九年级下北师大版-数学练习册答案

合集下载

北师大版九年级数学下册 第三章3 垂径定理(含答案)

北师大版九年级数学下册 第三章3  垂径定理(含答案)

北师大版九年级数学下第三章3 垂径定理(含答案)一、选择题1.如图1,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,则下列结论不一定成立的是( )图1A .CM =DMB.CB ︵=DB ︵ C .∠ACD =∠ADCD .OM =MB2.如图2所示,⊙O 的半径为5,AB 为弦,半径OC ⊥AB ,垂足为E ,若OE =3,则AB 的长是( )图2A .4B .6C .8D .103.一块圆形宣传标志牌如图3所示,点A ,B ,C 在⊙O 上,CD 垂直平分AB 于点D.现测得AB =8 dm ,DC =2 dm ,则圆形标志牌的半径为( )图3A .6 dmB .5 dmC .4 dmD .3 dm4.如图4,⊙O 的半径OA =6,以点A 为圆心,OA 长为半径的弧交⊙O 于点B ,C ,则BC 的长为( )图4A .6 3B .6 2C .3 3D .3 25.如图5,⊙O 的半径为10,M 是弦AB 的中点,且OM =6,则⊙O 中弦AB 的长为( )图5A .8B .10C .12D .166.如图6,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,以点C 为圆心,CA 长为半径的圆与AB 交于点D ,则AD 的长为( )图6A.95B.215C.185D.527.已知⊙O 的半径为15,弦AB 的长为18,点P 在弦AB 上且OP =13,则AP 的长为( ) A .4 B .14C .4或14D .6或14二、填空题8.过⊙O 内一点M 的最长的弦长为10 cm ,最短的弦长为8 cm ,那么OM 的长为________.9.如图7所示,AB 是⊙O 的直径,弦CD ⊥AB 于点H ,∠A =30°,CD =2 3,则⊙O 的半径是________.图710.如图8,水平放置的圆柱形排水管道的截面直径是1 m ,其中水面的宽AB 为0.8 m ,则排水管内水的深度为________m.图811.如图9所示,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为________.链接听P31例1归纳总结图912.如图10,半径为5的⊙P与y轴交于点M(0,4),N(0,-2),则点P的坐标为________.图10三、解答题13.如图11,⊙O的直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD的长.图1114.如图12,已知O是∠EPF的平分线上的一点,以点O为圆心的圆和∠EPF的两边分别交于点A,B和C,D.求证:(1)∠OBA=∠OCD;(2)AB=CD.图1215.如图13,某地有一座圆弧形拱桥,桥下水面宽度AB为7.2 m,拱高CD为2.4 m.(1)求拱桥的半径;(2)现有一艘宽3 m,船舱顶部为矩形并高出水面2 m的货船要经过这里,此货船能顺利通过这座拱桥吗?图13附加题探索存在题如图14,在半径为5的扇形AOB中,∠AOB=90°,C是弧AB上的一个动点(不与点A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E.(1)当BC=6时,求线段OD的长.(2)在△DOE中,是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.图14参考答案1.[答案] D2.[解析] C 连接OA ,如图. ∵OC ⊥AB ,OA =5,OE =3,∴AE =OA 2-OE 2=52-32=4,∴AB =2AE =8.故选C.3.[解析] B 如图,连接OD ,OB ,则O ,C ,D 三点在一条直线上.因为CD 垂直平分AB ,AB =8 dm ,所以BD =4 dm.设⊙O 的半径为r dm ,则OD =(r -2)dm ,由勾股定理得42+(r -2)2=r 2,解得r =5.故选B.4.[解析] A 设OA 与BC 相交于点D ,连接AB ,OB .∵AB =OA =OB =6,∴△OAB 是等边三角形.又根据垂径定理可得,OA 垂直平分BC ,BC =2BD ,BC ⊥OA ,∴OD =AD =3.在Rt △BOD 中,由勾股定理得BD =62-32=3 3,∴BC =6 3.故选A. 5.[答案] D6.[解析] C ∵在Rt △ABC 中,∠ACB =90°,AC =3,BC =4, ∴AB =AC 2+BC 2=32+42=5. 过点C 作CM ⊥AB 于点M , 则M 为AD 的中点.∵S △ABC =12AC ·BC =12AB ·CM ,且AC =3,BC =4,AB =5,∴CM =125.在Rt △ACM 中,根据勾股定理,得AC 2=AM 2+CM 2,即9=AM 2+(125)2,解得AM =95,∴AD =2AM =185.故选C.7.[解析] C 如图,过点O 作OC ⊥AB 于点C ,∴AC =12AB =9,则OC =OA 2-AC 2=12.又∵OP =13,∴PC =OP 2-OC 2=5. 当点P 在线段AC 上时,AP =9-5=4; 当点P 在线段BC 上时,AP =9+5=14. 故选C. 8.[答案] 3 cm[解析] 由题意作图,如图所示,AB 为过点M 的最长的弦,CD 为过点M 的最短的弦,CD ⊥AB ,连接OD , 则OM =OD 2-DM 2=52-42=3(cm).9.[答案] 2[解析] 如图,连接OC ,则OA =OC ,∴∠A =∠ACO =30°,∴∠COH =60°. ∵OB ⊥CD ,CD =2 3,∴CH =3, ∴OH =1,∴OC =2. 10.[答案] 0.8[解析] 如图,过点O 作OC ⊥AB ,垂足为C ,交⊙O 于点D ,E ,连接OA .由题意知,OA =0.5 m ,AB =0.8 m. ∵OC ⊥AB ,∴AC =BC =0.4 m.在Rt △AOC 中,OA 2=AC 2+OC 2, ∴OC =0.3 m ,∴CE =0.3+0.5=0.8(m). 故答案为0.8. 11.[答案] 2 3[解析] 过点O 作OD ⊥AB 于点D ,连接OA . ∵OD ⊥AB , ∴AD =BD .由折叠的性质可知OD =12OA =1.在Rt △OAD 中,AD =OA 2-OD 2=22-12=3, ∴AB =2AD =2 3. 故答案为2 3. 12.[答案] (-4,1)13.解:如图,过点O 作OF ⊥CD ,垂足为F ,连接OD ,∴F 为CD 的中点,即CF =DF . ∵AE =2,EB =6, ∴AB =AE +EB =2+6=8, ∴OA =4,∴OE =OA -AE =4-2=2. 在Rt △OEF 中,∵∠DEB =30°, ∴OF =12OE =1.在Rt △ODF 中,OF =1,OD =4,根据勾股定理,得DF =OD 2-OF 2=15, 则CD =2DF =2 15.14.证明:(1)过点O 作OM ⊥AB ,ON ⊥CD ,垂足分别为M ,N . ∵PO 平分∠EPF ,OM ⊥AB ,ON ⊥CD ,∴∠OMB =∠ONC =90°,OM =ON . 在Rt △OMB 和Rt △ONC 中, ∵OB =OC ,OM =ON , ∴Rt △OMB ≌Rt △ONC (HL), ∴∠OBA =∠OCD .(2)由(1)得Rt △OMB ≌Rt △ONC , ∴BM =CN .∵OM ⊥AB ,ON ⊥CD , ∴AB =2BM ,CD =2CN , ∴AB =CD .15.解:(1)如图,连接OB . ∵OC ⊥AB ,∴D 为AB 的中点. ∵AB =7.2 m ,∴BD =12AB =3.6 m.设OB =OC =r m ,则OD =(r -2.4)m. 在Rt △BOD 中,根据勾股定理,得 r 2=(r -2.4)2+3.62,解得r =3.9. ∴拱桥的半径为3.9 m.(2)令货船船舱顶部所在直线分别与圆弧交于点M ,N (N 在M 的右边),连接ON ,设MN 交CO 于点E . ∵CD =2.4 m ,船舱顶部为矩形并高出水面2 m , ∴CE =2.4-2=0.4(m),∴OE =OC -CE =3.9-0.4=3.5(m).在Rt △OEN 中,根据勾股定理,得EN =ON 2-OE 2= 3.92-3.52= 2.96≈1.72(m), ∴MN =2EN ≈3.44 m >3 m , ∴此货船能顺利通过这座拱桥. 附加题解:(1)∵OD ⊥BC ,∴BD =12BC =12×6=3.在Rt △ODB 中,∵OB =5,BD =3, ∴OD =OB 2-BD 2=4,即线段OD 的长为4.(2)存在,DE 的长度保持不变. 连接AB ,如图.∵∠AOB =90°,OA =OB =5, ∴AB =OB 2+OA 2=5 2. ∵OD ⊥BC ,OE ⊥AC ,∴D ,E 分别是线段BC ,AC 的中点, ∴DE 是△CBA 的中位线, ∴DE =12AB =5 22.。

北师大版初中九年级下学期数学期末试题及答案

北师大版初中九年级下学期数学期末试题及答案

250 元,水果进价是5 元/kg,按规定售价不得高于12 元/kg,
也不得低于 7 元/kg,调查发现水果的日均销量 y(
kg)与每
千克售价 x(元)之间满足一次函数关系,其图象如图所示 .
(
1)求日均销量 y(
kg)关 于 每 千 克 售 价 x(元)的 函 数 表 达
式,并写出自变量的取值范围;
A.
y=x-2

C.
y=
x

B.
y=x +2x-1

D.
y= 2
x

,则α 的度数为

已知α 为锐角,且 s
2.
i
n(
α-20
°)=
A.
20
°
(B )
B.
40
°
C.
60
°
(D )
D.
80
°
如图,线段CD 是 ☉O 的直径,
若 AB 的
3.
CD ⊥ 弦 AB 于点E .
长为 16,
OE 的长为 6,则 ☉O 的半径是
14.
°,
C 为 OB 的 中 点,以 点 C
为圆心,以 OC 的长为半径画半圆交 OA 于点 D .
若 OB =2,则
阴影部分的面积为 .
第 14 题图
第 15 题图
如图,已知抛物线 y=x2-2x 与直线y=-x+2 交于 A ,
15.
B两
点,
M 是直线 AB 上的一个动点,将点 M 向左平移 4 个单位长
三、解答题(本大题共 8 个小题,共 75 分)

(
16.
8 分)计算:
2-1+2c

北师大版九年级数学下册《第二章二次函数—有关二次函数的最值问题》练习题(附答案)

北师大版九年级数学下册《第二章二次函数—有关二次函数的最值问题》练习题(附答案)

北师大版九年级数学下册《第二章二次函数—有关二次函数的最值问题》练习题(附答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题)1.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或2.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,03.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或34.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或25.如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形P ABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm26.已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣67.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC上方的抛物线上的一个动点,连接DC,DB,则△BCD的面积的最大值是()A.7 B.7.5 C.8D.98.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或﹣C.2或﹣D.2或﹣或﹣9.已知二次函数y=mx2+2mx+1(m≠0)在﹣2≤x≤2时有最小值﹣2,则m=()A.3B.﹣3或C.3或﹣D.﹣3或﹣10.已知一个二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,若y3<y2<y4,则y1,y2,y3,y4的最值情况是()A.y3最小,y1最大B.y3最小,y4最大C.y1最小,y4最大D.无法确定二.填空题(共10小题)11.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是.12.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.13.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是.14.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是.15.已知二次函数y=x2﹣2mx+1(m为常数),当自变量x的值满足﹣1≤x≤2时,与其对应的函数值y 的最小值为﹣2,则m的值为.16.当﹣7≤x≤a时,二次函数y=﹣(x+3)2+5恰好有最大值3,则a=.17.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.18.若二次函数y=﹣x2+mx在﹣1≤x≤2时的最大值为3,那么m的值是.19.二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.20.设x≥0,y≥0,且2x+y=6,则μ=x2+2xy+y2﹣3x﹣2y的最小值是.三.解答题(共5小题)21.设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}=,max{0,3}=;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.22.在平面直角坐标系xOy中,抛物线y=ax2+bx+a﹣4(a≠0)的对称轴是直线x=1.(1)求抛物线y=ax2+bx+a﹣4(a≠0)的顶点坐标;(2)当﹣2≤x≤3时,y的最大值是5,求a的值;(3)在(2)的条件下,当t≤x≤t+1时,y的最大值是m,最小值是n,且m﹣n=3,求t的值.23.如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A 为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?24.已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x…01234…y…5212n…(1)表中n的值为;(2)当x为何值时,y有最小值,最小值是多少?(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,且m>2,试比较y1与y2的大小.25.如图,函数y=﹣x2+x+c(﹣2020≤x≤1)的图象记为L1,最大值为M1;函数y=﹣x2+2cx+1(1≤x ≤2020)的图象记为L2,最大值为M2.L1的右端点为A,L2的左端点为B,L1,L2合起来的图形记为L.(1)当c=1时,求M1,M2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A,B重合时,求L上“美点”的个数;(3)若M1,M2的差为,直接写出c的值.参考答案与试题解析一.选择题(共10小题)1.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或解:二次函数的对称轴为直线x=m①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2综上所述,m的值为2或﹣.故选:C.2.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,0解:抛物线的对称轴是直线x=1,则当x=1时,y=1﹣2﹣3=﹣4,是最小值;当x=3时,y=9﹣6﹣3=0是最大值.故选:A.3.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或3解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5解得:h=5或h=1(舍);③若1≤h≤3时,当x=h时,y取得最小值为1,不是5,∴此种情况不符合题意,舍去.综上,h的值为﹣1或5,故选:B.4.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或2解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1故选:D.5.如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形P ABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm2解:在Rt△ABC中,∠C=90°,AB=10cm,BC=8cm,∴AC==6cm.设运动时间为ts(0≤t≤4),则PC=(6﹣t)cm,CQ=2tcm∴S四边形P ABQ=S△ABC﹣S△CPQ=AC•BC﹣PC•CQ=×6×8﹣(6﹣t)×2t=t2﹣6t+24=(t﹣3)2+15.∵1>0,∴当t=3时,四边形P ABQ的面积取最小值,最小值为15cm2.6.已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是直线x=2,且在x<2上y随x的增大而增大.又∵0≤x≤,∴当x=时,y取最大值,y最大=﹣2(﹣2)2+2=﹣2.5.故选:C.7.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC上方的抛物线上的一个动点,连接DC,DB,则△BCD的面积的最大值是()A.7B.7.5C.8D.9解:设抛物线的解析式是y=ax2+bx+c∵抛物线经过A(1,0),B(4,0),C(0,﹣4)三点∴解得,∴y=﹣x2+5x﹣4设过点B(4,0),C(0,﹣4)的直线的解析式为y=kx+m解得,即直线BC的直线解析式为:y=x﹣4设点D的坐标是(x,﹣x2+5x﹣4)∴=﹣2(x﹣2)2+8∴当x=2时,△BCD的面积取得最大值,最大值是8.故选:C.8.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或﹣C.2或﹣D.2或﹣或﹣解:二次函数对称轴为直线x=m①m<﹣2时,x=﹣2取得最大值,﹣(﹣2﹣m)2+m2+1=4解得m=﹣,不合题意,舍去;②﹣2≤m≤1时,x=m取得最大值,m2+1=4,解得m=±∵m=不满足﹣2≤m≤1的范围,∴m=﹣;③m>1时,x=1取得最大值,﹣(1﹣m)2+m2+1=4,解得m=2.综上所述,m=2或﹣时,二次函数有最大值4.故选:C.9.已知二次函数y=mx2+2mx+1(m≠0)在﹣2≤x≤2时有最小值﹣2,则m=()A.3B.﹣3或C.3或﹣D.﹣3或﹣解:∵二次函数y=mx2+2mx+1=m(x+1)2﹣m+1,∴对称轴为直线x=﹣1①m>0,抛物线开口向上,x=﹣1时,有最小值y=﹣m+1=﹣2,解得:m=3;②m<0,抛物线开口向下∵对称轴为直线x=﹣1,在﹣2≤x≤2时有最小值﹣2∴x=2时,有最小值y=4m+4m+1=﹣2,解得:m=﹣;故选:C.10.已知一个二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,若y3<y2<y4,则y1,y2,y3,y4的最值情况是()A.y3最小,y1最大B.y3最小,y4最大C.y1最小,y4最大D.无法确定解:∵二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,且y3<y2<y4,∴抛物线开口向上,对称轴在0和1之间∴P1(﹣3,y1)离对称轴的距离最大,P3(1,y3)离对称轴距离最小∴y3最小,y1最大,故选:A.二.填空题(共10小题)11.若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是s≥9.解:由x+y2=3,得:y2=﹣x+3≥0,∴x≤3代入s=x2+8y2得:s=x2+8y2=x2+8(﹣x+3)=x2﹣8x+24=(x﹣4)2+8当x=3时,s=(3﹣4)2+8=9,∴s≥9;故答案为:s≥9.12.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=9.解:原式可化为y=(x﹣3)2﹣4,可知函数顶点坐标为(3,﹣4)当y=0时,x2﹣6x+5=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.如图:m=﹣4,当x=6时,y=36﹣36+5=5,即M=5.则M﹣m=5﹣(﹣4)=9.故答案为9.13.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是﹣1.5或.解:由二次函数y=x2﹣2mx(m为常数),得到对称轴为直线x=m,抛物线开口向上当m>2时,由题意得:当x=2时,y最小值为﹣2,代入得:4﹣4m=﹣2,即m=1.5<2,不合题意,舍去;当﹣1≤m≤2时,由题意得:当x=m时,y最小值为﹣2,代入得:﹣m2=﹣2,即m=或m=﹣(舍去);当m<﹣1时,由题意得:当x=﹣1时,y最小值为﹣2,代入得:1+2m=﹣2,即m=﹣1.5,综上,m 的值是﹣1.5或,故答案为:﹣1.5或.14.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是1,最大值是9.解:由题意可得:y=2(x+1)2+1,﹣2≤x≤1∵开口向上,∴当x=1时,有最大值:y max=9,当x=﹣1时,y min=1.故答案为1,9.15.已知二次函数y=x2﹣2mx+1(m为常数),当自变量x的值满足﹣1≤x≤2时,与其对应的函数值y 的最小值为﹣2,则m的值为﹣2或.解:由题意可知抛物线的对称轴为x=m,开口方向向上当m≤﹣1时,此时x=﹣1时,y可取得最小值﹣2,∴﹣2=1+2m+1,∴m=﹣2;当﹣1<m<2时,∴此时x=m,y的最小值为﹣2,∴﹣2=m2﹣2m2+1∴m=±,∴m=;当m≥2时,此时x=2时,y的最小值为﹣2,∴﹣2=4﹣4m+1,∴m=不符合题意故答案为:﹣2或.16.当﹣7≤x≤a时,二次函数y=﹣(x+3)2+5恰好有最大值3,则a=﹣5.解:∵y=﹣(x+3)2+5,∴该抛物线的开口方向向下,且顶点坐标是(﹣3,5).∴当x<﹣3时,y随x的增大而增大∴当x=a时,二次函数y=﹣(x+3)2+5恰好有最大值3把y=3代入函数解析式得到3=﹣(x+3)2+5,解得x1=﹣5,x2=﹣1.∴a=﹣5.故答案是:﹣5.17.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为1.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.18.若二次函数y=﹣x2+mx在﹣1≤x≤2时的最大值为3,那么m的值是﹣4或2.解:∵y=﹣x2+mx,∴抛物线开口向下,抛物线的对称轴为x=﹣=∵=①当≤﹣1,即m≤﹣2时,当x=﹣1时,函数最大值为3,∴﹣1﹣m=3解得:m=﹣4;②当≥2,即m≥4时,当x=2时,函数最大值为3,∴﹣4+2m=3解得:m=(舍去).③当﹣1<<2,即﹣2<m<4时,当x=时,函数最大值为3,∴﹣+=3解得m=2或m=﹣2(舍去),综上所述,m=﹣4或m=2故答案为﹣4或2.19.二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=1.解:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3∴a﹣4=﹣3,∴a=1,故答案为1.20.设x≥0,y≥0,且2x+y=6,则μ=x2+2xy+y2﹣3x﹣2y的最小值是0.解:由题意得:x≥0,y=6﹣2x≥0,解得:0≤x≤3.∵μ=x2+2xy+y2﹣3x﹣2y=x2+2x(6﹣2x)+(6﹣2x)2﹣3x﹣2(6﹣2x)=x2﹣11x+24=﹣∴当x≤时,y随x的增大而减小,故当x=3时,μ的最小值为﹣=0.故答案为:0.三.解答题(共5小题)21.设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}=5,max{0,3}=3;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.解:(1)max{5,2}=5,max{0,3}=3.故答案为:5;3.(2)∵max{3x+1,﹣x+1}=﹣x+1,∴3x+1≤﹣x+1,解得:x≤0.(3)联立两函数解析式成方程组,解得:,,∴交点坐标为(﹣2,4)和(3,﹣1).画出直线y=﹣x+2,如图所示观察函数图象可知:当x=3时,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.22.在平面直角坐标系xOy中,抛物线y=ax2+bx+a﹣4(a≠0)的对称轴是直线x=1.(1)求抛物线y=ax2+bx+a﹣4(a≠0)的顶点坐标;(2)当﹣2≤x≤3时,y的最大值是5,求a的值;(3)在(2)的条件下,当t≤x≤t+1时,y的最大值是m,最小值是n,且m﹣n=3,求t的值.解:(1)将x=1代入抛物线y=ax2+bx+a﹣4得,y=a+b+a﹣4=2a+b﹣4∵对称轴是直线x=1.∴﹣=1,∴b=﹣2a,∴y=2a+b﹣4=2a﹣2a﹣4=﹣4∴抛物线y=ax2+bx+a﹣4(a≠0)的顶点坐标为(1,﹣4);(2)①a<0时,抛物线开口向下,y的最大值是﹣4∵当﹣2≤x≤3时,y的最大值是5,∴a<0不合题意;②a>0时,抛物线开口向上∵对称轴是直线x=1.1到﹣2的距离大于1到3的距离,∴x=﹣2时,y的值最大∴y=4a﹣2b+a﹣4=5a﹣2b﹣4=5,将b=﹣2a代入得,a=1;(3)①t<0时,∵a=1,∴b=﹣2a=﹣2∴y的最大值是m=t2﹣2t+1﹣4=t2﹣2t﹣3,最小值是n=(t+1)2﹣2(t+1)﹣3∵m﹣n=3,∴t2﹣2t﹣3﹣[(t+1)2﹣2(t+1)﹣3]=3,解得:t=﹣1;②≤t<1时,∴y的最大值是m=(t+1)2﹣2(t+1)﹣3,最小值是n=﹣4∵m﹣n=3,∴(t+1)2﹣2(t+1)﹣3﹣(﹣4)=3,解得:t=±(不成立);③0<t≤时,y的最大值是m=t2﹣2t+1﹣4=t2﹣2t﹣3,最小值是n=﹣4m﹣n=t2﹣2t﹣3﹣(﹣4)=3,解得:t=±+1(不成立);④t≥1时,∴y的最大值是m=(t+1)2﹣2(t+1)﹣3,最小值是n=t2﹣2t﹣3m﹣n=(t+1)2﹣2(t+1)﹣3﹣(t2﹣2t﹣3)=3,解得:t=2;综上,t的值为﹣1或2.23.如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC 于点E,连接BE,设动点D运动的时间为x(s),AE的长为y (cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?解:(1)动点D运动x秒后,BD=2x.又∵AB=8,∴AD=8﹣2x.∵DE∥BC,∴∴∴y关于x的函数关系式为y=(0<x<4).(2)解:S△BDE===(0<x<4).当时,S△BDE最大,最大值为6cm2.24.已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x…01234…y…5212n…(1)表中n的值为5;(2)当x为何值时,y有最小值,最小值是多少?(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,且m>2,试比较y1与y2的大小.解:(1)∵根据表可知:对称轴是直线x=2∴点(0,5)和(4,n)关于直线x=2对称,∴n=5,故答案为:5;(2)根据表可知:顶点坐标为(2,1),即当x=2时,y有最小值,最小值是1;(3)∵函数的图象开口向上,顶点坐标为(2,1),对称轴是直线x=2∴当m>2时,点A(m1,y1),B(m+1,y2)都在对称轴的右侧,y随x的增大而增大∵m<m+1,∴y1<y2.25.如图,函数y=﹣x2+x+c(﹣2020≤x≤1)的图象记为L1,最大值为M1;函数y=﹣x2+2cx+1(1≤x ≤2020)的图象记为L2,最大值为M2.L1的右端点为A,L2的左端点为B,L1,L2合起来的图形记为L.(1)当c=1时,求M1,M2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A,B重合时,求L 上“美点”的个数;(3)若M1,M2的差为,直接写出c的值.解:(1)当c=1时,函数y=﹣x2+x+c=﹣x2+x+1=﹣(x﹣)2+.又∵﹣2020≤x≤1,∴M1=,y=﹣x2+2cx+1=﹣x2+2x+1=﹣(x﹣1)2+2.又∵1≤x≤2020,∴M2=2;(2)当x=1时,y=﹣x2+x+c=c﹣;y=﹣x2+2cx+1=2c.若点A,B重合,则c﹣=2c,c=﹣,∴L1:y=﹣x2+x﹣(﹣2020≤x≤1);L2:y=﹣x2﹣x+1(1≤x≤2020).在L1上,x为奇数的点是“美点”,则L1上有1011个“美点”;在L2上,x为整数的点是“美点”,则L2上有2020个“美点”.又点A,B重合,则L上“美点”的个数是1011+2020﹣1=3030.(3)y=﹣x2+x+c(﹣2020≤x≤1)上时,当x=时,M1=+cy=﹣x2+2cx+1(1≤x≤2020),对称轴为x=c当2020≥c≥1时,M2=c2+1,∴|+c﹣c2﹣1|=,∴c=﹣1(舍去)或c=2;当c<1时,M2=2c,∴|2c﹣﹣c|=,∴c=3(舍去)或c=﹣;∴c=﹣或2.当c>2020时,M2=﹣20202+4040c+1,∴|﹣20202+4040c+1﹣﹣c|=∴c≈1010(舍弃),综上所述,c=﹣或2.。

北师大版九年级数学下册 第一章 直角三角形的边角关系 测试题 (含答案)

北师大版九年级数学下册 第一章  直角三角形的边角关系  测试题 (含答案)

直角三角形的边角关系 测试题一、选择题1.如图,在Rt △ABC 中,∠B =90°,cos A =1213,则tan A 的值为( )A.125B.1312C.1213D.512第1题图 第2题图 第3题图 第4题图2.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A.53 B.255 C.52 D.233.如图,在△ABC 中,点E 在AC 上,点G 在BC 上,连接EG ,AE =EG =5,过点E 作ED ⊥AB ,垂足为D ,过点G 作GF ⊥AC ,垂足为F ,此时恰有DE =GF =4.若BG =25,则sin B 的值为( )A.2510B.510C.255D.55 4.如图,直线y =-33x +2与x 轴、y 轴分别交于A ,B 两点,把△AOB 沿直线AB 翻折后得到△AO ′B ,则点O ′的坐标是( )A .(3,3)B .(3,3)C .(2,23)D .(23,4) 5.tan45°的值为( ) A.12 B .1 C.22D.2 6.如图所示,△ABC 的顶点是正方形网格的格点,则sin B 的值为( ) A.12 B.22 C.32D .1第6题图 第7题图7.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( ) A .m sin35° B .m cos35° C.m sin35° D.mcos35°8.在△ABC 中,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫33-tan B 2=0,则∠C 的度数为( )A .30°B .60°C .90°D .120° 二、填空题9.运用科学计算器计算:317sin73°52′≈________(结果精确到0.1). 10.计算:cos30°-sin60°=________.11.如图,铁路的路基的横断面为等腰梯形,其腰的坡度为1∶1.5,上底宽为6m ,路基高为4m ,则路基的下底宽为________m.12.如图,△ABC 中,∠ACB =90°,tan A =43,AB =15,AC =________.第11题图 第12题图 第13题图 第14 题图13.如图,Rt △ABC 中,∠ACB =90°,CM 为AB 边上的中线,AN ⊥CM ,交BC 于点N .若CM =3,AN =4,则tan ∠CAN 的值为________.14.如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里(结果取整数,参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).三、解答题15.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角β=60°,求树高AB (结果保留根号).16.某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3.(1)求新坡面的坡角α;(2)原天桥底部正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.17.在一个三角形中,各边和它所对角的正弦的比相等,即asin A=bsin B=csin C,利用上述结论可以求解如下题目,如:在△ABC中,若∠A=45°,∠B=30°,a=6,求b的值.解:在△ABC中,∵asin A=bsin B,∴b=a sin Bsin A=6sin30°sin45°=6×1222=3 2.解决问题:如图,甲船以每小时302海里的速度向正北方航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟后到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.(1)判断△A1A2B2的形状,并给出证明;(2)乙船每小时航行多少海里?参考答案与解析1.D2.A3.C 解析:在Rt △ADE 与Rt △EFG 中,⎩⎪⎨⎪⎧AE =EG ,DE =GF , ∴Rt △ADE ≌Rt △EFG (HL),∴∠A =∠GEF .∵∠A +∠AED =90°,∴∠GEF +∠AED=90°,∴∠DEG =90°.过点G 作GH ⊥AB 于点H ,则四边形DEGH 为矩形,∴GH =DE =4.在Rt △BGH 中,sin B =GH BG =425=255.故选C.4.A 解析:过点O ′作O ′C ⊥x 轴于点C .∵直线y =-33x +2与x 轴、y 轴分别交于A ,B 两点,∴点A ,B 的坐标分别为(23,0),(0,2),∴tan ∠BAO =OB OA =223=33,∴∠BAO=30°.∵把△AOB 沿直线AB 翻折后得到△AO ′B ,∴O ′A =OA =23,∠O ′AO =60°,∴CA =12O ′A =3,O ′C =O ′A ·sin ∠O ′AC =23×32=3,∴OC =OA -CA =23-3=3,∴点O ′的坐标为(3,3).故选A. 5.B 6.B 7.A 8.D 9.11.9 10.0 11.18 12.913.23 解析:∵∠ACB =90°,CM 为AB 边上的中线,∴AB =2CM =6,CM =BM ,∴∠B =∠MCB .∵AN ⊥CM ,∴∠CAN +∠ACM =90°.又∵∠ACM +∠MCB =90°,∴∠CAN =∠MCB ,∴∠B =∠CAN .又∵∠ACN =∠BCA ,∴△CAN ∽△CBA ,∴CN CA =AN BA =46=23,∴tan ∠CAN =CN AC =23.14.11 解析:过点P 作PC ⊥AB 于点C .依题意可得∠A =30°,∠B =55°.在Rt △P AC 中,∵P A =18海里,∠A =30°,∴PC =12P A =12×18=9(海里).在Rt △PBC 中,∵PC =9海里,∠B =55°,∴PB =PC sin B ≈90.8≈11(海里).15.解:过点C 作CF ⊥AB 于点F ,则BF =CD =4米,CF =BD .设AF =x 米.在Rt △ACF 中,tan ∠ACF =AF CF ,∠ACF =α=30°,则CF =AF tan30°=3x 米.在Rt △ABE 中,AB =AF +BF =(x +4)米,tan ∠AEB =AB BE ,∠AEB =β=60°,则BE =AB tan60°=33(x +4)米.∵CF =BD =DE +BE ,∴3x =3+33(x +4),解得x =33+42.则AB =33+42+4=33+122(米). 答:树高AB 是33+122米.16.解:(1)∵新坡面的坡度为1∶3,∴tan α=13=33,∴α=30°; (2)文化墙PM 不需要拆除.理由如下:过点C 作CD ⊥AB 于点D ,则CD =6米.∵坡面BC 的坡度为1∶1,新坡面AC 的坡度为1∶3,∴BD =CD =6米,AD =3CD =63米,∴AB =AD -BD =(63-6)米<8米,∴文化墙PM 不需要拆除.17.解:(1)△A 1A 2B 2是等边三角形.证明如下:由题意可得A 2B 2=102海里,A 1A 2=302×2060=102(海里),∴A 1A 2=A 2B 2.又∵∠A 1A 2B 2=180°-120°=60°,∴△A 1A 2B 2是等边三角形;(2)由(1)可知△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=102海里,∠A 2A 1B 2=60°,∴∠B 1A 1B 2=105°-60°=45°.由题意可知∠CB 1A 1=180°-105°=75°,∴∠B 2B 1A 1=75°-15°=60°.在△A 1B 2B 1中,由正弦定理得B 1B 2sin45°=A 1B 2sin60°,∴B 1B 2=A 1B 2sin60° ·sin45°=10232×22=2033(海里).乙船的速度为2033÷2060=203(海里/时). 答:乙船每小时航行203海里.。

2022-2023学年北师大版九年级数学下册《3-3垂径定理》同步练习题(附答案)

2022-2023学年北师大版九年级数学下册《3-3垂径定理》同步练习题(附答案)

2022-2023学年北师大版九年级数学下册《3.3垂径定理》同步练习题(附答案)一.选择题1.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.42.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD =8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm3.如图,C是以AB为直径的半圆O上一点,连接AC,BC,分别以AC、BC为直径作半圆,其中M,N分别是AC、BC为直径作半圆弧的中点,,的中点分别是P,Q.若MP+NQ=7,AC+BC=26,则AB的长是()A.17B.18C.19D.204.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为的中点,P 是直径MN上一动点,则P A+PB的最小值为()A.B.C.1D.25.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP,若阴影部分的面积为9π,则弦AB的长为()A.3B.4C.6D.96.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2B.3C.4D.57.如图,在平面直角坐标系中,⊙P与x轴相切于原点O,平行于y轴的直线交⊙P于M,N两点.若点M的坐标是(2,﹣1),则点N的坐标是()A.(2,﹣4)B.(2,﹣4.5)C.(2,﹣5)D.(2,﹣5.5)8.小明想知道一块扇形铁片OAB中的的拱高(弧的中点到弦的距离)是多少?但他没有任何测量工具,聪明的小明观察发现身旁的墙壁是由10cm的正方形瓷砖密铺而成(接缝忽略不计).他将扇形OAB按如图方式摆放,点O,A,B恰好与正方形瓷砖的顶点重合,根据以上操作,的拱高约是()A.10cm B.20cm C.D.9.小王不慎把一面圆形镜子打碎了,其中三块如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.都不能二.填空题10.如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.如果OD=3,AB=8,那么FC的长是.11.《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其意思是:如图,AB为⊙O的直径,弦CD⊥AB于点E,BE=1寸,CD=1尺,那么直径AB的长为多少寸?(注:1尺=10寸)根据题意,该圆的直径为寸.12.如图,在梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O 为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是cm.13.如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF=.14.已知,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则DM的长为.15.在半径为10cm的⊙O中,弦AB的长为16cm,则点O到弦AB的距离是cm.16.如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则AD的长是.三.解答题17.如图,在⊙O中,AB,AC为弦,CD为直径,AB⊥CD于E,BF⊥AC于F,BF与CD 相交于G.(1)求证:ED=EG;(2)若AB=8,OG=1,求⊙O的半径.18.如图,△ABC内接于⊙O,高AD经过圆心O.(1)求证:AB=AC;(2)若BC=8,⊙O的半径为5,求△ABC的面积.19.如图所示,某地欲搭建一座圆弧型拱桥,跨度AB=32米,拱高CD=8米(C为AB的中点,D为弧AB的中点).(1)求该圆弧所在圆的半径;(2)在距离桥的一端4米处欲立一桥墩EF支撑,求桥墩的高度.20.如图1是小明制作的一副弓箭,点A、D分别是弓臂BAC与弓弦BC的中点,弓弦BC =60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.在自然状态下,弓臂BAC的长为cm;(2)如图3,将弓箭继续拉到点D2,使弓箭B2AC2为半圆,求D1D2的长.21.如图,将一个两边带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆交于点D、E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.22.一座桥如图,桥下水面宽度AB是20米,高CD是4米.要使高为3米的船通过,则其宽度须不超过多少米.(1)如图1,若把桥看作是抛物线的一部分,建立如图坐标系.要使高为3米的船通过,则其宽度须不超过多少米?(2)如图2,若把桥看作是圆的一部分.要使高为3米的船通过,则其宽度须不超过多少米?23.车辆转弯时,能否顺利通过直角弯道的标准是:车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中②的位置),例如,图2是某巷子的俯视图,巷子路面宽4m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE、CE的夹角都是45°时,连接EF,交CD于点G,若GF的长度至少能达到车身宽度,则车辆就能通过.(1)试说明长8m,宽3m的消防车不能通过该直角转弯;(2)为了能使长8m,宽3m的消防车通过该弯道,可以将转弯处改为圆弧(分别是以O 为圆心,以OM和ON为半径的弧),具体方案如图3,其中OM⊥OM′,请你求出ON 的最小值.24.李明到某影剧城游玩,看见一圆弧形门如图所示,李明想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=40cm,BD=320cm,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮助李明计算出这个圆弧形门的最高点离地面的高度是多少?25.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,求圆柱形饮水桶的底面半径的最大值.参考答案一.选择题1.解:过点O作OF⊥CD于点F,OG⊥AB于G,连接OB、OD、OE,如图所示:则DF=CF,AG=BG=AB=3,∴EG=AG﹣AE=2,在Rt△BOG中,OG===2,∴EG=OG,∴△EOG是等腰直角三角形,∴∠OEG=45°,OE=OG=2,∵∠DEB=75°,∴∠OEF=30°,∴OF=OE=,在Rt△ODF中,DF===,∴CD=2DF=2;故选:C.2.解:连接AB,OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm,在Rt△ABE中,AE2+BE2=AB2,即AB=,∵OA=OC,OB=OC,OF⊥BC,∴BF=FC,∴OF=.故选:D.3.解:连接OP,OQ,分别交AC,BC于H,I,∵M,N分别是AC、BC为直径作半圆弧的中点,,的中点分别是P,Q,∴OP⊥AC,OQ⊥BC,由对称性可知:H,P,M三点共线,I,Q,N三点共线,∴H、I是AC、BC的中点,∴OH+OI=(AC+BC)=13,∵MH+NI=AC+BC=13,MP+NQ=7,∴PH+QI=13﹣7=6,∴AB=OP+OQ=OH+OI+PH+QI=13+6=19,故选:C.4.解:作A关于MN的对称点Q,连接MQ,BQ,BQ交MN于P,此时AP+PB=QP+PB =QB,根据两点之间线段最短,P A+PB的最小值为QB的长度,连接AO,OB,OQ,∵B为中点,∴∠BON=∠AMN=30°,∴∠QON=2∠QMN=2×30°=60°,∴∠BOQ=30°+60°=90°.∵直径MN=2,∴OB=1,∴BQ==.则P A+PB的最小值为.故选:B.5.解:设PC=r,AO=R,连接PC,⊙O的弦AB切⊙P于点C,故AB⊥PC,作OD⊥AB,则OD∥PC.又∵AB∥OP,∴OD=PC=r,∵阴影部分的面积为9π,∴πR2﹣πr2=9π,即R2﹣r2=9,于是AD==3.∵OD⊥AB,∴AB=3×2=6.故选:C.6.解:连接OD.由垂径定理得HD=,由勾股定理得HB=1,设圆O的半径为R,在Rt△ODH中,OH=R﹣1,DH=则R2=()2+(R﹣1)2,由此得2R=3,或由相交弦定理得()2=1×(2R﹣1),由此得2R=3,所以AB=3故选:B.7.解:过点M作MA⊥OP,垂足为A设PM=x,P A=x﹣1,MA=2则x2=(x﹣1)2+4,解得x=,∵OP=PM=,P A=﹣1=,∴OP+P A=4,所以点N的坐标是(2,﹣4)故选:A.8.解:连接AB,过O作OC⊥AB于C,交于D,则AC=BC=AB=20(cm),OC=30cm,由勾股定理得:OD=OA===10(cm),∴CD=OD﹣OC=(10﹣30)(cm),即的拱高约是(10﹣30)cm,故选:D.9.解:第②块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:B.二.填空题10.解:∵OE⊥AB,∴∠ADO=90°,∵∠ABC=90°,∴∠ABC=∠ADO=90°,∴OD∥BC,∵OA=OC,∴AD=DB=AB=4,AE=EF,∴OE是△AFC的中位线,∴CF=2OE,在Rt△ADO中,AO===5,∴CF=2OE=10,故答案为:10.11.解:连接OC,∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得x=13,∴AB=26寸,即直径AB的长为26寸,故答案为:26.12.解:如图,作AE⊥CD,垂足为E,OF⊥AD,垂足为F,则四边形AECB是矩形,CE=AB=2cm,DE=CD﹣CE=4﹣2=2cm,∵∠AOD=90°,AO=OD,所以△AOD是等腰直角三角形,AO=OD,∠OAD=∠ADO=45°,BO=CD,∵AB∥CD,∴∠BAD+∠ADC=180°∴∠ODC+∠OAB=90°,∵∠ODC+∠DOC=90°,∴∠DOC=∠BAO,∵∠B=∠C=90°∴△ABO≌△OCD,∴OC=AB=2cm,OB=CD=4cm,BC=BO+OC=AE=6cm,由勾股定理知,AD2=AE2+DE2,得AD=2cm,∴AO=OD=2cm,S△AOD=AO•DO=AD•OF,∴OF=cm.13.解:点P是⊙O上的动点(P与A,B不重合),但不管点P如何动,因为OE⊥AP于E,OF⊥PB于F,根据垂径定理,E为AP中点,F为PB中点,EF为△APB中位线.根据三角形中位线定理,EF=AB=×10=5.14.解:①连接OA,如图所示:∵⊙O的直径CD=10,∴OA=5,∵弦AB=8,AB⊥CD,∴AM=AB=×8=4,在Rt△AOM中,由勾股定理得:OM===3,∴DM=OD+OM=5+3=8;②连接OA,如图所示:同①得:OM=3,∴DM=OD﹣OM=5﹣3=2;综上所述,DM的长为8或2,故答案为:8或2.15.解:连接OA,作OC⊥AB于C,如图,∵OC⊥AB,∴AC=BC=AB=8,在Rt△AOC中,OC===6,即点O到弦AB的距离为6cm.故答案为6.16.解:如图,连接OA,过O点作OF⊥BC于F,作OG⊥AE于G,∵⊙O是△ABC的外接圆,∠BAC=45°,∴∠BOC=90°,∵BD=4,CD=1,∴BC=4+1=5,∴OB=OC=,∴OA=,OF=BF=,∴DF=BD﹣BF=,∴OG=,GD=,在Rt△AGO中,AG==,∴AD=AG+GD=.故答案为:.三.解答题17.(1)证明:如图:连接BD,∵AB⊥CD于E,BF⊥AC于F,∴∠CFG=∠GEB,∵∠CGF=∠BGE,∴∠C=∠GBE,∵∠C=∠DBE,∴∠GBE=∠DBE,∵AB⊥CD于E,∴∠GEB=∠DEB,在△GBE和△DBE中,,∴△BGE≌△BDE(ASA),∴ED=EG.(2)解:如图:连接OA,设OA=r,则DG=r+1,由(1)可知ED=EG,∴OE=,∵AB⊥CD于E,AB=8,∴AE=BE=4,∴在Rt△OAE中,根据勾股定理得:OE2+AE2=OA2,即()2+42=r2,解得:r=,即⊙O的半径为.18.(1)证明:∵OD⊥BC,∴=,∴AB=AC;(2)解:连接OB,∵OD⊥BC,BC=8,∴BD=DC=BC=×8=4,在Rt△ODB中,OD===3,∴AD=5+3=8,∴S△ABC=×8×8=32.19.解:(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC经过O 点,设⊙O的半径为R,在Rt△OBC中,OB2=OC2+CB2,∴R2=(R﹣8)2+162,解得R=20;(2)OH⊥FE于H,则OH=CE=16﹣4=12,OF′=R=20,在Rt△OHF中,HF==16,∵HE=OC=OD﹣CD=20﹣8=12,EF=HF﹣HE=16﹣12=4(米),∴在离桥的一端4米处,桥墩高4米.20.解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30,∴弓臂BAC的长为L扇形B1D1C1==20πcm;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,20π.21.解:过点O作OM⊥DE于点M,连接OD.∴DM=DE.∵DE=8(cm)∴DM=4(cm)在Rt△ODM中,∵OD=OC=5(cm),∴OM===3(cm)∴直尺的宽度为3cm.22.解:(1)设抛物线解析式为:y=ax2+c,∵桥下水面宽度AB是20米,高CD是4米,∴A(﹣10,0),B(10,0),D(0,4),∴,解得:∴抛物线解析式为:y=﹣x2+4,∵要使高为3米的船通过,∴y=3,则3=﹣x2+4,解得:x=±5,∴EF=10米;(2)设圆半径r米,圆心为W,∵BW2=BC2+CW2,∴r2=(r﹣4)2+102,解得:r=14.5;在Rt△WGF中,由题可知,WF=14.5,WG=14.5﹣1=13.5,根据勾股定理知:GF2=WF2﹣WG2,即GF2=14.52﹣13.52=28,所以GF=2,此时宽度EF=4米.23.解:(1)消防车不能通过该直角转弯.理由如下:如图,作FH⊥EC,垂足为H,∵FH=EH=4,∴EF=4,且∠GEC=45°,∵GC=4,∴GE=GC=4,∴GF=4﹣4<3,即GF的长度未达到车身宽度,∴消防车不能通过该直角转弯;(2)若C、D分别与M′、M重合,则△OGM为等腰直角三角形,∴OG=4,OM=4,∴OF=ON=OM﹣MN=4﹣4,∴FG=OG﹣OF=×8﹣(4﹣4)=8﹣4<3,∴C、D在上,设ON=x,连接OC,在Rt△OCG中,OG=x+3,OC=x+4,CG=4,由勾股定理得,OG2+CG2=OC2,即(x+3)2+42=(x+4)2,解得x=4.5.答:ON至少为4.5米.24.解:如图,连接AC,作AC的中垂线交AC于G,交BD于N,交圆的另一点为M.则MN为直径.取MN的中点O,则O为圆心,连接OA、OC.∵AB⊥BD,CD⊥BD,∴AB∥CD∵AB=CD∴ABCD为矩形∴AC=BD=320cm,GN=AB=CD=40cm∴AG=GC=160cm,设⊙O的半径为R,得R2=(R﹣40)2+1602,解得R=340cm,340×2=680(cm).答:这个圆弧形门的最高点离地面的高度为680cm.25.解:过A、B、C三点作⊙O,连接OB.∵AD垂直平分BC∴点O必在AD上,BD=CD=24设⊙O的半径为r,则OD=48﹣r∵OD2+BD2=OB2∴(48﹣r)2+242=r2解得,r=30∴圆柱形饮水桶的底面半径的最大值30cm.。

北师大版九年级数学下册答案

北师大版九年级数学下册答案

数学北师大版九年级下册答案第一章第4页练习答案1.解:∵AB=BC,BD⊥AC,∴DC=1/2AC=1/2×4=2 .在Rt△BDC中,tanC=BD/DC=1.5/2=3/4.2.解:在Rt△ABC中,(m),∴tanA=BC/AC≈0.286.答:山的坡度约为0.286.习题1.1答案1. 解:在Rt△ABC中,∠C=90°,AC=5,AB=13,∴tanA=BC/AC=5/12 .2.解:在Rt△ABC中,∠C=90°,tanA=BC/AC=5/12.∵BC=3,∴AC=36/5.3.提示:结合自己的实际回答。

4.解:在Rt△ABC中,阿和BC=a,AC=b,则有tanA∙tanB=a/b∙b/a=1,即tanA与tanB的关是互为倒数.第6页练习答案1.解:如图1-1-29所示,过点A作AD⊥BC于点D.∵AB=AC,∴BD=1/2BC=1/2×6=3.在Rt△ABD中,∴sinB=AD/AB=4/5,cosB=BD/AB=3/5,tanB=AD/BD=4/3.2.解:在Rt△ABC中,∵sinA=BC/AB=4/5,BC=20,∴AB=25,∴△ABC的为AB+BC+AC=60,面积为1/2AC∙BC=1/2×15×20=150习题1.2答案第9页练习答案习题1.3答案第14页练习答案习题1.4答案第17页练习答案习题1.5答案第20页练习答案习题1.6答案习题1.7答案第一章复习题答案第2章第30页练习答案习题2.1答案习题2.2答案第36页练习答案习题2.3答案第38页练习答案习题2.4答案第41页练习答案习题2.5答案第43页练习答案习题2.6答案第45页练习答案习题2.7答案第47页练习答案习题2.8答案第49页练习答案习题2.9答案。

2023年北师大版初中数学九年级(下)期末综合测试卷及部分答案(五套)

2023年北师大版初中数学九年级(下)期末综合测试卷及部分答案(五套)

北师大版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在△ABC 中,若⎪⎪⎪⎪⎪⎪sin A -12+⎝ ⎛⎭⎪⎫cos B -122=0,则∠C 的度数是( ) A.30° B.45° C.60° D.90° 2.抛物线y =x 2-3x +2的对称轴是直线( ) A.x =-3 B.x =3 C.x =-32 D.x =323.把抛物线y =-2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得抛物线对应的函数表达式为( )A.y =-2(x +1)2+2 B.y =-2(x +1)2-2 C.y =-2(x -1)2+2 D.y =-2(x -1)2-2 4.2cos 45°的值等于( ) A.1 B. 2 C. 3 D.25.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦, ∠ABD =58°,则∠BCD 等于( )A.116°B.32°C.58°D.64°6.如图是某水库大坝横断面示意图,其中CD ,AB 分别表示水库上、下底面的水平线,∠ABC =120°,BC 的长是50 m ,则水库大坝的高度h 是( )A.25 3 mB.25 mC.25 2 mD.5033m7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误..的是( ) A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-52C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大8.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接C D.若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为( )A.4π3- 3B.4π3-2 3C.π- 3D.2π3- 39.如图,半圆O 与等腰直角三角形两腰CA ,CB 分别切于D ,E 两点,直径FG 在AB 上,若BG =2-1,则△ABC 的周长为( )A.4+2 2B.6C.2+2 2D.410.如图,一艘渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20 n mile ,渔船将险情报告给位于A 处的救援船后,沿北偏西80°的方向向海岛C 靠近,同时,从A 处出发的救援船沿南偏西10°方向匀速航行,20 min 后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( )A.10 3 n mile/hB.30 n mile/hC.20 3 n mile/hD.30 3 n mile/h 二、填空题(每题3分,共30分)11.二次函数y =-x 2+bx +c 的部分图象如图所示,若y >0,则x 的取值范围是____________.12.如图,在△ABC 中,∠B =30°,AC =2,cos C =35,则AB 边的长为________.13.抛物线y =2x 2+6x +c 与x 轴的一个交点为(1,0),则这个抛物线的顶点坐标是____________.14.如图,扇形AOB 的圆心角为122°,C 是AB ︵上一点,则∠ACB =________.15.如图,直径为10的⊙A 经过点C (0,6)和点O (0,0),与x 轴的正半轴交于点D ,B 是y轴右侧圆弧上一点,则cos ∠OBC =________.16.已知⊙O 的半径为1,点P 与点O 之间的距离为d ,且关于x 的方程x 2-2x +d =0没有实数根,则点P 在__________(填“圆内”“圆上”或“圆外”).17.一个小球在空中的高度h(m )与时间t(s)满足关系式:h =20t -5t 2,那么这个小球所能达到的最大高度为________m .18.如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,则CM+DM 的最小值是__________.(19.如图,某公园入口处有三级台阶,每级台阶高为18 cm ,深为30 cm ,为了方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是________cm.20.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y =k x的图象经过正方形AOBC对角线的交点,半径为(4-22)的圆内切于△ABC ,则k 的值为________.三、解答题(21题6分,22~24题每题8分,其余每题10分,共60分) 21.计算:2sin 30°-3tan 45°·sin 45°+4cos 60°.22.如图,已知二次函数y =a (x -h)2+3的图象经过O (0,0),A (2,0)两点. (1)写出该函数图象的对称轴;(2)若将线段OA 绕点O 逆时针旋转60°到OA ′,试判断点A ′是否为该函数图象的顶点.23.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,OD ∥BC ,OD 与AC 交于点E . (1)若∠D =70°,求∠CAD 的度数; (2)若AC =8,DE =2,求AB 的长.24.如图,在小山的东侧A 庄,有一热气球,由于受西风的影响,以35 m/min 的速度沿着与水平方向成75°角的方向飞行,40 min 时到达C 处,此时气球上的人发现气球与山顶P 点及小山西侧的B 庄在一条直线上,同时测得B 庄的俯角为30°.又在A 庄测得山顶P的仰角为45°,求A庄与B庄的距离及山高(结果保留根号).25.如图,以△ABC的边BC上一点O为圆心的圆经过A,C两点且与BC边交于点E.点D为下半圆弧的中点,连接AD交线段EO于点F,且AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=10,求⊙O的半径r及sin B.26.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式.(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.27.在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +5经过点M (1,3)和N (3,5).(1)试判断该抛物线与x 轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A (-2,0),且与y 轴交于点B ,同时满足以A ,O ,B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.答案一、1.D 2.D 3.C 4.B 5.B 6.A 7.D 8.A9.A 点拨:连接OD ,OE ,易证得四边形ODCE 是正方形,△OEB 是等腰直角三角形,设OE=r ,由OB =2OE =2r ,可得方程:2-1+r =2r ,解此方程,即可求得r ,则△ABC 的周长为4+2 2.10.D 点拨:∵∠CAB =10°+20°=30°,∠CBA =80°-20°=60°,∴∠C =90°.∵AB =20 n mile ,∴AC =AB ·cos 30°=10 3 n mile.∴救援船航行的速度为103÷2060=303(n mile/h).二、11.-3<x <1 12.16513.⎝ ⎛⎭⎪⎫-32,-25214.119° 点拨:在扇形AOB 所在圆的优弧AB 上取一点D ,连接DA ,DB .∵∠AOB =122°,∴∠D =61°. ∵∠ACB +∠D =180°, ∴∠ACB =119°.15.4516.圆外 17.20 18.8 cm 19.210 点拨:过点B 作BD ⊥AC 于点D ,则AD =2×30=60(cm),BD =18×3=54(cm).由斜坡BC 的坡度i =1∶5,得CD =5BD =5×54=270(cm).∴AC =CD -AD =270-60=210(cm).20.4 点拨:设正方形OACB 的边长为a ,则AB =2a .根据直角三角形内切圆半径公式得a +a -2a2=4-22,故a =4.所以对角线交点坐标为(2,2),故k =xy =4.三、21.解:原式=2×12-3×1×22+4×12=1-322+2=3-322.22.解:(1)∵二次函数y =a (x -h )2+3的图象经过O (0,0),A (2,0)两点,∴抛物线的对称轴为直线x =1. (2)点A ′是该函数图象的顶点.理由:如图,作A ′B ⊥x 轴于点B .∵线段OA 绕点O 逆时针旋转60°到OA ′,∴OA ′=OA =2,∠AOA ′=60°.又∵A ′B ⊥x 轴,∴OB =12OA ′=1,A ′B =3OB = 3.∴A ′点的坐标为(1,3).∴点A ′是函数y =a (x -1)2+3图象的顶点. 23.解:(1)∵OA =OD ,∠D =70°,∴∠OAD =∠D =70°.∴∠AOD =180°-∠OAD -∠D =40°. ∵AB 是半圆O 的直径,∴∠C =90°. ∵OD ∥BC ,∴∠AEO =∠C =90°,即OD ⊥AC . ∴AD ︵=CD ︵. ∴∠CAD =12∠AOD =20°.(2)由(1)可知OD ⊥AC ,∴AE =12AC =12×8=4.设OA =x ,则OE =OD -DE =x -2. 在Rt △OAE 中,OE 2+AE 2=OA 2,即(x -2)2+42=x 2,解得x =5. ∴AB =2OA =10. 24.解:过点A 作AD ⊥BC ,垂足为D .在Rt △ADC 中,∠ACD =75°-30°=45°,AC =35×40=1 400(m). ∴AD =AC ·sin 45°=1 400×22=7002(m). 在Rt △ABD 中,∠B =30°, ∴AB =2AD =1 400 2 m. 过点P 作PE ⊥AB ,垂足为E , 则AE =PE ,BE =PEtan 30°=3PE .∴(3+1)PE =1 400 2. 解得PE =700(6-2)m.答:A 庄与B 庄的距离是1 400 2 m ,山高是700(6-2)m. 25.(1)证明:如图,连接AO ,DO .∵D 为下半圆弧的中点,∴∠EOD =90°. ∵AB =BF ,OA =OD ,∴∠BAF =∠BFA =∠OFD ,∠OAD =∠ADO .∴∠BAF +∠OAD =∠OFD +∠ADO =90°,即∠BAO =90°. ∴OA ⊥AB . ∴AB 是⊙O 的切线.(2)解:在Rt △OFD 中,OF =CF -OC =4-r ,OD =r ,DF =10.∵OF 2+OD 2=DF 2,∴(4-r )2+r 2=(10)2. ∴r 1=3,r 2=1(舍去).∴半径r =3.∴OA =3,OF =CF -OC =4-3=1,BO =BF +FO =AB +1. 在Rt △ABO 中,AB 2+AO 2=BO 2,∴AB 2+32=(AB +1)2.∴AB =4.∴BO =5. ∴sin B =AO BO =35.26.解:(1)y =⎩⎪⎨⎪⎧120x (0<x ≤30),[120-(x -30)]x (30<x ≤m ),[120-(m -30)]x (x >m )=⎩⎪⎨⎪⎧120x (0<x ≤30),-x 2+150x (30<x ≤m ),(150-m )x (x >m ). (2)由(1)可知,当0<x ≤30或x >m 时,y 都随着x 的增大而增大.当30<x ≤m 时,y =-x 2+150x =-(x -75)2+5 625, ∵-1<0,∴当x ≤75时,y 随着x 的增大而增大.∴为了让收取的总费用随着团队中人数的增加而增加,m 的取值范围为30<m ≤75. 27.解:(1)把M ,N 两点的坐标代入抛物线对应的函数表达式,可得:⎩⎪⎨⎪⎧a +b +5=3,9a +3b +5=5,解得⎩⎪⎨⎪⎧a =1,b =-3. ∴抛物线对应的函数表达式为y =x 2-3x +5. 令y =0,可得x 2-3x +5=0.∵Δ=(-3)2-4×1×5=9-20=-11<0, ∴该抛物线与x 轴没有交点.(2)∵△AOB 是等腰直角三角形,点A (-2,0),点B 在y 轴上,∴点B 的坐标为(0,2)或(0,-2).可设平移后的抛物线对应的函数表达式为y =x 2+mx +n .①当抛物线过A (-2,0),B (0,2)时,代入可得⎩⎪⎨⎪⎧n =2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =3,n =2.∴平移后的抛物线对应的函数表达式为y =x 2+3x +2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-32,-14,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移3个单位长度,再向下平移3个单位长度,即可获得符合条件的抛物线.②当抛物线过A (-2,0),B (0,-2)时,代入可得⎩⎪⎨⎪⎧n =-2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =1,n =-2. ∴平移后的抛物线对应的函数表达式为y =x 2+x -2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-12,-94,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移2个单位长度,再向下平移5个单位长度,即可获得符合条件的抛物线.北师大版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题。

北师大版九年级下册数学单元测试题全套及答案

北师大版九年级下册数学单元测试题全套及答案

北师大版九年级下册数学单元测试题全套及答案(含期中期末试题)第一章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如图,在Rt △ABC 中,CD 是斜边AB 上的高线,∠ACD 的正弦值是23,则ACAB 的值是( B )A.255B.23C.355D.522.在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,则BC 的长度为( C )A .6 cmB .7 cmC .8 cmD .9 cm3.在△ABC 中,sin B =cos(90°-∠C )=12,那么△ABC 是( A )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.如图,过点C (-2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB =( B ) A.25B.23C.52D.325.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于点D ,点C 在BD 上,有四位同学分别测量出以下四组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( C )A .1组B .2组C .3组D .4组6.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为线段AB 上一点,且AE ∶EB =4∶1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( C )A.33B.233C.533D .53二、填空题(本大题共6小题,每小题3分,共18分) 7.在Rt △ABC 中 ,∠C =90°,BC =5,AB =12,则tan A =512. 8.(2019·赤峰)如图,一根竖直的木杆在离地面3.1 m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__8.1__m __.(参考数据:sin 38°≈0.62,cos 38°≈0.79,tan 38°≈0.78)9.(2019·咸宁) 如图,某校九(1)班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得∠ACB =30°,点D 处测得∠ADB =60°,CD =80 m ,则河宽AB 约为 __69__ m .(结果保留整数,3≈1.73)10.(2019·柳州)在△ABC 中,sin B =13,tan C =22,AB =3,则AC 的长为 3 .11.如图,小明将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB ∶BC =4∶5,则sin ∠DCF 的值为 35.12.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则tan ∠AOD = 2 .三、(本大题共5小题,每小题6分,共30分)13.计算:sin 30°-(cos 45°-1)0+32tan 2 30°.解:原式=12-1+32×⎝⎛⎭⎫332=12-1+12=0.14.已知Rt △ABC 中,∠C =90°,∠B =60°,a =4,解这个直角三角形.解:∠A =90°-∠B =90°-60°=30°.由tan B =ba,得b =a tan B =4tan 60°=4 3.由cos B=a c ,得c =a cos B =4cos 60°=8.所以∠A =30°,b =43,c =8. 15.已知α为锐角,且tan α是方程x 2+2x -3=0的一个根,求2sin 2α+cos 2α- 3 tan (α+15°)的值.解:解方程x 2+2x -3=0, 得x 1=1,x 2=-3.∵tan α>0,∴tan α=1,∴α=45°,∴2sin 2α+cos 2α-3tan (α+15°)=2sin 245°+cos 245°-3tan 60°=2×⎝⎛⎭⎫222+⎝⎛⎭⎫222-3×3=1+12-3=-32.16.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°角的三角板的斜边与含30°角的三角板的长直角边相等.于是,小路同学提出一个问题:如图,将一副三角板直角顶点重合后拼放在一起,点B ,C ,E 在同一直线上.若BC =2,求AF 的长.(请你运用所学的数学知识解决这个问题)解:在Rt △ABC 中,BC =2,∠A =30°, ∴AC =BC tan A =2tan 30°=2 3. 由题意,得EF =AC =2 3. 在Rt △EFC 中,∠E =45°, ∴CF =EF·sin 45°=23×22=6, ∴AF =AC -CF =23- 6.17.(2019·通辽)两栋居民楼之间的距离CD =30 m ,楼AC 和BD 均为10层,每层楼高为3 m .上午某时刻,太阳光线GB 与水平面的夹角为30°,此刻楼BD 的影子会遮挡到AC 的第几层?(参考数据:3≈1.7,2≈1.4)解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于H ,AC =BD =3×10=30 m ,FH =CD =30 m ,∠BFH =∠α=30°,在RtBFH 中,tan ∠BFH =BH FH =BH 30=33,∴BH =30×33=103≈10×1.7=17,∴FC =HD =BD -BH ≈30-17=13,∵133≈4.3,所以在四层的上面,即第五层.答:此刻楼BD 的影子会遮挡到楼AC 的5层.四、(本大题共3小题,每小题8分,共24分)18.(2019·深圳)如图所示,某施工队要测量隧道长度BC ,AD =600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角为45°,再由D 走到E 处测量,DE ∥AC ,ED =500米,测得仰角为53°,求隧道BC 的长.(sin 53°≈45,cos 53°≈ 35,tan 53°≈43)解:在RtABD 中,AB =AD =600(米),作EM ⊥AC 于M ,则AM =DE =500(米),∴BM =100米,在Rt △CEM 中,tan 53°=CM EM =CM 600=43,∴CM =800(米),∴BC =CM -BM =800-100=700(米).答:隧道BC 长为700米.19.(2019·广元)如图,某海监船以60海里/小时的速度从A 处出发沿正西方向巡逻,一可疑船只在A 的西北方向的C 处,海监船航行1.5小时到达B 处时接到报警,需巡查此可疑船只,此时可疑船只仍在B 的北偏西30°方向的C 处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/小时的速度追击,在D 处海监船追到可疑船只,D 在B 的北偏西60°方向.(以下结果保留根号)(1)求B ,C 两处之间的距离;(2)求海监船追到可疑船只所用的时间.解:(1)过点C 作CE ⊥AB 于点E ,在Rt △BCE 中,∵∠BCE =30°,∴BE =BC ×sin ∠BCE =12BC ,CE =BC ×cos ∠BCE =32BC ,在Rt △ACE 中, ∵∠A =45°.∴AE =CE =32BC ,∵AB =60×1.5=90,∴AE -BE =32BC -12BC =90,解得BC =90(3+1).故B ,C 相距(903+90)海里.(2)过点D 作DF ⊥AB 于F ,由(1),得DF =CE =32BC ,∴DF =135+453,在Rt △BDF 中,∠DBF =30°,∴BD =2DF =270+903,∴海监船追到可疑船只所用的时间为(270+903)÷90=(3+3)h.20.已知:如图,在四边形ABCD 中,∠ABC =∠ADC =90°,DE ⊥BC 于E ,连接BD.若tan C =2,BE =3,CE =2,求点B 到CD 的距离.解:过点B 作BF ⊥CD ,垂足为F ,则∠BFC =90°.∵DE ⊥BC ,∴∠DEC =∠DEB =90°,在Rt △DEC 中,∵tan C =2,EC =2,∴DE =4.在Rt △BFC 中,∵tan C =2,∴BF =2FC ,设BF =x ,则FC =12x ,∵BF 2+FC 2=BC 2,∴x 2+(12x)2=(3+2)2,解得x =25,即BF =2 5.答:点B 到CD 的距离是2 5.五、(本大题共2小题,每小题9分,共18分)21.如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上. (1)求证:△ABF ∽△DFE ;(2)若sin ∠DFE =13,求tan ∠EBC 的值.(1)证明:∵∠A =∠D =90°,∠ABF 与∠DFE 都与∠AFB 互余,∴∠ABF =∠DFE ,∴△ABF ∽△DFE ;(2)解:∵sin ∠DFE =DE EF =13,∴设DE =k .则EF =CE =3k ,AB =CD =4k ,∴DF =EF 2-DE 2=22k ,由△ABF ∽△DFE ,得AF DE =AB DF ,即AF k =4k22k ,∴AF =2k ,∴BC =AD =2k +22k =32k ,∴tan ∠EBC =CE BC =3k 32k =22. 22.小明坐于堤边垂钓,如图,河堤AC 的坡角为30°,AC 长332米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.解:如图,延长OA 交直线BC 于点D ,∵AO 的倾斜角是60°,∴∠ODB =60°.∵∠ACD =30°,∴∠CAD =180°-∠ODB -∠ACD =90°.在Rt △ACD 中,AD =AC·tan ∠ACD =332·33=32(米).∴CD =2AD =3(米). 又∵∠O =60°,∴△BOD 为等边三角形.∴BD=OD=OA+AD=3+32=4.5(米).∴BC=BD-CD=4.5-3=1.5米.答:浮漂B与河堤下端C之间的距离为1.5米.六、(本大题共12分)23.在一次科技活动中,小明进行了模拟雷达扫描实验.表盘是△ABC,其中AB=AC,∠BAC =120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB 处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(203-20) cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转2 030秒,交点又在什么位置?请说明理由.解:(1)如图①,过A点作AD⊥BC,垂足为D.∵∠BAC=120°,AB=AC,∴∠ABC=∠C=30°.令AB=2t cm.在Rt△ABD中,AD=12AB=t,BD=32AB=3t.在Rt AMD中,∵∠AMD=∠ABC+∠BAM=45°,∴MD=AD=t.∵BM=BD-MD.即3t-t=203-20.解得t=20.∴AB=2×20=40 cm.答:AB的长为40 cm.(2)如图②,当光线旋转6秒,设AP交BC于点N,此时∠BAN=15°×6=90°.在Rt△ABN中,BN=ABcos 30°=4032=8033cm.∴光线AP旋转6秒,与BC的交点N距点B8033cm处.如图③,设光线AP旋转2 030秒后光线与BC的交点为Q.由题意可知,光线从边AB开始到第一次回到AB处需8×2=16秒,而2 030=126×16+14,即AP旋转2 030秒与旋转14秒时和BC的交点是同一个点Q.旋转14s的过程是B→C:8s,C→Q:6s,因此CQ=BN=8033cm,∵AB=AC,∠BAC=120°,∴BC=2ABcos 30°=2×40×32=40 3 cm,∴BQ=BC-CQ=403-8033=4033cm.答:光线AP旋转2 030秒后,与BC的交点Q在距点B的4033cm处.第二章检测题(BSD)(考试时间:120分钟满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知抛物线y=x2+ax+b与x轴的交点坐标为(-1,0)和(-3,0),则方程x2+ax+b=0的解是( B )A.x1=1,x2=-3 B.x1=-1,x2=-3C.x=-3 D.x=32.如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=6 cm,动点P从点C开始沿CA以1 cm/s 的速度向A点运动,同时动点Q从点C开始沿CB以2 cm/s的速度向B点运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ的面积y(cm2)与运动时间x(s)之间的函数图象大致是( C )3.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t +1.则下列说法中正确的是( D )A.点火后9 s和点火后13 s的升空高度相同B.点火后24 s火箭落于地面C.点火后10 s的升空高度为139 mD.火箭升空的最大高度为145 m4.若二次函数y=ax2+bx+c(a≠0)经过原点和第一、二、三象限,则(A)A.a>0,b>0,c=0 B.a>0,b<0,c=0C.a<0,b>0,c=0 D.a<0,b<0,c=05.(2019·烟台)已知二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如下表,下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2; ③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(B)A.2 B.36.(2019·巴中)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b -c >0,④a +b +c <0.其中正确的是( A )A .①④B .②④C .②③D .①②③④二、填空题(本大题共6小题,每小题3分,共18分)7.已知一条抛物线的开口大小与y =x 2相同但方向相反,且顶点坐标是(2,3),则该抛物线的表达式是 y =-x 2+4x -1 .8.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数表达式是y =60t -32t 2,在飞机着陆滑行中,最后4 s 滑行的距离是 24 m.9.若二次函数y =2x 2-4x -1的图象与x 轴交于A (x 1,0),B (x 2,0)两点,则1x 1+1x 2的值为 -4 .10.如图,已知△OBC 是等腰直角三角形,∠OCB =90°,若点B 的坐标为(4,0),点C 在第一象限,则经过O ,B ,C 三点的抛物线的表达式是 y =-12x 2+2x .11.已知二次函数y =ax 2+2ax +3a 2+3(a ≠0)(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值是__1__.12.如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx(a>0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a>0)交于点B.若四边形ABOC 是正方形,则b 的值是 -2 .三、(本大题共5小题,每小题6分,共30分)13.已知当x =2时,抛物线y =a(x -h)2有最大值,此抛物线过点(1,-3),求抛物线的表达式,并指出当x 为何值时,y 随x 的增大而减小.解:当x =2时,有最大值,所以h =2.此抛物线过(1,-3),所以-3=a(1-2)2,解得a =-3.此抛物线的表达式为y =-3(x -2)2.当x >2时,y 随x 的增大而减小.14.已知抛物线y =-3x 2经过平移经过点(0,0)和(1,9),求出平移后抛物线的表达式,并写出它的对称轴和顶点坐标.解:设平移后抛物线的表达式为y =-3x 2+bx +c ,将点(0,0)和(1,9)的坐标代入,得⎩⎨⎧c =0,-3+b +c =9,解得⎩⎪⎨⎪⎧b =12,c =0.∴平移后抛物线的表达式为y =-3x 2+12x.∵y =-3x 2+12x =-3(x -2)2+12,∴对称轴为直线x=2,顶点坐标为(2,12).15.已知抛物线y =-a(x -2)2+3经过点(1,2).(1)求a 的值;(2)若点A(m ,y 1),B(n ,y 2)(m >n >2)都在该抛物线上,试比较y 1与y 2的大小. 解:(1)把(1,2)代入y =-a(x -2)2+3,得2=-a(1-2)2+3,解得a =1;(2)由(1)知原抛物线的表达式为y =-(x -2)2+3,其开口向下,对称轴为直线x =2, ∴当x >2时,y 随x 的增大而减小. ∵m >n >2,∴y 1<y 2.16.如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A ,C 分别在x 轴、y 轴的正半轴上,二次函数y =-23x 2+bx +c 的图象经过B ,C 两点.(1)求该二次函数的表达式;(2)结合函数的图象探索,当y >0时,x 的取值范围.解:(1)由题意可得B(2,2),C(0,2),将B ,C 坐标代入y =-23x 2+bx +c ,解得c =2,b =43,所以二次函数的表达式是y =-23x 2+43x +2.(2)令y =0,解-23x 2+43x +2=0,得x 1=3,x 2=-1,由图象可知:y >0时,x 的取值范围是-1<x <3.17.如图,抛物线y =ax 2+bx -5(a ≠0)与x 轴交于点A(-5,0)和点B(3,0),与y 轴交于点C.(1)求该抛物线的表达式;(2)若点E 为x 轴下方抛物线上的一动点,当S △ABE =S △ABC 时,求点E 的坐标.解:(1)∵抛物线经过A ,B 两点,∴把A(-5,0),B(3,0)代入y =ax 2+bx -5,得⎩⎨⎧25a -5b -5=0,9a +3b -5=0,解得⎩⎨⎧a =13,b =23,∴该抛物线的表达式为y =13x 2+23x -5.(2)∵y =13x 2+23x -5,∴令x =0,则y =-5.∴C 点的坐标为(0,-5),∵S △ABE =S △ABC ,∴点E的纵坐标与点C 的纵坐标相等,即点E 的纵坐标为-5,令13x 2+23x -5=-5,解得x 1=-2,x 2=0(舍去),∴点E 的坐标为(-2,-5).四、(本大题共3小题,每小题8分,共24分) 18.已知二次函数y =x 2-(2m -1)x +m 2-m.(1)求证:此二次函数图象与x 轴必有两个不同的交点;(2)若此二次函数图象与直线y =x -3m +4的一个交点在y 轴上,求m 的值.(1)证明:令y =0,有x 2-(2m -1)x +m 2-m =0,Δ=b 2-4ac =(2m -1)2-4(m 2-m)=1>0,∴结论成立;(2)解:令x =0,代入y =x 2-(2m -1)x +m 2-m 与y =x -3m +4,得m 2-m =-3m +4,∴m =-1+5或-1- 5.19.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看作一点)的路线是抛物线y =-35x 2+3x +1的一部分,如图.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4 m ,在一次表演中人梯到起点A 的水平距离为4 m ,问这次表演是否成功?请说明理由.解:(1)∵y =-35x 2+3x +1=-35⎝⎛⎭⎫x -522+194,∴该演员弹跳高度的最大值为194m ; (2)当x =4时,y =-35×42+3×4+1=3.4,∴这次表演是成功的.20.如图,已知抛物线y =ax 2-4x +c 经过点A(0,-6)和B(3,-9).(1)求出抛物线的表达式;(2)写出抛物线的对称轴及顶点坐标;(3)点P(m ,m)(其中m >0)与点Q 均在抛物线上,且这两点关于抛物线的对称轴对称,求m 的值及点Q 的坐标.解:(1)依题意有⎩⎨⎧a ×02-4×0+c =-6,a ×32-4×3+c =-9,即⎩⎨⎧c =-6,9a -12+c =-3,∴⎩⎪⎨⎪⎧a =1,c =-6.∴抛物线的表达式为y =x 2-4x -6.(2)把y =x 2-4x -6配方得y =(x -2)2-10,∴对称轴为直线x =2,顶点坐标(2,-10).(3)由点P(m ,m)在抛物线上,有m =m 2-4m -6,即m 2-5m -6=0.∴m 1=6或m 2=-1(舍去),∴m =6,∴P 点的坐标为(6,6).∵点P ,Q 均在抛物线上,且关于对称轴x =2对称,∴Q 点的坐标为(-2,6). 五、(本大题共2小题,每小题9分,共18分)21.把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A(-6,0)和原点O(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q.(1)求顶点P 的坐标; (2)写出平移过程;(3)求图中阴影部分的面积.解:(1)设抛物线m 的表达式为y =12x 2+bx +c ,把点A(-6,0),原点O(0,0)代入,得b =3,c=0,∴抛物线m 的表达式为y =12x 2+3x =12(x +3)2-92,所以顶点P 的坐标为⎝⎛⎭⎫-3,-92. (2)把抛物线y =12x 2先向左平移3个单位长度,再向下平移92个单位长度即可得到抛物线y =12(x +3)2-92.(3)Q 点横坐标为-3,代入y =12x 2,可得Q ⎝⎛⎭⎫-3,92,图中阴影部分的面积=S △OPQ =12×3×9=272. 22.(2019·南充)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔、一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元. (1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?解:(1)设钢笔、笔记本的单价分别为x ,y 元,根据题意得,⎩⎨⎧2x +3y =38,4x +5y =70,解得:⎩⎪⎨⎪⎧x =10,y =6.答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a 元,购买数量为b 支,支付钢笔和笔记本的总金额为w 元, ①当30≤b ≤50时,a =10-0.1(b -30)=-0.1b +13,w =b(-0.1b +13)+6(100-b)=-0.1b 2+7b +600=-0.1(b -35)2+722.5,∵当b =30时,w =720,当b =50时,w =700, ∴当30≤b ≤50时,700≤w ≤722.5;②当50<b ≤60时,a =8,w =8b +6(100-b)=2b +600,700<w ≤720,∴当30≤b ≤60时,w 的最小值为700元.答:这次奖励一等奖学生50人时,购买的奖品总金额最少,最少为700元.六、(本大题共12分)23.(2019·新疆)如图,抛物线y =ax 2+bx +c 经过A (-1,0),B (4,0),C (0,4)三点. (1)求抛物线的表达式及顶点D 的坐标; (2)将(1)中的抛物线向下平移154个单位长度,再向左平移h (h >0)个单位长度,得到新抛物线.若新抛物线的顶点D ′在△ABC 内,求h 的取值范围;(3)点P 为线段BC 上一动点(点P 不与点B ,C 重合),过点P 作x 轴的垂线交(1)中的抛物线于点Q ,当△PQC 与△ABC 相似时,求△PQC 的面积.题图 答图解:(1)函数表达式为y =a(x +1)(x -4)=a(x 2-3x -4),即-4a =4,解得a =-1,故抛物线的表达式为y =-x 2+3x +4,顶点D(32,254);(2)抛物线向下平移154个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线的顶点D' (32-h ,52),将点A ,C 的坐标代入一次函数表达式并解得直线AC 的表达式为y =4x +4,将点D' 坐标代入直线AC 的表达式得:52=4(32-h)+4,解得h =158,故0<h<158;(3)过点P 作y 轴的平行线交抛物线和x 轴于点Q ,H ,∵OB =OC =4,∴∠PBA =∠OCB =45°=∠QPC ,直线BC 的表达式为y =-x +4,则AB =5,BC =42,AC =17,S ABC =12×5×4=10,设点Q(m ,-m 2+3m +4),点P(m ,-m +4),CP =2m ,PQ =-m 2+3m +4+m -4=-m 2+4m ,①当△CPQ ∽△CBA ,PC BC =PQ AB ,即2m42=-m 2+4m 5,解得m =114,相似比为PC BC =1116,②当△CPQ ∽△ACB ,同理可得相似比为PC AB =12225,利用面积比等于相似比的平方可得S PQC=10×(1116)2=605128或SPQC =10×(12225)2=576125. 第三章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知⊙P 的半径为4,圆心P 的坐标为(1,2),点Q 的坐标为(0,5),则点Q 与⊙P 位置关系是( C )A .点Q 在⊙P 外B .点Q 在⊙P 上C .点Q 在⊙P 内D .不能确定2.如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD 等于( D ) A .20° B .40° C .50° D.80°3.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD =∠BCD ,则BD ︵的长为( C )A .πB.32πC .2πD .3π4.同一个圆的内接正六边形和外切正六边形的周长之比为( B )A .3∶4B .3∶2C .2∶ 3D .1∶25.如图,AC 是⊙O 的直径,弦BD ⊥AO 于点E ,连接BC ,过点O 作OF ⊥BC 于点F ,若BD =8 cm ,AE =2 cm ,则OF 的长度是( D )A .3 cmB . 6 cmC .2.5 cmD . 5 cm 6.如图,将正方形ABCD 绕点A 按逆时针方向旋转30°,得正方形AB 1C 1D 1,B 1C 1交CD 于点E ,AB =3,则四边形AB 1ED 的内切圆半径为( B )A .3+12B .3-32C .3+13D .3-33二、填空题(本大题共6小题,每小题3分,共18分)7.如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于69° . 8.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得AD =10 cm ,点D 在量角器上的读数为60°,则该直尺的宽度为533 cm . 9.如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与BA 的延长线交于点D ,点E 在BC ︵上(不与点B ,C 重合),连接BE ,CE.若∠D =40°,则∠BEC =115度.10.(2019·内江)如图,在平行四边形ABCD 中,AB<AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为2π3+ 3 . 11.如图,P 是反比例函数y =4x (x >0)的图象上一点,以点P 为圆心、1个单位长度为半径作⊙P ,当⊙P 与直线y =3相切时,点P 的坐标为 (1,4)或(2,2) .12.(2019·包头)如图,BD 是⊙O 的直径,A 是⊙O 外一点,点C 在⊙O 上,AC 与⊙O 相切于点C ,∠CAB =90°,若BD =6,AB =4,∠ABC =∠CBD ,则弦BC 的长为.三、(本大题共5小题,每小题6分,共30分)13.如图,⊙O 是△ABC 的外接圆,∠A =45°,BD 是直径,BD =2,连接CD ,求BC 的长.解:在⊙O 中,∵∠A =45°,∴∠D =45°. ∵BD 为⊙O 的直径, ∴∠BCD =90°, ∴BC =BD·sin 45°=2×22= 2. 14.如图,已知CD 平分∠ACB ,DE ∥AC.求证:DE =BC.证明:∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴BD ︵=AD ︵,∵DE ∥AC ,∴∠ACD =∠CDE ,∴AD ︵=CE ︵,∴BD ︵=CE ︵,∴DE ︵=BC ︵,∴DE =BC.15.如图,两个同心圆中,大圆的弦AB ,AC 分别切小圆于点D ,E ,△ABC 的周长为12 cm ,求△ADE 的周长.解:连接OD ,OE.∵AB ,AC 分别切小圆于点D ,E , ∴OD ⊥AB ,OE ⊥AC , ∴AD =DB ,AE =EC , ∴DE 是△ABC 的中位线,∴DE =12BC ,∴C △ADE =12C △ABC =12×12=6 cm .16.如图所示,⊙O 的直径AB 长为6,弦AC 的长为2,∠ACB 的平分线交⊙O 于点D ,求四边形ADBC 的面积.解:∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°.在Rt △ABC 中,由勾股定理,得 BC =AB 2-AC 2=62-22=4 2. 又∵CD 平分∠ACB , ∴AD ︵=BD ︵,∴AD =BD.在Rt △ABD 中,由勾股定理,得AD =BD =22AB =22×6=3 2. ∴S 四边形ADBC =S △ABC +S △ABD =42+9,∴四边形ADBC 的面积为42+9.17.如图,点I 是△ABC 的内心,AI 的延长线交BC 于点D ,交△ABC 的外接圆于点E.求证:IE 2=AE·DE.证明:连接BE ,BI.∵I 为△ABC 的内心,∴∠1=∠2,∠3=∠4. 又∵∠6=∠1+∠3,∠IBE =∠4+∠5, ∠5=∠2=∠1,∴∠IBE =∠6,∴IE =BE. ∵∠5=∠1,∠E =∠E ,∴△BED∽△AEB,∴BEDE=AEBE,∴BE2=AE·DE,∴IE2=AE·DE.四、(本大题共3小题,每小题8分,共24分)18.如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,B,C 两点的坐标分别为(0,b),(1,0).(1)当b=3时,求经过B,C两点的直线的表达式;(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求出每种位置关系时b的取值范围.解:(1)直线BC表达式为y=-3x+3.(2)当BC切⊙O′于第二象限时,记切点为点D.易得DC= 5.∵BO=BD=b,∴BC=5-b.12+b2=(5-b)2,得b=25 5.同理当BC切⊙O′于第三象限D1点时,可求得b=-25 5.故当b>255或b<-255时,直线BC与⊙O′相离;当b=255或-255时,直线BC与⊙O′相切;当-255<b<255时,直线BC与⊙O′相交.19.(2018·南充)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.(1)证明:连接OC,BC,∵⊙O的半径为3,PB=2,∴OC=OB=3,OP=OB+PB=5.∵PC=4,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线.(2)解:∵AB是直径,∴∠ACB=90° ,∴∠ACO+∠OCB=90°,∵OC⊥PC,∴∠BCP+∠OCB =90°,∴∠BCP=∠ACO.∵OA=OC,∴∠A=∠ACO,∴∠A=∠BCP,在△PBC和△PCA中,∠BCP=∠A,∠P=∠P,∴△PBC∽△PCA,∴BCAC=PBPC=24=12,∴tan∠CAB=BC AC=12.20.(齐齐哈尔中考)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.又∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∴∠DBC+∠ABD=90°,即∠ABC=90°∴BC是⊙O的切线.(2)解:∵BF=BC=2且∠ADB=90°,∴∠CBD=∠FBD,又∵OE∥BD,∴∠FBD=∠OEB.∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠DBE=∠OBE=13∠ABC=13×90°=30°,∴∠C=60°,∴AB=3BC=23,∴⊙O的半径为3,连接OD,∴阴影部分面积为S扇形OBD-S△OBD=16π×3-34×3=π2-334.五、(本大题共2小题,每小题9分,共18分)21.(2019·安顺)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E 两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:点H为CE的中点;(3)若BC=10,cos C=55,求AE的长.(1)解:DH与⊙O相切.理由:连接OD,AD,∵AB为直径,∴∠ADB=90°,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH为⊙O的切线.(2)证明:连接DE,∵A,B,D,E四点共圆,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∴CD=ED,∵DH⊥CE,∴点H为CE的中点.(3)解:CD=12BC=5,∵cos C=CDAC=55,∴AC=55,∵cos C=CHCD=55,∴CH=5,∴CE=2CH =25,∴AE =AC -CE =3 5.22.如图,在Rt △ABC 与Rt △OCD 中,∠ACB =∠DCO =90°,点O 为AB 的中点.(1)求证:∠B =∠ACD ;(2)已知点E 在AB 上,且BC 2=AB ·BE . ①若tan ∠ACD =34,BC =10,求CE 的长;②试判断CD 与以A 为圆心,AE 为半径的⊙A 的位置关系,并请说明理由.(1)证明:∵∠ACB =∠DCO =90°,∴∠ACB -∠ACO =∠DCO -∠ACO ,即∠ACD =∠OCB ; 又∵点O 是AB 的中点,∴OC =OB , ∴∠OCB =∠B , ∴∠B =∠ACD .(2)解:①∵BC 2=AB ·BE ,∴BC AB =BEBC.∵∠B =∠B ,∴△ABC ∽△CBE ,∴∠ACB =∠CEB =90°. ∵∠ACD =∠B ,∴tan ∠ACD =tan B =34,设BE =4x ,则CE =3x .由勾股定理,可知BE 2+CE 2=BC 2, ∴(4x )2+(3x )2=100,∴解得x =2,∴CE =6.②CD 与⊙A 相切.理由如下: 过点A 作AF ⊥CD 于点F .∵∠CEB =90°,∴∠B +∠ECB =90°. ∵∠ACE +∠ECB =90°,∴∠B =∠ACE .∵∠ACD =∠B ,∴∠ACD =∠ACE ,∴CA 平分∠DCE .∵AF ⊥CD ,AE ⊥CE ,∴AF =AE ,∴直线CD 与⊙A 相切.六、(本大题共12分)23.(2019·荆州)如图AB 是⊙O 的直径,点C 为⊙O 上一点,点P 是半径OB 上一动点(不与O ,B 重合),过点P 作射线l ⊥AB ,分别交弦BC ,BC ︵于D ,E 两点,在射线l 上取点F ,使FC =FD .(1)求证:FC 是⊙O 的切线; (2)当点E 是BC ︵的中点时,①若∠BAC =60°,判断O ,B ,E ,C 为顶点的四边形是什么特殊四边形,并说明理由; ②若tan ∠ABC =34,且AB =20,求DE 的长.(1)证明:连接OC ,∵OB =OC ,∴∠OBC =∠OCB ,∵PF ⊥AB ,∴∠BPD =90°,∴∠OBC +∠BDP =90°,∵FC =FD, ∴∠FCD =∠FDC ,∵∠FDC =∠BDP ,∴∠FCD =∠BDP ,∴∠OCB +∠FCD =90°,∴OC ⊥FC ,FC 是⊙O 的切线.(2)解:连接OC ,OE ,BE ,CE ,OE 与BC 交于H. ①以O ,B ,E ,C 为顶点的四边形是菱形.理由:∵AB 是直径,∴∠ACB =90°,∵∠BAC =60°,∴∠BOC =120°,∵点E 是BC ︵的中点,∴∠BOE =∠COE =60°,∵OB =OE =OC ,∴△BOE ,△COE 均为等边三角形,∴OB =BE =CE =OC ,∴四边形BOCE 是菱形.②∵AC BC =tan ∠ABC =34,设AC =3k ,BC =4k ,k>0.由AC 2+BC 2=AB 2,即(3k)2+(4k)2=202,解得k =4,∴AC =12,BC =16,∵点E 是BC ︵的中心,∴OE ⊥BC ,BH =CH =8,∵S △BOE =12OE·BH =12OB·PE ,即12×10×8=12×10×PE ,∴PE =8,又OP =OE 2-PE 2=6,∴BP =OB -OP =4,∵DP BP =tan ∠ABC =34,∴DP =34BP =3,∴DE =PE -DP =8-3=5.期中检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.对于函数y =-2(x -m)2的图象,下列说法不正确的是( D ) A .开口向下 B .对称轴是x =m C .最大值为0 D .与y 轴不相交 2.在Rt △ABC 中,∠C =90°,AB =6,tan B =33,则Rt △ABC 的面积为( B ) A .9 3B .923C .9D .183.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为( D )A .40海里B .60海里C .203海里D .403海里4.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点 ( B )A .(-3,-6)B .(-3,0)C .(-3,-5)D .(-3,-1)5.如图,在Rt △ABC 中,∠ACB =90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tan A 的值为( A )A .33B . 3C .12D .136.已知抛物线y =ax 2+bx +c 的图象如图所示,则|a -b +c|+|2a +b|等于( D ) A .a +b B .a -2b C .a -b D .3a 二、填空题(本大题共6小题,每小题3分,共18分)7.某种型号的迫击炮发射炮弹时的飞行高度h(m )与飞行时间t(s )的关系满足h =-13t 2+10t ,则经过 30 s ,发射的炮弹落地爆炸.8.在△ABC 中,∠A ,∠B 都是锐角,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫cos B -122=0,则∠C = 90° . 9.若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为 0,2或-2 .10.(2019·盐城)在△ABC 中,BC =6+2,∠C =45°,AB =2AC ,则AC 的长为__2__. 11.(2019·宿迁)若∠MAN =60°,△ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当△ABC 是锐角三角形时,BC12.已知抛物线y =23x 2+43x -2与x 轴交于A ,B 两点,与y 轴交于点C .点P 在对称轴上,当△PBC的周长最小时,点P 的坐标是⎝⎛⎭⎫-1,-43. 三、(本大题共5小题,每小题6分,共30分)13.计算:cos 60°-sin 45°+14tan 230°+cos 30°-sin 30°.解:原式=12-22+14×⎝⎛⎭⎫332+32-12=32-22+112. 14.由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中,∠A =30°,tan B =,AC =43,求AB 的长”.这时小明去翻看了标准答案,显示AB =10.你能否帮助小明通过计算说明污渍部分的内容是什么?解:过点C 作CH ⊥AB 于点H ,在Rt △ACH 中,CH =AC ·sin A =43×sin 30°=23,AH =AC ·cos A =43×cos 30°=6, ∴BH =AB -AH =4, ∴tan B =CH BH =32,∴污渍部分的内容是32. 15.(2019·凉山州)已知二次函数y =x 2+x +a 的图象与x 轴交于A (x 1,0),B (x 2,0)两点,且1x 21+1x 22=1,求a 的值.解:函数y =x 2+x +a 的图象与x 轴交于A(x 1,0),B(x 2,0)两点,∴x 1+x 2=-1,x 1·x 2 =a ,∵1x 21+1x 22=x 21+x 22x 21x 22=(x 1+x 2)2-2x 1x 2(x 1x 2)2=1-2a a 2=1,∴a =-1+ 2 或a =-1- 2. 16.在同一平面直角坐标系中,一次函数y =x -4与二次函数y =-x 2+2x +c 图象交于点A (-1,m ).(1)求m ,c 的值;(2)求二次函数图象的对称轴和顶点坐标. 解:(1)∵A 点在一次函数的图象上,∴m =-1-4=-5.∴点A 的坐标为(-1,-5),∵A 点在二次函数图象上,∴-5=-1-2+c ,解得c =-2. (2)由①可知二次函数表达式为y =-x 2+2x -2=-(x -1)2-1,∴二次函数的图象的对称轴为直线x =1,顶点坐标为(1,-1).17.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者,在消防车上点A 处测得点B 和点C 的仰角分别为45°和65°,点A 距地面2.5米,点B 距地面10.5米,为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数,参考数据:tan 65°≈2.1,sin 65°≈0.9,cos 65°≈0.4,2≈1.4)解:作AH ⊥CN 于点H .在Rt △ABH 中,∵∠BAH =45°,BH =10.5-2.5=8(m), ∴AH =BH =8(m), 在Rt △AHC 中,tan 65°=CH AH, ∴CH =8×2.1≈17(m),∴BC =CH -BH =17-8=9(m).四、(本大题共3小题,每小题8分,共24分)18.如图,直线y =x +2与x 轴交于点A ,与y 轴交于点B ,AB ⊥BC ,且点C 在x 轴上,若抛物线y =ax 2+bx +c 以C 为顶点,且经过点B ,求这条抛物线对应的函数表达式.解:∵直线y =x +2与x 轴交于点A ,与y 轴交于点B , ∴A (-2,0),B (0,2),∴△ABO 为等腰直角三角形.又∵AB ⊥BC ,∴△BCO 也为等腰直角三角形, ∴OC =OB =OA .∴C (2,0),设抛物线对应的函数表达式为y =a (x -2)2, 将点B (0,2)的坐标代入得2=a (0-2)2,解得a =12,∴此抛物线对应的函数表达式为y =12(x -2)2,即y =12x 2-2x +2.19.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC.(1)求sin B 的值;(2)现需要加装支架DE ,EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.解:(1)∵BD =DC =9,AD =6, ∴AB =92+62=313.∴sin B =AD AB =6313=21313.(2)∵EF ∥AD ,BE =2AE ,∴△BEF ∽△BAD. ∴EF AD =BF BD =BE BA =23,∴EF 6=BF 9=23, ∴EF =4,BF =6,∴DF =3,∴在Rt △DEF 中,DE =42+32=5米.20.为美化校园,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(只围AB ,BC 两边),设AB =x m .(1)若花园的面积为192 m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.解:(1)∵AB =x m ,则BC =(28-x)m ,∴x(28-x)=192,解得x 1=12,x 2=16,∴当花园的面积为192 m 2时,x 的值为12 m 或16 m .(2)由题意可得S=x(28-x)=-x2+28x=-(x-14)2+196,∵在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,28-15=13,∴6≤x≤13,∴当x=13时,S最大=-(13-14)2+196=195,∴花园面积S的最大值为195 m2.五、(本大题共2小题,每小题9分,共18分)21.如图,小河上有一拱桥,拱桥及河道的截面轮廓由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的表达式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=-1128(t-19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?解:(1)抛物线的表达式为y=-364x2+11(-8≤x≤8).(2)令-1128(t-19)2+8=11-5.解得t1=35,t2=3.∴当3≤t≤35时,水面到顶点C的距离不大于5米,需禁止船只通行,禁止船只通行时间为35-3=32小时.答:禁止船只通行时间为32小时.22.(2019·岳阳)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D,B,F在同一水平线上,参考数据:sin 62.3°≈0.89,cos 62.3°≈0.46,tan 62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.解:(1)四边形CDBG,HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt AHE中,tan∠AEH=AHHE,则AH=HE·tan∠AEH≈1.9a,∴AG=AH-GH=1.9a-0.2,在Rt ACG中,∠ACG=45°,∴CG=AG=1.9a-0.2,∴BD=1.9a-0.2,答:小亮与塔底中心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档