阳离子聚合物凝胶堵水剂研究

阳离子聚合物凝胶堵水剂研究
阳离子聚合物凝胶堵水剂研究

抗盐抗温堵水剂研究

1.1 油田堵水剂概述

随着油田的日益开采, 水的组分在所开采的石油中所占的比例越来越大。油井出水,将直接造成产量的下降。地层能量的损失和注水的强度加大,以及设备管网的腐蚀加剧等危害,造成巨大的经济损失,使开发效益受到严重的影响, 油田堵水在油田开采过程中显得非常的重要。

堵水包括水井调剖和油井堵水。在地壳中,地质的不均匀性使注入水沿高渗透孔道突入油井,为了减少渗透,必须封堵这些高渗透层。从水井封堵地壳高渗透层时调整注水层的吸水剖面,这种方法称为水井调剖。从油井封堵这些高渗透层时,可减少油井出水,这种方法称为油井堵水。无论是调剖还是堵水,目前行之有效的方法都是使用化学试剂,在油井堵水过程中所使用的化学试剂称为油井堵水剂。

油井堵水剂是指从油井注入能减少油井产水的化学试剂,经过几十年的发展,堵水剂已成系列。按工艺可分为单液法堵水剂和双液法堵水剂;按形式可分为冻胶型、凝胶型、沉淀型和胶体分散体型;按苛刻条件可分为高温、大孔道、低渗透层、高矿化度地层型等。

1.2 堵水剂研究的意义

油井出水是油田开发过程中不可避免要遇到的问题。油井采出液所含的水来自注入的驱替水、储油区的边水、储油圈闭中油层以下的底水。驱替水和边水的窜流最好用深部调剖技术,但该技术还不够成熟,因此从生产井封堵高渗透层的堵水技术仍是不可缺少的方法。对于底水推进的问题,最好用推进处建立水油隔板的方法解决。油井出水会造成很多危害:消耗地层能量,减少油层最终采收率;降低抽油井的泵率;使管线和设备的腐蚀与结垢严重;增加脱水站的负荷;若不将脱出的水回注,还会增加环境污染,因而降低采出液的出水率有其重要的意义。如果油井有缺陷使得产量很低,那么堵水处理从工艺和经济上就会很有效。该工艺是一个极大增加原油产量、降低操作费用的方法。国内外都十分重视油田堵水工作。国外将堵水作为三次采油前地层的预处理措施,中国则将堵水作为控水稳油的重要手段。但需要进行调剖、堵水的油藏地层通常具有高温、高压、高盐和

高含水的特点,这对堵水所用水膨体性能的要求也就越来越高。在综合分析中外近几年各种应用较广且效果较好的调剖堵水剂的基础上,以丙烯酰胺和具有耐温抗盐性的2 - 丙烯酰胺基- 2 - 甲基丙磺酸为主要原料,辅以其他添加剂,最终得到了一种性能良好的水膨体调剖堵水剂。故研究其主要性能对高温高盐油气井的增产具有重大意义。

2 国内外研究状况

油田化学剂的大量使用是在20世纪30年代以后。国外应用最广、意义最大的是以不同水溶性聚合物为成胶剂,以无机或和有机化合物为交联剂形成的凝胶型堵水调剖剂。聚合物凝胶类堵水调剖剂在国外从1965 年的单体凝胶经过一系列的发展,经历了一个很长过程。其中,美国和俄罗斯是堵水调剖剂应用较早、类型品种较多的国家,在美国,应用面最广、效果最好的是聚合物凝胶堵水调剖剂,而俄罗斯应用最多的是水解聚丙烯腈,随着多种聚合物分散体系、纤维分散体系和生物聚合物堵水调剖剂的开发应用,取得了明显的经济效益。

2.1 国内发展状况

我国化学堵水调剖技术始于20 世纪50 年代,早期使用的主要是水泥浆、油基水泥和活性稠油等,60 年代以树脂为主,70 年代水溶性聚合物及其凝胶开始在油田应用,从此,油田堵水技术进入了一个新的发展阶段。堵水品种迅速增加,处理井次增多,经济效果也明显提高。经过数十年的发展,我国当前堵水调剖剂已形成有我国油藏特点的系列化学品。根据我国油藏条件的不同要求,研究开发了不同类别的系列化的堵水调剖剂,因各油田地质条件的不同,开发应用的堵水调剖剂类型也有不同,但总的看来,无论是堵水调剖剂品种和应用地区的覆盖面,水溶性聚合物类堵水调剖剂都占多数,其中,又以聚丙烯酰胺凝胶系列堵水调剖剂为主要剂种。

我国研究开发的堵水调剖化学剂主要有:沉淀型无机盐类、聚合物冻胶类、颗粒类、泡沫类、树脂类、微生物类等。到目前,已开发、应用近百个堵水调剖剂种,从工程上讲,经历了单个油井堵水、注水井调剖、井组堵水调剖和区块综合治理四个阶段。统计数据表明,从1979~1998 年中,我国的堵水调剖工作无论是施工井次,还是增产油量都有了很大的发展, 这期间共应用推广了39174井次,累计增产原油14 64017 kt ,平均每井次增产原油37317 t,取得了巨大的经

济和社会效益。如今,堵水调剖技术已成为全国各主要油田的稳产增产,提高采收率的主导技术之一,而且随着油田开发进入中后期,应用的数量还会增加。可以预计,我国不同油田堵水调剖市场的旺盛需求,必将大大推动堵水调剖用化学品的进一步发展。

2.2 我国堵水剂的发展趋势

我国现有堵水剂基本上能满足国内各类油藏条件下堵水调剖剂的需要,但能满足某些特殊要求的品种较少。许多堵水剂的性能需要完善,品种需要实现系列化。我国大部分油田已处于高含水开采期,许多油层被水淹,或在长期注水后孔隙发生很大变化,非均质性更严重。据报道,大庆油田2003 年的产油量为48 300 kt ,比2002 年减少1 700 kt ,其原因主要是地下采出的油含80 %~90 %的水,脱掉的水还要反注回去,这样即提高了成本,又增加了工作难度,这一问题将使大庆油田每年减产1 500 kt 左右。这些地层需要进行大剂量多段塞深部处理,堵水剂用量大,只有廉价的堵水剂才有使用价值。进一步加强廉价原料和工业废弃物的研究和利用,是今后堵水调剖剂研究的方向。

如果能利用国内的一些过剩资源生产堵水剂,不仅降低了堵水剂的生产成本,还为资源的合理利用找到了新的途径,可谓一举两得。如裂解C9芳烃的利用,我国裂解C9 资源比较丰富,目前主要用作燃料或廉价出口。若能将其应用到油田堵水中,不但成本低廉,同时解决了C9 的综合利用问题,也提高了C9 资源的利用率和经济效益。

油田堵水剂今后的发展方向主要有:(1) 由于采油条件越来越苛刻,急需发展耐高温、高矿化度、耐硬水、高强度的堵水剂;(2) 降低生产成本,扩大原料来源,如利用工业废液或一些过剩资源等研制堵水剂;(3) 堵水剂用量极大,发展低污染甚至无污染的堵水剂值得高度重视。

2.3 国外发展状况

国外早期使用非选择性的水基水泥堵水,后来发展应用原油、憎水的油水乳化液、油基水泥等作为选择性堵剂。从70年代起,以美国为主的西方国家发展了以聚合物类的堵水剂,是油田化学进入了一个新的阶段。近几十年来,水溶性聚合物堵剂得到广泛的应用,国外许多专家对堵水的机理、堵剂的封堵性能和堵剂的选择进行了研究。国外研究选择性堵水的知名学者有Larry Eoff Dwyann

Dalrymple, Scott G Nelson , Leonard J Kalfayan等, 主要研究单位有拜伦·杰克逊公司( Byron Jackson Services Company ),哈里伯顿公司(Halliburton Company ) 和斯伦贝谢·道威尔公司( Schlumberger Dowell Company)等。从近10年SPE发表的论文看,国外研究油井堵水比注水井调剖多,堵水中化学选择性堵水是研究热点,论文约占80%。

目前,国外关于耐高温堵剂的报道较多,主要包括有机类、无机类两种。有机类多为改性的(聚)丙烯酰胺(PAM)、(聚)丙烯腈类、生物多糖类化合物及树脂。无机类为水泥、氧化铝等。例如:美国哈里伯顿公司研制的WOR—CON 堵水剂能耐300℉(150℃)高温。R.D. Sydansk研制的低分子量、低水解度的聚丙烯酰胺/酸铬(III),应用温度范围在141~260℉(61~127℃),渗透率降低99%以上。R.S. Torres等利用氧化铝在孔隙介质中的沉淀堵水,堵塞率达95%以上。欧洲专利报道了一种在高温下稳定的胶可用于地层裂缝的封堵。该堵剂是水溶性的离子聚合物。用聚(N—烷基己二烯胺)和卤代醇树脂作为胶剂。化合物具有的纤维结构,强度很大。日本的Takahashi用树脂来修补地裂缝,用酚醛—聚异氰酸盐、三级胺等合成一种可长期耐高温(170℃)和长效的地裂修补剂,用来堵水效果也很好。但以上技术多为室内实验性报道,成功的现场措施报道不多。目前,俄罗斯的俄EL-S-X耐高温堵剂的热稳定性较好,适合现场使用。

选择性堵水技术是油田开发尖端技术。概念虽已存在几十年,但技术关键问题至今没有被攻克,限制了技术商业化及油田应用规模。国外选择性堵水技术研究在作用机理研究、新型化学剂合成和油田应用方面均领先于国内。

一.课题研究的主要依据

理论依据:聚丙烯酰胺是一种线型高分子聚合物,交联后形成网状三维空间结构的体型高分子。为了提高聚合物堵剂的抗温抗盐性,一般向聚合物中引入抗温抗盐的基团,目前通常用采用2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和丙烯酰胺(AM)为原料,亚硫酸钠-过硫酸铵为引发剂,N,N’-二甲基双丙烯酰胺为交联剂,采用溶液聚合合成阴离子的聚合物凝胶。该凝胶具有较好的抗温抗盐性,使其适用于条件更为复杂的地层。

目前工业化常用的阳离子单体主要有二甲基二烯丙基氯化铵(DMDAAC)和2-甲基丙烯酰氧乙基三甲基氯化铵(DMC)。DMC价格较贵,使用受到限制,而DMDAAC

阳离子单体价格较低,且其共聚产物正电荷密度高、水溶性好、高效低毒。故本实验拟采用二烯丙基二甲基氯化铵(DMDAAC)与丙烯酰胺(AM)为原料采用水溶性偶氮类化合物和氧化还原引发体系在水溶液中进行聚合,再用甲醛交联制得的阳离子聚合物凝胶。

现实依据:DMDAAC价格较低,易于购买,其共聚物具有正电荷密度高、分子量和阳离子度易于控制;作为引发剂的亚硫酸钠,过硫酸铵和偶氮类化合物价廉易于购买。这些条件都能保证能够成功合成满足条件的阳离子聚丙烯酰胺凝胶。

二.研究内容

1.阳离子聚合物凝胶的合成

○1盐离子聚合物凝胶结构式

○2合成条件的探索及优化:反应温度,反应物配比,反应时间三个条件的探索及优化。

阳离子分散松香表面施胶剂的制备

阳离子分散松香表面施胶剂的制备 张国强张文静徐英超(山东大学威海分校海洋学院) 摘要:以松香、环氧氯丙烷、三乙胺为原料合成了松香型表面活性剂,以苯乙烯、丙烯酸甲酯、甲基丙烯酸二甲氨乙酯为原料合成了高分子阳离子分散剂,将上述两种合成物与基础阳离子表面活性剂(溴代十二烷基二甲基苄基铵)复配使用采用常压逆转法对松香进行乳化分散,制备了均匀稳定的阳离子分散松香表面施胶剂,并对其施胶性能进行了简单的分析和评价。 关键词:松香型表面活性剂;高分子阳离子分散剂;阳离子分散松香表面施胶剂 Abstract:Rosin, epichlorohydrin, triethylamine raw materials for the synthesis of rosin-based surfactants, styrene, methyl acrylate, methacrylic acid dimethyl ester as raw material of ammonia synthesis of cationic polymer dispersant. these two compounds with the foundation cationic surfactant (bromo dodecyl dimethyl benzyl ammonium) compound used often use Pressure reversal of Rosin emulsified dispersion, preparation of uniform stability of the surface of cationic dispersed rosin sizing agent. Sizing and its performance of the simple analysis and evaluation. Keywords : rosin-type surfactants;cationic polymer dispersant;the surface of cationic dispersed rosin sizing agent 1 前言 施胶剂是在纸浆中添加(即内施胶)或在纸张表面涂布(即表面施胶)的一些抗水性物质,它可延迟流体渗透,赋予纸张抗水、抗油的性能。施胶剂有多种分类方法,按施胶环境可分为酸性施胶剂和中碱性施胶剂,按施胶过程又可分为表面施胶剂和浆内施胶剂。与酸性施胶剂相比,中碱性施胶剂具有对设备腐蚀小、污染负荷轻[1]、可用廉价的CaCO3填料代替昂贵的TiO2等诸多优点。与浆内施胶剂相比,表面施胶剂具有施胶工艺简单,可直接加在纸页表面;不需考虑留着机理,不会干扰湿部化学或纤维之间的连接;降低生产成本,提高清洁度,加快纸种更换的速度等优点[2]。另外,对于含有较多非木材纤维或二次纤维的纸,要获得较好的施胶效果,必须采用表面施胶[3]。自1807年施胶技术获得应用的近200年以来,松香基酸性施胶剂因其具有相对便宜、来源丰富、使用方便、与其它填料相容性好等特点而获得广泛应用[4,5]。但是,由于酸性施胶剂存在腐蚀设备、纸张易老化、废水处理困难等弊端,在欧美等发达国家和地区,已基本被AKD(alkyl ketene dimmer,烷基烯酮二聚体)、ASA(alkenyl succinic anhydride,烯基琥珀酸酐)和阳离子分散松香等中/碱性施胶

非选择性堵剂的种类

非选择性堵剂的种类 ①水泥类堵水剂:这是最早使用的堵水剂,利用它凝固后的不透水性进行封堵,通常用于打水泥塞封下层水;挤入窜槽井段封堵窜槽水,或挤入水层堵水。由于价格便宜,强度大,可以用于各种温度,至今仍在研究和使用。主要产品有水基水泥、油基水泥、活化水泥及微粒水比。由于水泥颗粒大,不易进入中低渗透性地层,因而用挤入水层的方法诸水时,封堵强度不高,成功率低,有效期短。长时间以来这类堵剂的应用范围受到限制。最近研制成功的微粒水泥和新型水泥添加剂给水泥类堵剂带来了新的活力。 ②树脂型堵剂:树脂型堵剂是指由低分子物质通过缩聚反应产生的高分子物质,树脂按受热后性质的变化可分为热固性树脂和热塑性树脂两种。非选择性堵剂常采用热固性树脂,如酚醛树脂、环氧树脂、脲醛树脂、糖醇树脂、三聚氰胺-甲醛树脂等。 (a)脲醛树脂:脲与甲醛在NH4OH等碱性催化剂作用下缩聚成体型高分子化合物,称为脲醛树脂。 (b)环氧树脂:常用的环氧树脂有环氧树脂、环氧苯酚树脂和二烯烃环氧树脂。施工时,在泵注前可向液态环氧树脂中添加几种硬化剂,硬化剂和环氧树脂反应后使其聚合成坚硬惰性的固体。 (c)糖醇树脂:糖醇在酸存在时本身会进行聚合反应,生成坚固的热固性树脂。糖醇树脂堵水是先将酸液(80%的磷酸)打入欲封堵的水层,后泵入糖醇溶液,中间加隔离液(柴油)以防止酸与糖醇在井筒内接触。当酸在地层与糖醇接触混合后,便产生剧烈的放热反应,生成坚硬的热固性树脂,堵塞岩石孔隙。 综上所述,树脂类堵剂具有如下优点:可以注入地层孔隙并且具有足够高的强度,可以封堵孔隙、裂缝、孔洞、窜槽和炮眼;树脂固化后呈中性,与井下液体不反应,因而有效期长。据报道,每消耗1吨商品树脂堵剂,可增产原油186吨,经济效益显着。其缺点是:成本较高,无选择性,使用时通常仅限于静底周围径向30cm以内,使用前必须捡测处理层位并加以隔离,树脂固化前对水、表面活性剂、碱和酸的污染敏感,使用时必须注意。 ③无机盐沉淀型调剖堵水剂:该堵剂主要是硅酸钙堵剂。利用相对密度1.50-1.61的水玻璃和相对密度1.3-1.5的氯化钙溶液,中间以柴油隔离,依次挤入地层,使水玻璃与氯化钙在地层内相遇,则生成白色硅酸钙沉淀,堵塞地层孔隙。水玻璃与氯化钙的比例约为1:1,总用量可根据水层厚度、孔隙度及挤入半径确定。这种封堵剂来源广,成本低,施工安全简便,封堵效果好,解堵容易(高压酸化、碱液压裂),但在施工时必须采取有效保护措施,否则会堵塞油层、污染地层。 ④凝胶型堵剂:凝胶是固态或半固态的胶体体系,由胶体颗粒、高分子或表面活性剂分子互相连接形成的空间网状结构,结构空隙中充满了液体,液体被包在其中固定不动,使体系失去流动性,其性质介于固体和液体之间。凝胶分为刚性凝胶和弹性凝胶两类。 (a)硅酸凝胶:硅酸凝胶是常用的凝胶之一。在稀的硅酸溶液中加电解质或适当含量的硅酸盐溶液加酸,则生成硅酸凝胶,该凝胶软而透明,有弹性,其强度足以阻止通过地层的水流。其堵水机理如下:Na2SiO3溶液遇酸后,先形成单硅胶,后缩合成多硅胶。它是由长链结构形成的一种空间网状结构,在其网络结构的空隙中充满了液体,故成凝胶状,主要靠这种凝胶物封堵油层出水部位或出水层。硅酸凝胶的优点在于价廉且能处理井径周围半径1.5-3.0m的地层,能进入地层小空隙,在高温下稳定。其缺点是Na2SiO3完全反应后微溶于流动的水中,强度较低,需要加固体增强或用水泥封口。此外,Na2SiO3能和很多普通离子反应,处理层必须验证清楚.并在其上下隔开。 (b)氰凝堵剂:氰凝堵剂由主剂(聚氨酯)、溶剂(丙酮)和增塑剂(邻苯二甲酸二丁酯)组成,当氰凝材料挤入地层后,聚氨酯分子两端所含的异氰酸根与水反应生成坚硬的固

交联型聚丙烯酰胺堵水剂的制备

交联型聚丙烯酰胺堵水剂的制备1 刘机关,倪忠斌,熊万斌,徐亚鹏,封姣,陈明清 江南大学化学与材料工程学院,江苏无锡 ( 214036) E-mail:mqchen@https://www.360docs.net/doc/1e1408241.html, 摘要:以亲水性丙烯酰胺(AM)为主单体,N,N-亚甲基双丙烯酰胺(Bis-A)为交联剂,失水山梨醇单油酸酯(Span-80)为分散剂,在环己烷中进行反相悬浮聚合,制得了尺寸为微米级的聚丙烯酰胺交联微球(PAMCMS)。利用光学显微镜和扫描电子显微镜对PAMCMS的粒径进行观察分析,分别探讨了搅拌速率,引发剂过硫酸钾(KPS)用量、分散剂用量,环己烷与水的比例等因素对PAMCMS粒径的影响,并通过体积变化初步考察了PAMCMS的溶胀性能,为实际应用于油田堵水调剖提供了相应的技术保证。 关键词:聚丙烯酰胺;交联微球;粒径;溶胀性能 中图分类号:TQ322.4 文献标识码: A 聚丙烯酰胺及其衍生物是一类用途广泛的水溶性高分子,可用作絮凝剂、纸张增强剂、降滤失剂等[1-3],已被应用于水处理、造纸、石油开采等领域。其交联型聚合物由于具有吸水、保水、溶胀等性能,可以用作土壤保水剂、油田堵水剂、“尿不湿”材料[4,5]。国内外关于这类材料合成及应用的文献报道较多[4-8],但大多是通过共聚或接枝的方法,制备聚丙烯酰胺基复合材料或是对聚丙烯酰胺进行改性,而关于聚丙烯酰胺微球的制备及其性能研究的文献不多。近年来,有采用分散聚合[9],反相乳液聚合[10]和反相悬浮聚合[11]等方法合成不同粒径、不同用途的聚丙烯酰胺微球的报道,大多侧重于反应动力学或水溶液的流变学行为研究。在前期的工作中,采用大分子单体参与的分散聚合制得了单分散的聚丙烯酰胺微球[12],本研究针对目前国内外广泛采用的部分水解聚丙烯酰胺类凝胶型调剖堵水剂耐温、耐盐性差等缺点,采用反相悬浮聚合法,制备聚丙烯酰胺交联微球(PAMCMS),系统研究影响PAMCMS的粒径、粒径分布的因素,以找出有效控制其尺寸与分布的方法;利用PAMCMS 吸水后能够长时间保持溶胀,耐温、耐盐性优于传统凝胶型调剖堵水剂的特点,结合溶胀性能的初步测试,希望开发出一种性能优良的油田调剖堵水材料,并为油井的实际调剖堵水提供相应的理论依据与合成技术。 1. 实验部分 1.1 原料 环己烷(cyclohexane),分析纯; N,N-亚甲基双丙烯酰胺(Bis-A),分析纯;失水山梨醇单油酸酯(Span-80),分析纯;丙烯酰胺(AM),化学纯,均购自中国医药(集团)上海化学试剂公司,直接使用。过硫酸钾(KPS),分析纯,购自中国医药(集团)上海化学试剂公司,在去离子水中重结晶后使用。 1.2 PAMCMS的制备 室温下,在装有温度计、搅拌器、冷凝回流装置的四口瓶中加入预定量的分散剂Span-80和一定量的环己烷,控制一定的搅拌转速,搅拌混合均匀。将预定量的单体AM,交联剂Bis-A溶解在一定量的去离子水中,待其溶解完全后加入预定量的引发剂KPS,搅拌至KPS 完全溶解,将混合液加入四口瓶,基本配方见表1。将四口瓶置于50℃恒温水浴中,在N2 1本课题得到江苏高等学校优秀科技创新团队(苏教科[2007]5号)项目的资助。

高分子表面活性剂在表面施胶中的应用

摘要:表面活性剂在造纸中有很大的应用,例如在制浆、湿部、脱墨、涂布加工等方面。本文主要综述了几种主要的高分子表面活性剂如:阳离子淀粉,AKD 专用高分子表面活性剂,壳聚糖,聚乙烯醇,羧甲基纤维素等在表面施胶中的应用。 关键词:造纸、高分子表面活性剂、表面施胶。 表面施胶也叫纸面施胶,纸页形成后在半干或干燥后的纸页或纸板的表面均匀涂上胶料。施胶剂分松香型和非松香型两大类,非松香型施胶剂主要用于表面施胶。常用的表面施胶剂含有疏水基和亲水基,因此广义地说都是表面活性剂。表面施胶剂主要有变性淀粉、聚乙烯醇(PVA)、羧甲基纤维素(CMC)和聚丙烯酰胺(PAM)等。可根据不同的需要选择不同的表面活性剂,如:提高抗水性,可用AKD、分散松香、石蜡、硬脂酸氯化铬、苯乙烯马来酸酐共聚物及其他合成树脂胶乳等;提高抗油性,可加入有机氟化合物,如全氟烷基丙烯酸酯共聚物,全氟辛酸铬配合物,全氟烷基磷酸盐等;增加防黏性,可加入有机硅树脂;改善印刷性能,主要用变性淀粉、CMC、PVA等[1];改进干湿强度,可加入PAM、变性淀粉等;改善印刷光泽度和印刷发色性,主要用CMC、海藻酸钠、甲基纤维素、氧化淀粉等。为了提高表面施胶效果,通常采用两种或几种表面活性剂共用的方法。 1. 淀粉是一种天然高分子化合物,它是一种重要的表面施胶剂和纸张增强剂。在造纸工业中,薯类淀粉使用效果较好。天然未改性的淀粉粘度较高,流动性差,容易凝聚,用水稀释后易沉淀,故在表面施胶中常用各种改性淀粉。改性淀粉在较高浓度时仍有较低的粘度,并保持良好的溶解性、粘着力和成膜性能。用于表面施胶的改性淀粉主要有氧化淀粉、阳离子淀粉、阳离子型磷酸酯淀粉、羟烷基淀粉、双醛淀粉、乙酸酯淀粉、酸解淀粉。以下主要介绍阳离子淀粉。 阳离子淀粉通常是指淀粉在一定条件下与阳离子试剂反应制得的产物,阳离子试剂主要有叔胺盐类和季铵盐类阳离子试剂。阳离子淀粉还可以通过淀粉与阳离子型乙烯基单体通过自由基共聚法制得。阳离子淀粉作为表面施胶液的固含量和取代度DS(Degree of Substitutio)是影响表面施胶性能的两个非常重要的因素。阳离子淀粉的品种很多,按取代度来分,主要有低取代度(DS<0.1)和高取代

油井选择性堵水技术研究_谢水祥

油井选择性堵水技术研究 谢水祥 李克华 苑 权 朱忠喜 (江汉石油学院化学工程系,荆州434023) 摘 要 油井堵水技术分为机械和化学两大类,化学堵水又分为非选择性和选择性堵水,选择性堵水根据其使用溶剂的类型主要分为水基堵水剂、醇基堵水剂和油基堵水剂。 关键词 选择性堵水 化学封堵 堵水剂 收稿日期:2002-12-12。 作者简介:谢水祥,在读硕士,研究方向为油气田环境保护。 油井开发中,尤其是开发后期,常会遇到油井 出水问题。由于油井出水,油层能量降低,油层的最终采收率降低。因此,须及时注意油井出水动向,研究堵水方法,减少出水,提高采收率。在油井内采用的堵水方法分为机械和化学堵水两大类。目前,采用较多的是化学堵水,它利用化学作用对水层造成堵塞,这类化学剂品种多,发展快,效果显著。根据堵水剂对油层和水层的堵塞作用,化学堵水又分为非选择性和选择性堵水,随着生产和环保方面要求的进一步提高,选择性堵水越来越受到油田的青睐,现已开发出许多选择性堵水剂并投入应用112。1 选择性堵水与选择性堵水剂 选择性堵水主要用于不易用封隔器将它与油层分隔开的水层。选择性堵水剂是利用油和水的差别或油层和水层的差别,达到选择性堵水的目的。选择性堵水剂的种类较多,根据其使用溶剂类型,可分为水基堵水剂、醇基堵水剂和油基堵水剂,它们分别由水、醇和油作溶剂或分散介质。1.1 水基堵水剂1.1.1 凝胶类堵水剂 凝胶类堵水剂的分散介质是水,一般用于封堵高渗透层,使注水转向含油饱和层。其具有以下特性122:(1)注入的凝胶大大降低水的相对渗透率,但对油的相对渗透率影响较小;(2)在注水过程中,凝胶选择性地进入高含水层,可停止或减少水流入井内;(3)凝胶具有较高的稳定性,不会因反冲洗而降低有效期;(4)可用简单便宜的方法除去凝胶。尽管凝胶降低了水的渗透率而没有影响油的渗透率,但产油层仍可能受到伤害。 20世纪80年代,法国石油研究院开始研究 相对渗透率改善剂堵水技术132,相对渗透率改善剂(RPM)由高分子水溶性聚合物或弱凝胶组成,是有效并应用较广的系列堵水剂。高分子水溶性聚合物和弱凝胶有利于降低水的相对渗透率,减少层内矛盾,对油或气体的相对渗透率影响很小。Whittington L E 等142 研制了一种凝胶堵水剂,已用于现场深部封堵。这种凝胶是用羟丙基纤维素HPC (水溶性聚合物)和十二烷基硫酸钠SDS (表面活性剂)溶液与盐水混合制得,其优点是不需加入铬或铝类的金属盐作引发剂或活化剂,在施工过程中就能在地层中生成凝胶。使用这种方法,不必对特定的油藏进行处理。 在不同渗透率的地层中进行堵水作业,Mobil Oil 公司提出顺序凝胶的新方法152。其方法是:(1)制备含有足以生成第一次凝胶的组分的水溶液;(2)使组分不在原地成胶,进入较大渗透层后,进行第一次凝胶;(3)将含有功能性组分的溶液置于第一次凝胶中进行第二次凝胶,制得更耐地层条件的凝胶。这种方法适用于提高采收率,可应用于注水、注C O 2等采油作业中。 石油大学王富华等162研制开发了一种凝胶颗粒选择性堵水剂JAW,在交联剂存在下使丙烯酸钠、丙烯酰胺、季铵盐单体及抗高温单体进行引发聚合,制得交联聚合物凝胶,机械破碎后在胶体磨中研磨至一定粒度,制得JAW 。室内评价表明,该堵剂抗温性良好(<130e ),堵水率高(>92%),堵油率低(<8%),具有良好的封堵选择性,可用于油井和水井的深部堵水。1.1.2 聚合物堵水剂 12 精 细 石 油 化 工 进 展 ADVANCES IN FINE PE TROC HE MICALS 第4卷第1期

堵水剂的制备和性质

中国石油大学油田化学实验报告 实验日期:2015.4.23成绩:班级:石工1205学号:12021211姓名:张延彪教师: 同组者:秦胜涛 实验六堵水剂的制备与性质 一、实验目的 1. 学会几种堵水剂的制备方法。 2. 掌握几种堵水剂的形成机理及其使用性质。 二、实验原理 堵水剂是指从油、水井注入地层,能减少地层产出水的物质。从油井注入地层的堵水剂称油井堵水剂(或简称堵水剂),从水井注入地层的堵水剂称为调剖剂。 常用的堵水剂有冻胶型堵水剂、凝胶型堵水剂、沉淀型堵水剂和分散体型堵水剂,这些堵水剂的形成机理和使用性质各不相同。 1. 冻胶型堵水剂 冻胶(如锆冻胶)是由高分子(如HPAM)溶液转变而来,交联剂(如锆的多核羟桥络离子)可以使高分子间发生交联,形成网络结构,将液体(如水)包在其中,从而使高分子溶液失去流动性,即转变为冻胶。 锆冻胶是油田常用的冻胶型堵水剂。锆冻胶是由锆的多核羟桥络离子与HPAM中的羧基发生交联反应而形成的。体系的pH值可影响多核羟桥络离子的形成及HPAM分子中羧基的量,因此,pH值可影响锆冻胶的成冻时间和冻胶强度。 2. 凝胶型堵水剂 凝胶是由溶胶转变而来。当溶胶由于种种原因(如电解质加入引起溶胶粒子部分失去稳定性而产生有限度聚结)形成网络结构,将液体包在其中,从而使整个体系失去流动性时,即转变为凝胶。油田堵水中常用的是硅酸凝胶。硅酸凝胶由硅酸溶胶转化而来,硅酸溶胶由水玻璃(又名硅酸钠,分子式Na2O?mSO2)与活化剂反应生成。活化剂是指可使水玻璃先变成溶胶而随后又变成凝胶的物质。盐酸是常用的活化剂,它与水玻璃的反应如下: Na 2O?mSiO 2 + 2HCl → H 2 O?mSiO 2 + 2NaCl 由于制备方法不同,可得两种硅酸溶胶,即酸性硅酸溶胶和碱性硅酸溶胶。这两种硅酸溶胶都可在一定的条件(如温度、pH值和硅酸含量)下,在一定时间内胶凝。 评价硅酸凝胶堵水剂常用两个指标,即胶凝时间和凝胶强度。胶凝时间是指硅酸体系自生成至失去流动性的时间。凝胶强度是指凝胶单位表面积上所能承受的压力。 3. 沉淀型堵水剂 沉淀型堵水剂由两种可反应产生沉淀的物质组成。水玻璃-氯化钙是油田最常用的沉淀型 Na 2O?mSiO 2 + CaCl 2 → CaO 2 ?mSiO 2 + 2NaCl 4. 悬浮体型堵水剂 悬浮体是指溶解度极小但颗粒直径较大(大于10-5cm)的固体颗粒分散在溶液中所形成的粗分散体系。分散体系中的固体颗粒可以在多孔介质的喉道处产生堵塞作用。油田中常用的分散体型

苯乙烯-丙烯酸(SAE)聚合物表面施胶剂与AKD表面施胶剂的区别

苯乙烯-丙烯酸(SAE)聚合物表面施胶剂与AKD表面施胶剂的区别 2010年4月19日 一、前言: 在生产、储存和使用的过程中,纸张纤维都会吸收空气和环境中的水蒸气因而导致纸张水分增加、强度降低,进而影响纸张的使用性能。尤其是包装纸箱所用的牛皮纸、瓦楞纸和箱板纸,吸潮后会导致纸板、纸箱变软;在贮存、使用和运输过程中,纸箱变形,影响包装箱的外观质量、影响包装物的储存和码垛;甚至还会损坏包装箱内的商品。 为了解决纸张吸水和返潮的问题,通常要在造纸过程中添加抗水性能的化学品,即术语所称“施胶剂”。最初的施胶工艺,主要是在纸浆的制浆过程中,直接在浆内添加胶体材料,即“浆内施胶”,这样可以提高纸张的抗水性,避免包装纸吸潮后影响其使用性能。但是,经过多年的实践后发现,“浆内施胶”存在两个问题,一是浆内施胶会影响纸张纤维之间的结合力,会降低包装纸的强度;二是浆内施胶量较大,额外增加了过多的成本。另外,包装纸在印刷过程中,经常会出现掉粉、掉渣(纤维脱落)以及油墨吸收不均匀和渗透等现象,影响包装纸的印刷质量,浆内施胶无法改善这种现象。为此,开始尝试在纸张的表面涂覆一层胶体材料,可以起到防止掉粉、掉渣以及提高纸张印刷质量的作用,同时还能阻止水蒸气渗透到纸张内部,起到了浆内施胶的作用,因此,“表面施胶剂”应运而生。 表面施胶剂(简称表胶)是指在纸张表面涂加的旨在增加纸张抗水性的一种化学胶剂,既可以提高纸张的印刷性能,同时还可以防止纸张吸水返潮而导致强度降低。相对于浆内施胶,表面施胶剂的成本只是浆内施胶的15-30%,具有很好的性价比,自2002年以后,发展迅速。 长期以来,低档包装纸例如普通瓦楞纸、箱板纸均不施胶,随着越来越多的大型纸机投产,产能相对过剩,大型纸机生产的低克重表胶纸能够取代小厂生产的高克重无表胶的普通纸,例如75克表胶高强瓦楞纸可以取代90-100克的无表胶普通瓦楞纸。因此从金融危机之后,低速纸机生产的未表胶的低档纸正陆续被替代,一些小厂在先进产能淘汰落后产能的客观规律作用下而相继倒闭。近年来新上的中速纸机大多增加了表面施胶的装置,因此表面施胶是包装纸施胶的发展趋势。同时,由于浆内施胶量大成本高,正在逐步被表面施胶剂取代。总体而言,表面施胶剂市场前景广阔。 二、表面施胶剂的简要介绍: 表面施胶剂的种类很多,大体可分为天然高分子和化学合成高分子两大类。淀粉及改性淀粉是典型的天然高分子,但其性能有很大的局限性;目前将淀粉及改性淀粉与化学合成高分子配合起来使用,已取得了良好的效果。从离子型方面,表面施胶剂又分为阳离子型、阴离子型和非离子型表面施胶剂。 实践表明,用于包装纸的表面施胶剂,阳离子型效果最好。目前最为普及的是阳离子型苯乙烯丙烯酸酯聚合物乳液(简称苯丙乳液);这类产品合成工艺稳定、操作简便,在表面施胶后成膜性和抗水性好,是应用和发展最快的品种。 在表面施胶的机理方面,业内人士已普遍达成了如下共识: 1)阳离子表面施胶剂,要与配合施胶的大量淀粉链状分子进行交联反应,形成以聚合物高分子为核心节点的网状结构覆盖在纸张的表面,并形成一个致密的抗水薄膜,从而阻止水蒸气进入与纸张内部与纤维结合,防止纸张返潮;同时还可以防止纸张掉粉掉渣提高印刷质量。2)表面施胶剂的聚合物高分子还需要与纸张纤维有良好的结合,减少表面施胶剂向纸张内

选择性堵水剂的性能评价

选择性堵水剂的性能评价 我国油田普遍采用注水开发方式,地层非均质性严重,在开发中后期含水上升速度加快,目前油井生产平均含水已达80%以上。如何提高高含水期的原油采收率是石油工业界普遍关注的一个问题。 根据堵水剂对油层和水层的堵塞作用,化学堵水可分为非选择性堵水和选择性堵水。选择性堵水是指堵剂只在水层造成堵塞而对油层影响甚微。为了在开采的同时保护油气层,研究选择性化学堵剂有重要的意义。 以部分水解聚丙烯酰胺为主体,以重铬酸钠为交联剂来进行实验,目的是找出一种成胶时间合适,凝胶强度适宜且经济实用的弱凝胶选择性化学堵水剂。在实验过程中通过分别改变聚丙烯酰胺、木质素磺酸钠、重铬酸钠、硫脲、硫代硫酸钠和碳酸钠的加入剂量来进行交联实验,并将实验样品分别置于不同的温度下养护,定期观察其成胶状况、测量其成胶粘度,再经过对比、筛选,最终选定各组分的最佳加量:HPAM为0.8%(以溶液质量计,下同),交联剂重铬酸钠(Na2Cr2O4)为0.6%,pH值调节剂碳酸钠(Na2CO3)为0.3%,还原剂硫代硫酸钠(Na2S2O3)为0.4%,抗氧剂硫脲为0.4%,增强剂木质素磺酸钠为2.0%。 提高采收率;选择性;化学堵水剂;交联;弱凝胶

第1章概述 1.1 国内外化学堵水技术研究现状 1.1.1 国外油田化学堵水调剖技术研究和发展现状 国外早期使用非选择性的水基水泥浆堵水,后来发展为应用原油、粘性油、憎水的油水乳化液、固态烃溶液和油基水泥等作为选择性堵剂,1974年Needham等人[1]指出,利用聚丙烯酰胺在多孔介质中的吸附和机械捕集效应可有效地封堵高含水层,从而使化学堵水调剖技术的发展进入了新的阶段。 70年代末到8O年代初油田化学堵水技术得到了较好的应用和发展,后来发展成为注水井调剖技术、深部调剖技术。下面简要介绍有关方面的研究和应用情况。 1.1.1.1 堵水调剖物理模拟研究 国外许多学者对堵水调剖的机理、堵剂的封堵性能和堵剂的选择性进行了研究。White[1]利用岩心实验研究了水解聚丙烯酰胺的堵水作用机理,可归纳为:吸附理论即亲水膜理论;动力捕集理论;物理堵塞理论。交联聚合物的封堵作用主要表现在物理堵塞上。Dawe,Liang等人[1]分别利用微观模型和Berea砂岩岩心实验研究了聚合物冻胶堵水不堵油的原因,其结果认为油水流动通道的分离可能是造成冻胶对油水相渗透率不均衡减少的根本原因。 Seright[1]利用Berea砂岩采用示踪剂等技术研究了渗透率、堵后注水速度、岩性、冻胶性能等因素对堵剂封堵性能的影响,结果认为强冻胶可使不同渗透率的岩心减少到近似同一个值,对于弱冻胶,渗透率越高,封堵率越大;堵后的残余阻力系数随注水速度的增大而减少,并具有较好的双对数关系。总之,国外在堵水调剖物理模拟方面做了大量的研究工作,其中许多结论对实践具有较大的指导意义。 1.1.1.2 堵剂研究和应用 近20年来,水溶性聚合物类堵剂在油田得到了广泛的应用。独联体各国对聚

苯丙乳液类施胶剂相关介绍2012.03.10

苯丙乳液类(SAE)阳离子表面施胶剂与AKD 表面施胶剂的区别 一、前言: 在生产、储存和使用的过程中,纸张纤维都会吸收空气和环境中的水蒸气因而导致纸张水分增加、强度降低,进而影响纸张的使用性能。尤其是包装纸箱所用的牛皮纸、瓦楞纸和箱板纸,吸潮后会导致纸板、纸箱变软;在贮存、使用和运输过程中,纸箱变形,影响包装箱的外观质量、影响包装物的储存和码垛;甚至还会损坏包装箱内的商品。 为了解决纸张吸水和返潮的问题,通常要在造纸过程中添加抗水性能的化学品,即术语所称“施胶剂”。施胶方式可分为浆内施胶和表面施胶。这样可以提高纸张的抗水性,避免包装纸吸潮后影响其使用性能。但是,经过多年的实践后发现,“浆内施胶”存在两个问题,一是浆内施胶会影响纸张纤维之间的结合力,会降低包装纸的强度;二是浆内施胶量较大,额外增加了过多的成本。另外,包装纸在印刷过程中,经常会出现掉粉、掉渣(纤维脱落)以及油墨吸收不均匀和渗透等现象,影响包装纸的印刷质量,浆内施胶无法改善这种现象。为此,开始尝试在纸张的表面涂覆一层胶体材料,可以起到防止掉粉、掉渣以及提高纸张印刷质量的作用,同时还能阻止水蒸气渗透到纸张内部,起到了浆内施胶的作用。因此,“表面施胶剂”应运而生。 表面施胶剂(简称表胶)是指在纸张表面涂加的旨在增加纸张抗水性的一种化学胶剂,既可以提高纸张的印刷性能,同时还可以防止纸张吸水返潮而导致强度降低。相对于浆内施胶,表面施胶剂的成本只是浆内施胶的15-30%,具有很好的性价比,自2002 年以后,发展迅速。 长期以来,低档包装纸例如普通瓦楞纸、箱板纸均不施胶,随着越来越多的大型纸机投产,产能相对过剩,大型纸机生产的低克重表胶纸能够取代小厂生产的高克重无表胶的普通纸,例如75 克表胶高强瓦楞纸可以取代90-100 克的无表胶普通瓦楞纸。因此从金融危机之后,低速纸机生产的未表胶的低档纸正陆续被替代,一些小厂在先进产能淘汰落后产能的客观规律作用下而相继倒闭。近年来新上的中速纸机大多增加了表面施胶的装置,因此表面施胶是包装纸施胶的发展趋势。同时,由于浆内施胶量大成本高,正在逐步被表面施胶剂取代。 二、表面施胶剂的简要介绍: 表面施胶剂的种类很多,大体可分为天然高分子和化学合成高分子两大类。淀粉及改性淀粉是典型的天然高分子,但其性能有很大的局限性;目前将淀粉及改性淀粉与化学合成高分子配合起来使用,已取得了良好的效果。从离子型方面,表面施胶剂又分为阳离子型、阴离子型和非离子型表面施胶剂。 实践表明,用于包装纸的表面施胶剂,阳离子型效果最好。目前最为普及的是阳离子型苯乙烯丙烯酸酯聚合物乳液(简称苯丙乳液);这类产品合成工艺稳定、操作简便,在表面施胶后成膜性和抗水性好,是应用和发展最快的品种。 1)阳离子表面施胶剂,要与配合施胶的大量淀粉链状分子进行交联反应,形成以聚合物高 分子为核心节点的网状结构覆盖在纸张的表面,并形成一个致密的抗水薄膜,从而阻止水蒸气进入纸张内部与纤维结合,防止纸张返潮;同时还可以防止纸张掉粉掉渣提高印刷质量。 2)表面施胶剂的聚合物高分子还需要与纸张纤维有良好的结合,减少表面施胶

中国石油大学堵水剂制备与性能评价

中国石油大学油田化学实验报告 实验日期: 成绩: 班级: 学号: 姓名: 教师: 孙铭勤 同组者: 堵水剂的制备与性能评价 一、实验目的 1、学会冻胶型堵水剂的制备方法,并掌握堵水剂的形成机理及作用性质。 2、了解影响堵水剂交联性能的因素。 3、掌握测定堵水剂交联强度的方法。 二、实验原理 1、常用堵水剂 堵水剂是指从油、水井注入地层,能减少地层产出水的物质。从油井注入地层的堵水剂称油井堵水剂(或简称堵水剂),从水井注入地层的堵水剂称为调剖剂。 常用的堵水剂有冻胶型堵水剂、凝胶型堵水剂、沉淀型堵水剂和分散体型堵水剂,这些堵水剂的形成机理和使用性质各不相同。 (1)冻胶型堵水剂 冻胶(如铬冻胶)是由高分子(如HPAM )溶液转变而来,交联剂(如铬的多核羟桥络离子)可以使高分子间发生交联,形成网络结构,将液体(如水)包在其中,从而使高分子溶液失去流动性,即转变为冻胶。 以亚硫酸钠和重铬酸钾作为交联剂为例: 亚硫酸钠将重铬酸钠中的+6Cr 还原成+3Cr ,反应方程式如式下: O H SO Cr H SO O Cr 22432327243283++→++-++-- +3Cr 的释放,并通过络合、水解、羟桥作用以及进一步水解羟桥作用形 成+3Cr 的多核羟桥络离子,反应结构式如下所示: 水合作用: ++?→←+36223])([6O H Cr O H Cr 水解作用: + +++?→←H OH O H Cr O H Cr 252362])([])([

(2)凝胶型堵水剂 凝胶是由溶胶转变而来。当溶胶由于种种原因(如电解质加入引起溶胶粒子部分失去稳定性而产生有限度聚结)形成网络结构,将液体包在其中,从而使整个体系失去流动性时,即转变为凝胶。油田堵水中常用的是硅酸凝胶。硅酸凝胶 由硅酸溶胶转化而来,硅酸溶胶由水玻璃(又名硅酸钠,分子式Na 2O?mSO 2 )与活化 剂反应生成。活化剂是指可使水玻璃先变成溶胶而随后又变成凝胶的物质。盐酸是常用的活化剂,它与水玻璃的反应如下: Na 2O?mSiO 2 + 2HCl → H 2 O?mSiO 2 + 2NaCl 由于制备方法不同,可得两种硅酸溶胶,即酸性硅酸溶胶和碱性硅酸溶胶。这两种硅酸溶胶都可在一定的条件(如温度、pH值和硅酸含量)下,在一定时间内胶凝。 评价硅酸凝胶堵水剂常用两个指标,即胶凝时间和凝胶强度。胶凝时间是指硅酸体系自生成至失去流动性的时间。凝胶强度是指凝胶单位表面积上所能承受的压力。 (3)沉淀型堵水剂 沉淀型堵水剂由两种可反应产生沉淀的物质组成。水玻璃-氯化钙是油田最常用的沉淀型堵水剂,它通过如下反应产生沉淀: Na 2O?mSiO 2 + CaCl 2 → CaO 2 ?mSiO 2 + 2NaCl (4)悬浮体型堵水剂 悬浮体是指溶解度极小但颗粒直径较大(大于10-5cm)的固体颗粒分散在溶液中 所形成的粗分散体系。分散体系中的固体颗粒可以在多孔介质的喉道处产生堵塞作用。油田中常用的分散体型堵水剂是粘土悬浮体型堵水剂。粘土悬浮体中的粘土颗粒可用聚合物(如HPAM)絮凝产生颗粒更大、堵塞作用更好的絮凝体堵水剂。絮凝是聚合物(HPAM)在粘土颗粒间通过桥接吸附形成。 2、影响堵水剂交联的因素 (1)pH值 pH值的降低或升高都可影响堵水剂体系的交联时间。以铬冻胶为例,pH 值降低或升高,都可延迟铬冻胶的交联时间,但是酸性条件下形成的铬冻胶比碱性条件下形成的铬冻胶稳定(氢氧化锆在碱性条件下出现沉淀)。 (2)温度 温度会对堵水剂体系的交联时间产生较大的影响。一般情况下,随着温度的升高,堵水剂体系的交联时间会大大缩短。在低温下,堵水剂体系的交联较慢,甚至由于温度过低,堵水剂体系根本不会交联。但是高温会使堵水剂体系中的成胶液(聚丙烯酰胺溶液)热降解(聚丙烯酰胺的热降解温度为93℃),因此在使用时应限制一定的温度。 (3)成胶液与交联液的配比 成胶液(如聚丙烯酰胺溶液)与交联液的配比是影响堵水剂体系交联时间的重要因素之一。实验证明,交联液(如氢氧化锆溶液)在配比中的比例越小,堵水剂体系的交联时间就越长。

选择性堵剂的种类

选择性堵剂的种类 选择性堵水适用于不易用封隔器将油层与待封堵水层分开的施工作业。尽管选择性堵剂的作用机理有很大不同,但它们都是利用油和水、出油层和出水层之间的性质差异进行选择性堵水的。这类堵剂按分散介质的不同可分为3类:水基堵剂、油基堵剂和醇基堵剂,它们分别以水、油和脂及醇作溶剂配制而成。 ①水基堵剂:水基堵剂是选择性堵剂中应用最广、品种最多、成本较低的一种堵剂,它包括各类水溶性聚合物、泡沫、水包:油型乳状液及某些皂类等。其中最常用的是水溶性聚合物。 (a)聚丙烯酰胺(PAM):以聚丙烯酰胺为代表的水溶性聚合物是目前国外使用最广泛和最有效的堵水材料。这种堵剂溶于水而不溶于油,注入地层后可以限制井内出水而不影响油气的产量。处理时不需要测定水源或封隔层段,处理费用低。聚丙烯酰胺是一种高分子聚合物,分子结构属线型高分子化合物,交联后其结构属体型高分子,形成网状的三维空间结构。其堵水机理是部分水解的聚丙烯酰胺分子上的酰胺基和羧基影响着分子链的展开程度和吸附能力,其选堵能力表现在流体阻力上,用来解释残余阻力的机理是:吸附、捕集和物理堵塞。 (b)部分水解聚丙烯腈(HPAN):水解聚丙烯腈作为一种选择性堵水剂主要用于地层水中多价金属离子含量高的地层。其特点是与地层水中的电解质作用形成不溶的聚丙烯酸盐,但沉淀物的化学强度低,形成的聚丙烯酸钙是溶解可逆的。水解聚丙烯酸盐沉淀物存在淡化问题,即在淡水中由于析出离子开始变软,最后溶解。 ②油基堵剂: (a)有机硅类堵剂:有机硅类化合物包括SiCl4、氯甲硅烷和低分子氯硅氧烷等。它们对地层温度适应性好,可用于一般地层温度,也可用于高温(200℃)地层。羟基卤代甲硅烷是有机硅化合物中使用最广泛且易水解、低粘度的液体,其通式是RnSiX4-n,其中,R 为羟基,X为卤素(F、Cl、Br、I),n为1-3的整数。 (b)聚氨酯:这类堵剂是由多羟基化合物和多异氰酸酯聚合而成,聚合对保持异氰酸基(--NCO)的数量超达羟基(--OH)的数量,即可制得有选择性堵水作用的聚氨酯(c)稠油类堵剂:稠油类堵剂包括活性稠油、偶合稠油和稠油固体粉末等。 ③醇基堵剂:醇基堵剂包括:松香二聚物、醇基复合堵剂等,应用较少。 综上所述,在选择性堵剂中,聚合物堵剂、稠油堵剂引起人们重视。部分水解聚丙烯酰胺有独特的堵水选择性,且易于交联,适用于不同渗透率地层。稠油堵剂是唯一一种可以回收使用的堵剂,但使用时要注意地层的预处理,使地层被油润湿并增加水层的含油饱和度以利于稠油的进入。

表面施胶剂的种类及作用

表面施胶剂的种类及作用 许夕峰 靳光秀 梁福根 吴晓敏 (杭州传化华洋化工有限公司,杭州311231) 摘 要:本文对表面施胶剂进行了分类,并对每类产品的性能及在不同纸种中所起的作用进行了介绍。 关键词:表面施胶剂 造纸 印刷适应性 1 前言 施胶的目的是使纸或纸板具有抗拒液体(特别是水和水溶液)扩散和渗透的能力。表面施胶[1,2]指的是湿纸幅经干燥部脱除水分至定值后,在纸的表面均匀地涂施适当的胶料的工艺过程。在现代的造纸技术中,表面施胶已成为纸页表面施胶处理的主要形式,其作用不仅仅局限于赋予纸张一定的抗液性,在某些情况,则更加强调其对纸张印刷性能、纸张表面性能的改善。因此,也有将表面施胶称为表面改性或表面增强的。 近年来,随着纸张表面施胶工艺的发展,许多化学品公司都研发生产出能适合纸张表面施胶用的化学品。本文将主要介绍表面施胶化学品的种类及其在不同纸种中发挥的作用。 2表面施胶剂的种类 2.1传统表面施胶剂 淀粉是最常用的载体,也是施胶压榨中用量最大的化学品。有关这方面的文献报道很多[3,6],这里需强调的是阳离子淀粉及酶转化淀粉。阳离子淀粉[7]可与纤维形成离子键,因此在损纸回抄的过程中可更多的留在纤维表面,降低白水的COD,有利于环保。酶转化淀粉[8]是一种生物变性淀粉,其转化结果与氧化淀粉相似,都是将淀粉的长分子链水解为短分子链。酶转化淀粉的制备工艺比较简单,可现制现用,较常用的氧化淀粉,其最突出的优点是使用成本很低,因此越来越受到纸厂的青睐。 除淀粉外,PVA、CMC及海藻酸钠[9]有时也作为载体应用在施胶压榨上。这些化学品都具有良好的成膜性,可封闭纸张的毛细孔。 2.2合成聚合物表面施胶剂[10-14] 合成聚合物表面施胶剂在现代造纸工业中具有极其重要的地位。与传统的浆内施胶剂不同,它们是专门为表面施胶而设计的,是目前表面施胶剂的主流产品。该种表面施胶剂主要可分为三种类型:①水溶性聚合物表面施胶剂(SMA及SAA类);②聚合物水分散液表面施胶剂(SAE类):③聚氨酯水分散液表面施胶剂(PUD类)。 2.2.1水溶性聚合物表面施胶剂[15-18] 这些水溶性聚合物主要是苯乙烯-马来酸酐共聚物(SMA类)及苯乙烯-丙烯酸共聚物(S 从类)的铵盐、钠盐或混合盐。产品随着纸机系统向中碱性转变而逐渐兴起,主要用来克服浆内滥用AKD后,纸面摩擦系数的过分降低。 SMA、SAA均为阴离子聚合物,其水溶性来自于羧酸盐的解离,因此不能在低pH环境中使用。SMA、SAA类产品的作用发挥,往往要借助某些阳离子物质。如聚合物长链中的羧酸根离子在A13+的协助下吸附在纸页表面,而疏水的苯乙烯基团朝向纸面外,从而赋予纸页一定的抗水性。SMA、SAA产品也有一定的成膜能力,可改变纸页的透气度,增大原纸表面的摩擦系数。 影响这类产品性能的因素有很多。聚合物的分子量既影响产品的施胶效果,又影响产品的成膜能力。分子量高,其施胶效果越好,成膜能力越强。盐的类型也会影响聚合物的性质,一般来说,铵盐由于易于解离,使聚合物具有更好的施胶效果;而钠盐的成膜能力较强。与其它类型的聚合物表面施胶剂相比,这类产品在使用过程中会产生大量泡沫,从而影响施胶压榨效果的稳定性,限制了其在造纸工业中的应用。

选择性堵水剂的实验研究

第1章概述 1.1 我国堵水技术的发展历史和堵水剂的研究现状 我国自20世纪50年代开始进行堵水技术的探索和研究,20世纪70年代以来,大庆油田在机械堵水、胜利油田在化学堵水方面发展较快,其他油田也有相应的发展。20世纪80年代初提出了调整注水井吸水剖面来改善一个井组或一个区块整体的注水波及效率。20世纪90年代,随着油田含水不断升高,油田进入高含水期,调剖堵水技术也进入发展的鼎盛期,由单井处理发展到以调剖堵水措施为主的区块综合治理。提出了在油藏深部调整吸水剖面,迫使液流转向,改善注水开发采收率的要求,从而形成了深部调剖研究的新热点,相应地研制了可动性凝胶、弱凝胶、颗粒凝胶等新型化学剂。进入21世纪后,油田普遍高含水,油藏原生非均质及长期水驱使非均质性进一步加剧,油层中逐渐形成高渗通道或大孔道,使地层压力场、流线场形成定势,油水井间形成水流优势通道,造成水驱“短路”,严重影响油藏水驱开发效果。 近年来,油田堵水调剖技术出现了一些新动向,主要有:弱凝胶调驱技术,稠油热采井高温调剖技术,深井超深井堵水调剖技术,注聚合物油藏的调剖堵水技术,以及水平井堵水治水技术等。经过多年发展,已形成机械和化学两大类堵水调剖技术,相应地研制成功八大类近百种堵水调剖化学剂。研制了直井、斜井和机械采油井多种机械堵水调剖管柱,配套和完善了数值模拟技术,堵水调剖目标筛选技术等7套技术,达到年施工2000井次,增产原油60×104t的工业规模,为我国高含水油田挖潜,提高注水开发油田的开采效率做出了重要贡献。同时,开展了机理研究,进行了微观、核磁成像物模的试验研究,使堵水、调剖机理的认识更深一步。 分析我国堵水调剖技术的研究内容和应用规模,其发展大体经历了4个阶段。 (1)50至70年代:油井堵水为主,堵剂材料主要是水泥、树脂、活性稠油、水玻璃/氯化钙等。 (2)70至80年代:随着聚合物及其交联凝胶的出现,堵水调剖剂研制得以迅速发展,以强凝胶堵剂为主,作用机理多为物理屏障式堵塞,以调整近井地层吸水剖面及产液剖面为目的。 (3)90年代:油田进入高含水期,调剖技术进入鼎盛期,因处理目的不同,油田应用的堵剂体系有近100种,其中深部调剖(调驱)及相关技术得到快速发展,以区块综合治理为目标。

选择性堵水剂分类

选择性堵水主要用于不易用封隔器将它与油层分隔开的水层。选择性堵水剂是利用油和水的差别或油层和水层的差别,达到选择性堵水的目的。选择性堵水剂的种类较多,根据其使用溶剂类型,可分为水基堵水剂、醇基堵水剂和油基堵水剂,它们分别由水、醇和油作溶剂或分散介质。 1.1水基堵水剂 1.1.1凝胶类堵水剂 凝胶类堵水剂的分散介质是水,一般用于封堵高渗透层 ,使注水转向含油饱和层。其具有以下特性[2]:(1)注入的凝胶大大降低水的相对渗透率,但对油的相对渗透率影响较小;(2)在注水过程中 ,凝胶选择性地进入高含水层,可停止或减少水流入井内;(3)凝胶具有较高的稳定性,不会因反冲洗而降低有效期;(4)可用简单便宜的方法除去凝胶。尽管凝胶降低了水的渗透率而没有影响油的渗透率,但产油层仍可能受到伤害。 Whittington L E 等[4]研制了一种凝胶堵水剂,已用于现场深部封堵。这种凝胶是用羟丙基纤维素 HPC(水溶性聚合物)和十二烷基硫酸钠SDS(表面活性剂)溶液与盐水混合制得 ,其优点是不需加入铬或铝类的金属盐作引发剂或活化剂,在施工过程中就能在地层中生成凝胶。使用这种方法,不必对特定的油藏进行处理。 在不同渗透率的地层中进行堵水作业 ,Mobil Oil 公司提出顺序凝胶的新方法[5]。其方法是:(1)制备含有足以生成第一次凝胶的组分的水溶液;(2)使组分不在原地成胶,进入较大渗透层后,进行第一次凝胶;(3)将含有功能性组分的溶液置于第一次凝胶中进行第二次凝胶,制得更耐地层条件的凝胶。这种方法适 等采油作业中。 用于提高采收率,可应用于注水、注CO 2 石油大学王富华等[6]研制开发了一种凝胶颗粒选择性堵水剂JAW,在交联剂存在下使丙烯酸钠、丙烯酰胺、季铵盐单体及抗高温单体进行引发聚合,制得交联聚合物凝胶,机械破碎后在胶体磨中研磨至一定粒度,制得JAW。室内评价表明,该堵剂抗温性良好(<130℃),堵水率高(>92%),堵油率低(<8%),具有良好的封堵选择性,可用于油井和水井的深部堵水。 1.1.2聚合物堵水剂 目前使用的堵水剂中,聚合物占相当大的比例,聚合物只能处理那些油气层和水层分开的井,对于天然气地层孔隙出水,聚合物的效果最好。

油田堵水调剖剂综述

油田堵水调剖剂综述 王 超 (辽河石油职业技术学院,辽宁盘锦 124103) 摘 要:综述了油田应用的堵水调剖剂的种类及作用机理,重点介绍了化学堵水调剖剂的作用机理,最后对堵水调剖剂的研究及发展提出了建议。 关键词:堵水剂;调剖剂;应用;综述 中图分类号:TE358+.3 文献标识码:A 文章编号:1006—7981(2015)01—0067—02 国外堵水技术的研究和应用有近五十年的历史,注水井调剖技术是在油井堵水技术的基础上发展起来。50年代在应用原油、粘性油、憎水的油水乳化液,固态烃溶液和油基水泥等作堵水剂;60年代开始使用聚丙烯酰胺类高分子聚合物凝胶技术;70年代以来,Needham等人指出,利用聚丙烯酰胺在多孔介质中的吸附和机械捕集效应可有效地封堵高含水层,从而使化学堵水调剖技术的发展上了一个台阶;80年代末,美国和前苏联都推出一批新型化学剂,归纳起来,大致可分为水溶性聚合物凝胶类调剖技术,水玻璃类调剖技术和颗粒调剖剂等。目前,在国外,据统计有应用前景的调剖剂有长延缓交联型凝胶和弱凝胶体等。 我国自20世纪50年代开始进行堵水技术的探索与研究,20世纪70年代以来,大庆油田在机械堵水,胜利油田在化学堵水方面发展较快,其他油田也有相应得发展。20世纪80年代提出了注水井调整吸水剖面来改善一个井组或一个区块整体的注入水波及系数。20世纪90年代,随着油田含水不断升高,提出了在油藏深部调整吸水剖面,迫使液流转向,改善注水开发采收率的要求,从而形成了深部调剖研究的新热点,相应地研制可动性凝胶,弱凝胶,颗粒凝胶等新型化学剂[1]。 1 调剖堵水剂的种类 1.1 吸附型 这种调剖剂作用在孔隙或其它表面上,利用离子交换吸附,化学吸附或物理吸附及在表面薄层产生化学反应而改变表面的性质。属于这一类型的有亲水性物质,如水溶性聚合物的稀溶液;阴离子型或阳离子型电解质,如盐;憎水性物质,如低分子有机硅等[2]。 1.2 填充型 在水或烃类液体中具有不同分散性和悬浮性的有机和无机粉末,这类物质进入孔隙内或从液相中滤出后其物理状态不发生变化。填充剂对容纳介质的作用是以调剖剂颗粒与孔隙空间尺寸相匹配作为先决条件。这些物质可以在聚合物和树脂的胶体中,在无机黏合物分散体系中形成空间结构,有时伴随着表面化学反应。如粉状天然或人造铝代硅酸盐,石棉,石墨,石灰石,石英砂,硬质塑料的粉状非加工残渣等。 1.3 膨胀凝胶型 高分散度的有机或无机固相与水或非水分散介质组成的体系。他们的特征是具有空间结构。由于凝胶与流体,岩石,化学试剂的彼此相互作用,高温转化作用,以及引入化学活性填充剂等原因,可以得到部分固化产物。在这些固化产物中,由于部分取代凝聚黏合,可能形成互相渗透的并且具有广泛束缚能的凝聚-结晶结构[3]。 1.4 固化型 水分散或非水分散介质中有机和无机物质,在固化后形成整体的坚硬的结晶空间结构。属于这一体系的有:各种有机树脂和有机硅树脂中添加化学固化剂的分散体系,其固化物的封堵性能取决于化学键的强度,固体物质的微观结构,有无填充剂等;水合固化的无机分散体系,这种体系固化是形成新的水合物和它们的共生物,固化物封堵性能决定于调剖剂的化学组成,固化物内固相填充度和填充剂的增强性等[4]。 2 调剖堵水剂的作用机理 调剖堵水剂的种类很多,其封堵原理也不一样,但都是利用其一种或多种特点进行堵塞目的层。下面以几种常用堵剂为例,介绍其调剖堵水机理。2.1 颗粒类堵剂封堵机理 在固体颗粒型调剖剂注人地层的过程中,由于其流动遵循最小流动阻力原则,所以调剖剂绝大部 7 6  2015年第1期 内蒙古石油化工*收稿日期:2014-11-20

相关文档
最新文档