初中几何题解题技巧(带例题)
中考数学解题技巧如何利用三角形的相似性解决几何题

中考数学解题技巧如何利用三角形的相似性解决几何题几何学是数学学科中的一项重要内容,也是中考数学的核心考点。
在解决几何题时,灵活应用数学知识和解题技巧可以帮助我们高效、准确地解决问题。
本文将重点介绍如何利用三角形的相似性解决中考数学中的几何题。
一、相似三角形的判定在几何题中,常常需要判断两个三角形是否是相似的。
判定两个三角形相似的条件有三种常见方法:AAA判定、AAA'判定和AA判定。
1. AAA判定:如果两个三角形的三个内角分别对应相等,则这两个三角形是相似的。
2. AAA'判定:如果两个三角形的两个内角对应相等,并且两个三角形的对边成比例,则这两个三角形是相似的。
3. AA判定:如果两个三角形的两个角分别对应相等,则这两个三角形是相似的。
根据相似三角形的判定条件,我们可以通过观察题目中的条件来判断是否可以应用相似性来解决问题。
二、利用相似三角形解决几何题的步骤1. 判断相似三角形:首先,我们需要观察题目给出的条件,判断是否能确定两个或多个三角形是相似的。
如果可以确定是相似三角形,那么我们就可以使用相似三角形的性质来推导解决问题。
2. 建立比例关系:在判断出两个相似三角形后,我们可以利用对应边的比例关系来建立等式或者不等式。
例如,假设两个相似三角形的对应边分别为a、b、c和a'、b'、c',那么可以得到以下等式或者不等式:a/a' = b/b' = c/c'。
3. 运用性质解决问题:通过建立的比例关系,我们可以利用相似三角形的性质解决问题。
例如,已知一个直角三角形ABC,其中∠A=90°,BC是斜边,AD是高,D在BC上,要求证明AD²=BD×CD。
我们可以利用相似三角形的性质,观察到∠BDA和∠BDC都与∠C相似,从而得到∠BDA∼∠BDC。
然后利用“相似三角形的对应边成比例”这一性质,我们就可以通过建立等式 BD/AD = AD/CD 来解决问题。
(完整版)解析几何大题的解题技巧

目录解析几何大题的解题技巧(只包括椭圆和抛物线) (1)一、设点或直线 (1)二、转化条件 (1)(1)求弦长 (2)(2)求面积 (2)(3)分式取值判断 (2)(4)点差法的使用 (4)四、能力要求 (6)五、补充知识 (6)关于直线 (6)关于椭圆: (7)例题 (7)解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线———————————————一、设点或直线做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。
直线与曲线的两个交点一般可以设为等。
对于椭圆上的唯一的动点,还可以设为。
在抛物线上的点,也可以设为。
◎还要注意的是,很多点的坐标都是设而不求的。
对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。
如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。
一般题目中涉及到唯一动直线时才可以设直线的参数方程。
如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。
(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次项,所以直线设为或x=my+n联立起来更方便。
二、转化条件有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。
对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。
下面列出了一些转化工具所能转化的条件。
向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1(使用斜率转化一定不要忘了单独讨论斜率不存在的情况!)几何:相似三角形(依据相似列比例式)、等腰直角三角形(构造全等)有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单,三思而后行。
初中几何经典例题及解题技巧

初中几何证明技巧及经典试题证明两线段相等1. 两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
*12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
证明两个角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
*9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等。
证明两条直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
*10.在圆中平分弦(或弧)的直径垂直于弦。
初中几何题解题技巧带例题

初中几何题解题技巧带例题Newly compiled on November 23, 2020初中几何题解题技巧在小学阶段,我们学过许多关于几何图形面积计算的知识。
在计算几何图形面积时,除了能正确运用面积计算公式外,还需要掌握一定的解题技巧。
一、割补法割补法是指将一些不规则的、分散的几何图形经过分割、移补,拼成一个规则的几何图形,从而求出面积的方法。
例1如图1,已知正方形的边长是6厘米,求阴影部分的面积。
分析与解:如图2所示,连接正方形的对角线,可以将阴影I分割成I1和I2两部分,然后将阴影I1移至空白I1′处,将阴影I2移至空白I2′处,这样阴影部分就拼成了一个等腰直角三角形。
要求阴影部分的面积,只要求出这个等腰直角三角形的面积即可,列式为:6×6÷2=18(平方厘米)。
练一练1:如图3,已知AB=BC=4厘米,求阴影部分的面积。
二、平移法平移法是指把一些不规则的几何图形沿水平或垂直方向移动,拼成一个规则的几何图形,从而求出面积的方法。
例2如图4,已知长方形的长是12厘米,宽是6厘米,求阴影部分的面积。
分析与解:如图5所示,连结长方形两条长的中点,把阴影部分分成左右两部分,然后把左边的阴影部分向右平移至空白处,这样阴影部分就转化成了一个边长为6厘米的正方形。
要求阴影部分的面积,只要求出这个正方形的面积,列式为:6×6=36(平方厘米)。
练一练2:如图6,求阴影部分的面积(单位:分米)。
三、旋转法旋转法是指把一些几何图形绕某一点沿顺时针(或逆时针)方向转动一定的角度,使分散的、不规则的几何图形合并成一个规则的几何图形,从而求出面积的方法。
例3如图7,已知ABC是等腰直角三角形,斜边AB=20厘米,D是AB的中点,扇形DAE和DBF都是圆的,求阴影部分的面积。
分析与解:如图8所示,把扇形DBF绕D点沿顺时针方向旋转180°后,扇形DBF与扇形DAE就合并成了一个半径为10厘米的半圆,两个空白三角形也合并成了一个直角边为10厘米的等腰直角三角形,要求阴影部分的面积,只要用半圆的面积减去空白部分的面积即可,列式为:×(20÷2)2÷2-(20÷2)2÷2=107(平方厘米)。
初中几何题解题技巧(带例题)

练一练 7: 如图 19 所示,已知平行四边形 EFGH 的底是 8 厘米,高是 6 厘 米,阴影部分的面积是 16 平方厘米,求四边形 ABCD 的面积。
八、两次求差法 两次求差法是指根据图形之间相容相斥的原理,通过两次求差求出面积的方 法。 例 8 如图 20,长方形 ABCD 的长是 6 厘米,宽是 4 厘米,求阴影部分的面积。
分析与解:通过作辅助线,可以将三角形 ABC 平均分成 16 个完全一样的小 三角形(如图 11 所示),阴影部分为其中 3 个小三角形,即阴影部分的面积占 三角形 ABC 的面积的。阴影部分的面积为:48×=9(平方分米)。
练一练 4: 如图 12 所示,长方形 ABCD 的长是 10 厘米,宽是 6 厘米,E、F 分别是 AB 和 AD 的中点,求阴影部分的面积。
七、等量代换法 等量代换法是指根据题目中图形之间面积相等的关系,以此代彼,相互替换, 从而求出面积的方法。 例 7 如图 18,长方形 ABCD 的面积为 1500 平方厘米,阴影部分的面积为 880 平方厘米,求四边形 EFGO 的面积。
分析与解:在长方形 ABCD 中,△ABF 与△DBF 同底(即 BF 的长)、等高(即 长方形的宽),所以 S△ABF= S△DBF 。若从这两个三角形中同时减去△BEF, 则剩下的图形面积相等,即:S△ABE=S△DEF 。这样 S 阴影=S 四边形 EFGO+
分析与解:通过仔细观察图形,我们可以发现:在大圆中,与阴影Ⅰ、阴影 Ⅱ、阴影Ⅲ面积相等的图形均有 4 个,其中阴影 1 个,空白 3 个。要求阴影部分 的面积,就相当于把大圆的面积平均分成 4 份,求其中一份的面积,列式为: 3.ቤተ መጻሕፍቲ ባይዱ4×(20÷2)2÷4=78.5(平方厘米)。
初中数学代数、几何解题技巧

怎样用好题目中的条件示意有一类题目,我们在解前方几小题时,其解题思路和方法常常对解后边问题起着很好的示意作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参照。
【例 1】直线与x轴、y轴分别交于B、 A 两点,如图1。
图 1(1)求 B、 A 两点的坐标;(2)把△ AOB以直线 AB为轴翻折,点 O落在平面上的点 C处,以 BC为一边作等边△ BCD。
求 D点的坐标。
分析:( 1)简单求得,A(0,1)。
( 2)如图 2,图 2∵, A( 0, 1),∴ OB=,OA=1。
∴在 Rt△AOB中,简单求得∠ OBA=30°∵把△ AOB以直线 AB为轴翻折,∴∠ OBC=2∠OBA=60°, BO=BC。
∴△ OBC是等边三角形以 BC为一边作等边△ BCD,则 D 的落点有两种情况,可分别求得 D 的坐标为(0, 0),。
反省:在求得第(1)小题中B、 A 两点的坐标分别为B(,0),A(0,1),本质上示意着 Rt△AOB中, OA=1, OB=,即示意着∠ OBA=30°,为解第(2)小题做了很好的铺垫。
【例 2】直线与x轴、y轴分别交于A、 B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠ BAC=90°,且点P( 1, a)为坐标系中的一个动点,如图 3。
图 3( 1)求三解形ABC的面积。
( 2)证明无论 a 取任何实数,三角形BOP的面积是一个常数;( 3)要使得△ ABC 和△ ABP 的面积相等,务实数 a 的值。
分析:( 1)简单求得: A(,0),B(0,1),∴。
( 2)如图 4,连结 OP、BP,过点 P 作 PD垂直于 y 轴,垂足为D,则三角形BOP的面积为,故无论a取任何实数,三角形BOP的面积是一个常数。
图 4( 3)如图 4,①当点 P 在第四象限时由第(2)小题中的结果:,和第( 3)小题的条件可得:∴,∵,∴,∴。
(word完整版)八年级数学几何证明题技巧(含答案),推荐文档

D 几何证明题的技巧1.几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例1. 已知:如图1 所示,∆ABC 中,∠C = 90︒,AC =BC,AD =DB,AE =CF 。
求证:DE=DF AEC F B图1分析:由∆ABC 是等腰直角三角形可知,∠A =∠B = 45︒,由D 是AB 中点,可考虑连结CD,易得CD =AD ,∠DCF = 45︒。
从而不难发现∆DCF ≅∆DAE证明:连结CDAC =BC∴∠A =∠B∠ACB = 90︒,AD =DB∴CD =BD =AD,∠DCB =∠B =∠AAE =CF,∠A =∠DCB,AD =CD∴∆ADE ≅∆CDF∴DE =DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中EF2 3 1线或高是常用的辅助线。
初中数学知识归纳几何题的解题思路与方法

初中数学知识归纳几何题的解题思路与方法几何题在初中数学中占据着重要的地位,它不仅考察了学生对几何概念的理解,还需要运用一些解题技巧和方法。
本文将从几何题的解题思路和方法两个方面进行阐述,希望能够帮助读者更好地理解和应对几何题。
一、几何题的解题思路解决几何题首先要理解题意,弄清楚题目中给出的条件和要求。
在这个过程中,我们需要运用数学知识进行分析和归纳。
下面是一些常见的解题思路:1. 图形识别法:通过观察题目中给出的图形,识别出可能与之相关的几何性质。
例如,如果题目中出现了平行线、垂直线、等腰三角形等关键词,可以进一步研究它们的性质,从而找到解题的线索。
2. 形状比较法:有时候题目中给出了多个图形,要求我们比较它们的大小、面积或者其他性质。
这时,我们可以通过计算或者直观的对比来找出它们之间的关系。
3. 数字推理法:一些几何题目中给出了具体的数字或者比例关系,我们可以根据这些信息进行推理。
例如,通过求解比例、利用勾股定理等方法来计算出未知的长度、角度等。
4. 分类讨论法:有些几何题目可能存在多种条件或者情况,我们可以根据题目中的关键信息进行分类讨论。
通过分别解决每一种情况,再综合得出最后的结论。
二、几何题的解题方法在掌握了解题思路后,我们还需要掌握一些具体的解题方法,这些方法是根据几何性质和常见的解题模式总结得出的。
下面是一些常见的解题方法:1. 几何性质运用:几何题目中常常涉及到点、线、面的性质。
因此,我们需要牢记一些常见的几何性质,如平行线的性质、垂直线的性质、等腰三角形的性质等。
这些性质在解题过程中起着重要的作用,可以帮助我们找到解题的线索。
2. 分割图形法:有时候题目中给出的图形比较复杂,我们可以通过分割图形来简化问题。
将复杂的图形分割为若干简单的几何形状,然后对每个简单的几何形状进行分析和运算,最后再综合得出最终的结论。
3. 利用相似性:在一些几何题中,图形之间存在相似性。
我们可以通过相似三角形的性质来求解未知的长度、角度等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中几何题解题技巧
(带例题)
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
初中几何题解题技巧
在小学阶段,我们学过许多关于几何图形面积计算的知识。
在计算几何图形面积时,除了能正确运用面积计算公式外,还需要掌握一定的解题技巧。
一、割补法
割补法是指将一些不规则的、分散的几何图形经过分割、移补,拼成一个规则的几何图形,从而求出面积的方法。
例1如图1,已知正方形的边长是6厘米,求阴影部分的面积。
分析与解:如图2所示,连接正方形的对角线,可以将阴影I分割成I1和I2两部分,然后将阴影I1移至空白I1′处,将阴影I2移至空白I2′处,这样阴影部分就拼成了一个等腰直角三角形。
要求阴影部分的面积,只要求出这个等腰直角三角形的面积即可,列式为:6×6÷2=18(平方厘米)。
练一练1:如图3,已知AB=BC=4厘米,求阴影部分的面积。
二、平移法
平移法是指把一些不规则的几何图形沿水平或垂直方向移动,拼成一个规则的几何图形,从而求出面积的方法。
例2如图4,已知长方形的长是12厘米,宽是6厘米,求阴影部分的面积。
分析与解:如图5所示,连结长方形两条长的中点,把阴影部分分成左右两部分,然后把左边的阴影部分向右平移至空白处,这样阴影部分就转化成了一个边长为6厘米的正方形。
要求阴影部分的面积,只要求出这个正方形的面积,列式为:6×6=36(平方厘米)。
练一练2:如图6,求阴影部分的面积(单位:分米)。
三、旋转法
旋转法是指把一些几何图形绕某一点沿顺时针(或逆时针)方向转动一定的角度,使分散的、不规则的几何图形合并成一个规则的几何图形,从而求出面积的方法。
例3如图7,已知ABC是等腰直角三角形,斜边AB=20厘米,D是AB的中点,扇形DAE和DBF都是圆的,求阴影部分的面积。
分析与解:如图8所示,把扇形DBF绕D点沿顺时针方向旋转180°后,扇形DBF与扇形DAE就合并成了一个半径为10厘米的半圆,两个空白三角形也合并成了一个直角边为10厘米的等腰直角三角形,要求阴影部分的面积,只要用半圆的面积减去空白部分的面积即可,列式为:3.14×(20÷2)2÷2-
(20÷2)2÷2=107(平方厘米)。
练一练3:如图9,在直角三角形ABC中有一个正方形BDEF,E点正好落在直角三角形的斜边AC上,已知AE=8厘米,EC=12厘米,求图中阴影部分的面积。
四、等分法
等分法是指把一个几何图形平均分成若干个完全相同的小图形,然后根据大图形与小图形面积之间的倍数关系进行求解的方法。
例4如图10,三角形ABC的面积是48平方分米,点D、E、F与G、H、I 分别是三角形ABC与三角形DEF各边的中点。
求阴影部分的面积。
分析与解:通过作辅助线,可以将三角形ABC平均分成16个完全一样的小三角形(如图11所示),阴影部分为其中3个小三角形,即阴影部分的面积占三角形ABC的面积的。
阴影部分的面积为:48×=9(平方分米)。
练一练4:如图12所示,长方形ABCD的长是10厘米,宽是6厘米,E、F分别是AB和AD的中点,求阴影部分的面积。
五、轴对称法
轴对称法是指根据轴对称图形的特点,在原图上再构造一个完全相同的图形,使原图的面积扩大2倍,然后通过计算新图形的面积来求出原图面积的方法。
例5如图13,在扇形OAB中,OA、OB的长均为6厘米,∠AOB=45°,求阴影部分的面积。
分析与解:如图14所示,根据轴对称图形的特点,以OB边所在的直线为对称轴,作一个与扇形OAB完全一样的扇形OA′B,这样两个扇形就组成了一个圆。
阴影部分的面积就相当于用圆的面积减去等腰直角三角形AOA′的面积,然后再除以2,列式为:(3.14×62×-6×6÷2)÷2=5.13(平方厘米)。
练一练5:如图15所示,已知等腰直角三角形ABC的斜边AC长是8厘米,求这个三角形的面积。
六、整体分析法
整体分析法是指不注重对问题局部细节的考虑,而着眼于把局部放在一个整体中,通过观察、分析,寻求局部与整体之间的联系,从而找到解决问题的方法。
例6如图16,已知大圆的直径是20厘米,求阴影部分的面积。
分析与解:通过仔细观察图形,我们可以发现:在大圆中,与阴影Ⅰ、阴影Ⅱ、阴影Ⅲ面积相等的图形均有4个,其中阴影1个,空白3个。
要求阴影部分的面积,就相当于把大圆的面积平均分成4份,求其中一份的面积,列式为:3.14×(20÷2)2÷4=78.5(平方厘米)。
练一练6:如图17所示,已知大圆的直径是16厘米,求阴影部分的面积。
七、等量代换法
等量代换法是指根据题目中图形之间面积相等的关系,以此代彼,相互替换,从而求出面积的方法。
例7如图18,长方形ABCD的面积为1500平方厘米,阴影部分的面积为
880平方厘米,求四边形EFGO的面积。
分析与解:在长方形ABCD中,△ABF与△DBF同底(即BF的长)、等高(即长方形的宽),所以S△ABF= S△DBF 。
若从这两个三角形中同时减去
△BEF,则剩下的图形面积相等,即:S△ABE=S△DEF 。
这样S阴影=S四边形EFGO+
S△ACD ,则S四边形EFGO=S阴影-S△ACD 。
四边形EFGO的面积为:880-1500÷2=130(平方厘米)。
练一练7:如图19所示,已知平行四边形EFGH的底是8厘米,高是6厘米,阴影部分的面积是16平方厘米,求四边形ABCD的面积。
八、两次求差法
两次求差法是指根据图形之间相容相斥的原理,通过两次求差求出面积的方法。
例8如图20,长方形ABCD的长是6厘米,宽是4厘米,求阴影部分的面积。
分析与解:从图中可以看出:阴影部分面积等于扇形ADE的面积减去空白部分AFCD的面积。
AFCD是一个不规则的图形,它的面积无法直接求出,可以用长方形ABCD的面积减去扇形ABF的面积得出。
空白部分AFCD的面积为:6×4-3.14×42×=11.44(平方厘米),阴影部分的面积为:3.14×62×-11.44=16.82(平方厘米)。
练一练8:如图21所示,已知正方形ABCD的边长是8分米,求阴影部分的面积。
九、比例法
比例法是指根据几何图形中相关联的量之间的正、反比例关系求出面积的方法。
例9如图22,在梯形ABCD中,BC=2AD,BF=2EF,E是CD的中点。
已知梯形ABCD的面积是72平方厘米,求阴影部分的面积。
分析与解:在梯形ABCD中,三角形BCD与三角形ABD的高相等,底BC=2AD,所以三角形BCD与三角形ABD的面积比为2∶1,三角形BCD的面积为72÷(2+1)×2=48(平方厘米)。
由于E是CD的中点,三角形BDE与三角形BCE的面积相等,三角形BDE的面积为48÷2=24(平方厘米)。
又因为三角形BDF与三角形EDF的高相等,底BF=2EF,所以三角形BDF与三角形EDF的面积比为2∶1,三角形BDF的面积为24÷(2+1)×2=16(平方厘米)。
练一练9:如图23所示,平行四边形ABCD的面积是96平方分米,BE=2DE,AF=3DF,求三角形DEF的面积。
十、方程法
方程法是指通过设未知数列方程的方法,求出某条线段的值,然后再求出面积的方法。
例10如图24,在直角三角形ABC中有一个正方形BDEF,已知AB=3厘
米,BC=4厘米,AC=5厘米,EG垂直于AC,且EG=0.3厘米。
求正方形BDEF的面积。
分析与解:如图25,连接AE、BE、CE。
要求正方形BDEF的面积,一般要先求出其边长,根据题目中的条件,我们可以采用列方程的方法求出正方形边长。
设正方形BDEF的边长为x厘米,根据S△ABE+S△BCE+S△ACE=
S△ABC,可列方程为:3x×+4x×+5×0.3×=3×4×,解:x=1.5。
正方形BDEF的面积为:1.5×1.5=2.25(平方厘米)。
练一练10:如图26所示,长方形ABCD的长是8分米,宽是6分米,BE =2AE,三角形ECG的面积18平方分米,OF的长是多少分米。