≈+++=I A只有基波电流与正弦电压形成平均功率,故二端电路输入的平均功率为:95.73)]90(90cos[257.122.94=︒--︒-⨯=P W 注释:非正弦周期量分解成傅里叶级数后,其有效值等于直流分量和不同频率交流分量有效值平方和的平方根。

答案8.3解:对基波︒∠=0100m(1)U V , A 010m(1)︒∠=I 由Ω==-+=10)1(j )1(m )1(m )1(I U C L R Z ωω求得Ω=10R , 01=-CL ωω (1)对三次谐波︒-∠=3050m(3)U V , A 755.1im(3)ψ-∠=I又由Ω+︒-∠==-+=)30(5.28)313(j m(3)m(3))3(i I U C L R Z ψωω (2)所以2225.28)313(=-+CL R ωω (3)将式(1)代入式(3), 解得mH 9.31=L将mH 9.31=L 代入式( 1 ),求得F 3.318μ=C再将C L R 、、值代入式(2),有Ω︒-∠=Ω+=3028.5j26.7)10(i )3(ψZ 解得︒=45.99i ψ答案8.4解: (1) 电压有效值:V 01.80)225()250()2100(222=++=U电流有效值58.74mA )210()220()280(222=++=I (2) 平均功率 kW 42.345cos 210250cos 22050)45cos(280100=︒⨯+︒⨯+︒-⨯=PΩ︒∠=︒∠︒∠=Ω=︒∠︒∠=Ω︒-∠=︒∠︒-∠=k 455.2mA010V 4525k 5.2mA 020V 050k 4525.1mA 080V45100)3()3()2()1(Z Z Z 注释:非正弦周期量分解成傅里叶级数后,某端口的平均功率等于直流分量和不同频率交流分量单独作用产生的平均功率之和。

电路理论基础(哈尔滨工业大学陈希有第3版) 第1章-第5章

电路理论基础(哈尔滨工业大学陈希有第3版) 第1章-第5章

a 电位: 任选一点p作为电位参考点,电路中某点与参考点之间的电压称为该点的电 位,用 表示。有了电位的概念,两点之间的电压便等于这两点的电位之差。
uab Ec dl
a A
(a)
a A
(b)
u ab
u ba
A
(c)
a uA

b
b
b
电压参考方向的表示法
一个元件上的电压和电流的参考方向取成相同的,并称为关联参考方向。

2 基尔霍夫电流定律
基尔霍夫电流定律(Kirchhoff's Current Law,简称KCL)表述为:在集中 参数电路中,任一时刻流出(或流入)任一节点的支路电流代数和等于零, 即
i
k
0
( ik 表示第 k 条支路电流)
规定: ik 参考方向为流出节点时, ik 前面 取“+”号; 流入节点时, ik 前面取“-”号。
i1
A
i2
1、在集中参数电路中,任一时刻流出(或流入) 任一闭合边界 S 的支路电流代数和等于零。
KCL的其它表述
2、任一时刻,流出任一节点(或闭合边界)电 流的代数和等于流入该节点电流的代数和。
根据右图,列写KCL方程 1)基本表述方 式——对节点
3 i3

S
4 i4 i6 7 i7 ③
节点① :
① u1 1
u
电压降
= u电压升
6 ③ u6 l1 5 u5 l2 7 u7 ⑤ 基尔霍夫电压定律示例
u2
l3 ②
2
说明:平面电路网孔上的KVL方程是一组独立方程。设电路有b个支路n个节 点,可以证明:平面电路的网孔数即独立KVL方程的个数等于b-(n-1)。当然 取网孔列方程只是获得独立KVL方程的充分条件,而不是必要条件。

《电路理论基础》(第三版_陈希有)习题答案第七章

《电路理论基础》(第三版_陈希有)习题答案第七章

答案7.1解:设星形联接电源电路如图(a)所示,对称星形联接的三相电源线电压有效值倍,相位上超前前序相电压30︒。

即AB 3030)V=538.67cos()V u t t ωω=-︒+︒BC 538.67cos(120)V u t ω=-︒CA 538.67cos(240)V u t ω=-︒各相电压和线电压的相量图可表达如图(b)所示。

AB CN(a)&U &(b)U-&答案7.2解:题给三个相电压虽相位彼此相差120o ,但幅值不同,属于非对称三相电压,须按KVL 计算线电压。

设AN 127V U =& BN 127240V=(-63.5-j110)V U =∠︒& CN135120V=(-67.5+j116.9)V U =∠︒& 则ABANBNBC BN CN CA CN AN(190.5j 110)V 22030V (4j226.9)V 226.989V (194.5j 116.9)V 226.9149V UU U U U U U U U =-=+=∠︒=-=-=∠-︒=-=-+=∠︒&&&&&&&&& 即线电压有效值分别为220V ,226.9V ,226.9V 。

答案7.3设负载线电流分别为A B C i i i 、、,由KCL 可得A B C0I I I =&&&++。

又A B C 10A I I I ===,则A B C i i i 、、的相位彼此相差120︒,符合电流对称条件,即线电流是对称的。

但相电流不一定对称。

例如,若在三角形负载回路存在环流0I &(例如,按三角形联接的三相变压器),则负载相电流不再对称,因为CA CA 0BC BC 0AB AB ',','I I I I I I I I I &&&&&&&&&+=+=+=不满足对称条件。

《电路理论基础》(第三版 陈希有)习题答案第六章

《电路理论基础》(第三版 陈希有)习题答案第六章

答案6.22解:对图(a)电路做戴维南等效,如图(b)所示。

OC U inZ (b)i j 1/(j )Z L C ωω=+ (1)SOC j I U Cω=(2) 由图(b)可知,当i 0Z =时,电阻两端电压U 与电阻R 无关,始终等于OC (0)U R ≠。

由式(1)解得1/100rad/s ω== 将式(3)代入式(2)得OC 1100A 1090V j100rad/s 0.01FU U ==∠︒⨯=∠-︒⨯90V u t ω=-()答案6.23解:先对图(a)电路ab 端左侧电路作戴维南等效,如图(b)所示。

U iZ (b)令32000rad/s 210H 4L X L ω-==⨯⨯=Ω得等效阻抗i 4j48//8//j42(1j)4j4Z Ω⨯Ω=ΩΩΩ==+ΩΩ+Ω由OCi 1j U i Z R Cω=++知,欲使电流i 有效值为最大,电容的量值须使回路阻抗虚部为零,即:012]j 1Im[=-=++CC R Z i ωω 等效后电路如图(b)所示。

解得1250μF 2C ω==答案6.24解:应用分压公式,输出电压o U 可表示为o n1n 2U U U =-i i 1j 12j U C U R Cωω=-⨯+ i i i j 121j 2(j 1)U U CR U CR CR ωωω-=-=++ 当 0=R , o U 超前于i U 180;当 1R Cω=,o U 超前于i U ︒90;当 ∞→R , o U 与i U 同相位。

即当R 由零变到无穷时,o U 超前于i U 相位差从180到0变化。

答案6.25解:图示电路负载等效导纳为22221j j()j ()()R LY C C R L R L R L ωωωωωω=+=+-+++ (1) 22222222222)()(21)()(C L R LC L R L C L R R Yωωωωωωω++-=⎥⎥⎦⎤⎢⎢⎣⎡+-+⎥⎥⎦⎤⎢⎢⎣⎡+= (2) 由式(2)可见:当)2/(12LC =ω时,Y C ω=与R 无关,电流有效值CU U Y I ω==不随R 改变。

《电路理论基础》(第三版--陈希有)习题答案第十章Word版

《电路理论基础》(第三版--陈希有)习题答案第十章Word版

答案10.1解:0<t 时,电容处于开路,故V 20k 2m A 10)0(=Ω⨯=-C u由换路定律得:V 20)0()0(==-+C C u u换路后一瞬间,两电阻为串联,总电压为)0(+C u 。

所以m A 5k )22()0()0(1=Ω+=++C u i再由节点①的KCL 方程得:m A 5m A )510()0(m A 10)0(1=-=-=++i i C答案10.2解:0<t 时电容处于开路,电感处于短路,Ω3电阻与Ω6电阻相并联,所以A 3)363685(V45)0(=Ω+⨯++=-i ,A 2)0(366)0(=⨯+=--i i L V 24)0(8)0(=⨯=--i u C 由换路定律得:V 24)0()0(==-+C C u u ,A 2)0()0(==-+L L i i 由KVL 得开关电压:V 8V )2824()0(8)0()0(-=⨯+-=⨯+-=+++L C i u u答案10.3解:0<t 时电容处于开路,0=i ,受控源源电压04=i ,所以V 6.0V 5.1)69(6)0()0()0(1=⨯Ω+Ω===--+u u u C C0>t 时,求等效电阻的电路如图(b)所示。

等效电阻Ω=++-==5)36(4i ii i i u R时间常数s 1.0i ==C R τ0>t 后电路为零输入响应,故电容电压为:V e 6.0e )0()(10/t t C C u t u --+==τΩ6电阻电压为:V e 72.0)d d (66)(101t Ctu Ci t u -=-⨯Ω-=⨯Ω-=)0(>t答案10.4解:0<t 时电感处于短路,故A 3A 9363)0(=⨯+=-L i ,由换路定律得: A 3)0()0(==-+L L i i求等效电阻的电路如图(b)所示。

(b)等效电阻Ω=+⨯+=836366i R ,时间常数s 5.0/i ==R L τ 0>t 后电路为零输入响应,故电感电流为A e 3e )0()(2/t t L L i t i --+==τ)0(≥t电感电压V e 24d d )(21t L tiL t u --==)0(>tΩ3电阻电流为 A e 23632133t L u i u i --=Ω+⨯Ω=Ω=Ω3电阻消耗的能量为:W 3]e 25.0[1212304040233=-==Ω=∞-∞-∞Ω⎰⎰t t dt e dt i W答案10.5解:由换路定律得0)0()0(==-+L L i i ,达到稳态时电感处于短路,故A 54/20)(==∞L i求等效电阻的电路如图(b)所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R2
US
t0
R
i
C
uC
US
t0
R1
u2
(a)
(b)
•动态电路
uC
•换路
直 接 跃 变
u2
•电阻电路
US
O t
R2U S R1 R2
O
t
稳态
暂态
(a)
稳态
稳态
稳态
(b)
无过渡过程
图示电路换路后的KVL方程为
Ri (t ) uC (t ) U S , t 0
式中 代入上式,得
由换路定律得 iL (0 ) iL (0 ) 1.2A
uC (0 ) uC (0 ) 7.2V
1 1 12V ( )u1 (0 ) i L (0 ) 4 2 4 uL (0 ) u1 (0 ) uC (0 ) 4.8V 根据KVL和KCL求得 u1 (0 ) 2.4V uC ( 0 ) iC (0 ) iL (0 ) i2 (0 ) iL (0 ) 0 6
uC
iC
U0
U0 R
t
t
O
O
(a)
(b)
uC 和 iC 的变化曲线
可见uC和iC的衰减速率取决于RC之积 。令
RC
t
uC(t) 0 U0 对放电时间的影响
时间常数 (单位s)

2
3
4
5
0.007U0
… …

0
0.368U0 0.135U0 0.05U0 0.018U0
对放电时间的影响——经过 35 的时间,放电基本结束。
本章目次
1 动态电路的暂态过程 2 电路量的初值 3 一阶电路的零输入响应 4 阶跃函数和冲激函数
6 一阶电路的全响应 7 求一阶电路暂态过程解的三要素公式 8 卷积积分 9 二阶电路的暂态过程
5 一阶电路的零状态响应
10 状态变量分析法
10.1
动态电路的暂态过程
基本要求:了解动态电路暂态过程及时域分析的基本概念。
电阻消耗功率越小
例题
10.2
S (t 0 )
uk R2

图示电路,已知US=35V,R1=5,R1=5k, L=0.4H。t<0时电路处于直流稳态。 t=0时开关断 US 开。求t>0时的电流iL及开关两端电压uk 。

R1 iL
u2
L
iL的初始值及时间常数分别为
iL (0 ) iL (0 ) US 7A R1

t O 1 2 3
不同 值对应的 u C 变化规律
1 2 1 2 1 We (0 ) CuC (0 ) CuC (0 ) CU 02 2 2 2 电容的原始储能
2 RL电路的零输入响应
KVL方程
I0
R
uR
iL

iL
di uL uR L L RiL 0 dt 特征方程
1单位阶跃函数
S (t 0 )
R
2
US
1
R u
(a)
等效为
C
iC
uC
C
u U S ( t )
(c)
u(t)的波形
u (t )
(t)
若幅值为1
单位阶跃函数
1 O t
US
(d)
O
(b)
t
阶跃函数
0 (t ) 1
(t 0) (t 0)
2单位脉冲函数
(t t 0 )
u L (0 )

iC (0 )
L
iL
iL (0 )
uC (0 )
12 V
C
i2
uC

12V 2
u1 (0 ) 6

i2 (0 )

(a)
(b)
开关在接通之前,电路是直流稳态。于是求得 12V iL (0 ) 1.2A uC (0 ) 6 iL (0 ) 7.2V (4 6)
t ( )d (t ) t ( t1 )d (t t1 )
d (t ) (t ) (t ) dt (t t ) d (t t ) (t t ) 1 1 1 dt
时间常数的理解 C越大
2 wC CuC / 2
越大

R越大
2 p uR / R
iC
R
C
uR
uC

电容储能越多 放电时间越长
电阻消耗功率越小
RC电路的零输入响应
uC
放电过程中的能量传递 电阻所消耗的能量
U0
0.368U 0
t

0
U 0 RC 2 1 2 p R (t )dt iC (t ) Rdt ( e ) Rdt CU 02 0 0 R 2
10.5
一阶电路的零状态响应
基本要求:掌握一阶电路的零状态响应的计算;理解强制分量与自由分量、稳态分 量与暂态分量的含义;掌握单位阶跃特性与单位冲激特性的计算及其相互关系。
电路中储能元件的原始储能为零[即uC(0+)=0,iL(0+)=0],仅由独立电 源作用引起的响应称为零状态响应(zero-state response)。 uR

于是电路将成为电阻电路,可用分析直流电路的各种方法来求解。
例题
10.1
图(a)所示电路,在t<0时处于稳态, t=0时开关接通。求初始值iL(0+) 、 uC(0+) 、 u1(0+) 、 uL(0+)及 iC(0+) 。
4
uL
S (t 0 ) 6 2 u1

iC

4

du (t ) i (t ) C C dt duC RC uC U S dt
US
t0
R
i
C
uC
RC充电电路
初始值u(0+)、i(0+) 、q(0+) 、 (0+)
换路之后,电路量将从其初始值开始变动。
时域分析法(time domain analysis) 以时间为主变量列写电路的微分方程并确定初始条件,通过求解微分方

L L 8 10 5 s R R1 R2
断开含电感的电路 时,开关可能承受 很高的电压。
根据 再由KVL求得
iL (t ) iL (0 )et / I 0et / (t 0)
i L i L (0 ) e
t /

7e
1.25104 t
A
(t 0)
pt
Ae
t /
iL (t ) iL (0 )e t / I 0e t /
(t 0)
L R 时间常数(单位:s)

u L Ri L L
diL RI 0e t / dt
(t 0)
iL (t ) iL (0 )e
t /
I 0e
iL
t0 t 0
4.单位冲激函数的性质
(t ) (t ) (t t1 ) (t1 t )
f (t ) (t )dt f (0) f (t ) (t t1 )dt f (t1 )
f (t ) (t ) f (0) (t ) f (t ) (t t1 ) f (t1 ) (t t1 )
uR
R
iC
C
du u R uC RiC uC RC C uC 0 dt
特征方程
RCp 1 0
uC

RC电路的零输入响应
特征根
p 1 RC
t uC duC U 0 RC iC C e R dt R
(t 0)
通解
uC Ae Ae
t /
(t 0)
diL uL RiL L RI 0 et / (t 0) dt
uL
I0
O
t
O
(a)
RI 0
t
(b)
换路时电感两 端可能出现很 高的瞬间电压
iL 和 uL 的变化曲线

=L/R
L越大
2 wL LiL / 2
越大
R越小
2 p Ri L
电感储能越多 放电时间越长
4 1.25104 t
uk U S u2 U S R2iL (35 3.5 10 e
t0+时,
)V (t 0)
uk (0 ) (35 3.5 104 )V 3.5 104 V
10.4
阶跃函数和冲激函数
基本要求:掌握单位阶跃函数与单位冲激函数的定义及其相互关系。
Lp R 0
S (t 0 )
L
uL
t>0
R
L
uL
特征根
R p L
(a) (b) RL电路的零输入响应 换路定律
i L (0 ) i L (0 ) I 0
iL (0 ) Ae 0 A I 0
R t L
通解
iL (t ) Ae Ae
程获得电压、电流的时间函数(变化规律)。
10.2
电路量的初始值
基本要求:熟练计算电路量的初始值。
1 电容电压uC和电感电流iL初始值的确定 设在线性电容上电压和电流参考方向相同,则有
q(t ) CuC (t ) iC ( )d
相关文档
最新文档