边坡稳定的极限平衡分析方法
边坡极限平衡分析方法及其局限性

边坡极限平衡分析方法及其局限性1.引言边坡稳定性问题是边坡工程中最常见的问题,边坡稳定性分析的核心问题是边坡安全系数的计算。
边坡稳定性分析的方法较多,极限平衡分析计算方法简便,且能定量地给出边坡安全系数的大小,方法本身已臻成熟,广为工程界接受,仍然是当今解决工程问题的基本方法。
本文比较分析边坡极限平衡方法中最常用的几种方法,同时对极限平衡法中的若干重要问题及其局限性进行探讨。
2. 极限平衡法基本原则边坡的滑面可以是圆弧、组合面( 比如圆弧和直线的结合) 或者由一系列直线定义的任意形状的面。
图1[3]以最一般的形式显示了作用于一个组合滑面上的所有力。
图1 条块受力分析[3]注: W为条块的总重力; N为条块底部作用的总法向力; S m为条块底部作用的切向力; E为条间的水平法向力( 下标L、R分别指土条的左、右侧) ; X为条间的竖向剪力; D 为外加线荷载; k W为通过每一条块的水平地震荷载; A为合成的外部水压力;R、f、x、e、d、h、a、ω、α为几何参数。
一般边坡经合理简化后均可看作是该模型的特殊形式。
在边坡稳定分析方法中,极限平衡原理主要包含以下四条基本原则[1,5]。
(1)刚体原则极限平衡法最基本的原则就是将滑体简化为刚体,即不考虑滑体的变形,不满足变形协调条件,这种破坏是以平面破坏模式为主。
(2)安全系数定义将土的抗剪强度指标c 和tan φ 降低一定的倍数,比如降低FS 倍,则土体沿着此滑裂面达到极限平衡。
安全系数为:⎰⎰+=ll s dl dl c F 00''tan τϕσ (1),c 和tan φ两个强度参数共用同一安全系数F S ,即按照同一比例衰减。
上述将强度指标的储备作为安全系数定义的方法被广泛采用。
(3)摩尔—库仑准则当土体达到极限平衡时, 正应力c ′和剪应力tan φ′满足摩尔-库仑强度准则。
如式(2)所示:''tan )sec (sec ϕααx u N x c T ∆-+∆=(2),式中,α 为土条底倾角,tan α=dy/dx ;u 为孔隙水压力。
边坡稳定性计算方法

边坡稳定性计算⽅法⼀、边坡稳定性计算⽅法在边坡稳定计算⽅法中,通常采⽤整体的极限平衡⽅法来进⾏分析。
根据边坡不同破裂⾯形状⽽有不同的分析模式。
边坡失稳的破裂⾯形状按⼟质和成因不同⽽不同,粗粒⼟或砂性⼟的破裂⾯多呈直线形;细粒⼟或粘性⼟的破裂⾯多为圆弧形;滑坡的滑动⾯为不规则的折线或圆弧状。
这⾥将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和⽅法。
(⼀)直线破裂⾯法所谓直线破裂⾯是指边坡破坏时其破裂⾯近似平⾯,在断⾯近似直线。
为了简化计算这类边坡稳定性分析采⽤直线破裂⾯法。
能形成直线破裂⾯的⼟类包括:均质砂性⼟坡;透⽔的砂、砾、碎⽯⼟;主要由内摩擦⾓控制强度的填⼟。
图 9-1为⼀砂性边坡⽰意图,坡⾼ H ,坡⾓β,⼟的容重为γ,抗剪度指标为 c 、φ。
如果倾⾓α的平⾯ AC ⾯为⼟坡破坏时的滑动⾯,则可分析该滑动体的稳定性。
沿边坡长度⽅向截取⼀个单位长度作为平⾯问题分析。
图9-1 砂性边坡受⼒⽰意图已知滑体ABC重 W,滑⾯的倾⾓为α,显然,滑⾯ AC上由滑体的重量W= γ(ΔABC)产⽣的下滑⼒T和由⼟的抗剪强度产⽣的抗滑⼒Tˊ分别为:T=W · sina和则此时边坡的稳定程度或安全系数可⽤抗滑⼒与下滑⼒来表⽰,即为了保证⼟坡的稳定性,安全系数F s 值⼀般不⼩于 1.25 ,特殊情况下可允许减⼩到 1.15 。
对于C=0 的砂性⼟坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α =β时,F s 值最⼩,说明边坡表⾯⼀层⼟最容易滑动,这时当 F s =1时,β=φ,表明边坡处于极限平衡状态。
此时β⾓称为休⽌⾓,也称安息⾓。
此外,⼭区顺层滑坡或坡积层沿着基岩⾯滑动现象⼀般也属于平⾯滑动类型。
这类滑坡滑动⾯的深度与长度之⽐往往很⼩。
当深长⽐⼩于 0.1时,可以把它当作⼀个⽆限边坡进⾏分析。
图 9-2表⽰⼀⽆限边坡⽰意图,滑动⾯位置在坡⾯下H深度处。
取⼀单位长度的滑动⼟条进⾏分析,作⽤在滑动⾯上的剪应⼒为,在极限平衡状态时,破坏⾯上的剪应⼒等于⼟的抗剪强度,即得式中N s =c/ γ H 称为稳定系数。
基于barton-bandis准则的边坡稳定性极限平衡分析方法

σn
(1)
式中ꎬτ 为结构面抗剪强度ꎬMPaꎻ σ n 为作用于结构面上
的法向应力ꎬMPaꎻ φ b 为结构面基本摩擦角ꎻJRC 为结构面粗
统传递系数法的计算结果对比分析ꎮ 案例分析表明ꎬ基于
糙度系数ꎻJCS 为结构面壁岩强度ꎬMPaꎻt = tan[ φ b + JRClg
稳定性分析时考虑到了岩体结构面所处的实际应力环境ꎬ是
1 基于 Barton - Bandis 准则的极限平衡分析方法
1. 1 Barton - Bandis 准则
Barton 等 [4] 在研究多组结构面的直剪特性和试验结果
收稿日期:2019 - 09 - 10
作者简介:陈欢欢(1993 - ) ꎬ男ꎬ河南三门峡人ꎬ硕士ꎬ主要研究方向:
岩体结构面力学性质与边坡工程稳定性评价ꎮ
67
滑力( 推力) 为 P i ꎬ在不考虑条间力时ꎬ有:
T i = W i sin α i + K e W i cos α i
(6)
N i = W i cos α i - K e W i sin α i
(8)
R i = c i l i + N i tan φ
两边对σ n 求导并转化ꎬ得:
0 前 言
究ꎬ得出了两者在计算稳定系数时的差异与不足ꎻ时卫民
一特定法向应力下的结构面抗剪强度参数ꎬ故本研究选择切
指出了强度储备法计算的滑坡推力偏小和超载
c = τ - σ n tan φ
因此ꎬ通过式(1) 两边对σ n 求导并转化ꎬ得:
∂τ = - πJRC { 2
图 1 推力传递简图
①条块重力 W i = γS i ( kN) ꎬ作用方向垂直向下并通过条
块底部滑面中点ꎬ浸润线以下采用岩土体的饱和容重ꎬ以上
边坡工程第4章边坡稳定性极限平衡条分法

✓ 条块刚性假设:对滑体进行条分后,各条块为刚性块体,只发生整
A
体运动而不产生条块内部的变形。
安全系数定义
Xi+1
ci li N i tan i
Fs
Ti
Ti
T fi
ci li N i tan i
Ti
Fs
R
Ei
hi Xi
Ti
Ni
7
3
W
衡状态下,滑体的未知量有:
(1) 安全系数Fs,1个;
O
平衡条件(各力对圆心O的力矩平衡)
(1) 滑动力矩:
(2) 抗滑力矩:
R
B
M s Wd
L
L
0
0
M R f dl R (c n tan )dl R
L
CA c R n tan dl R
A
C
W
d
0
注:(其中 n n l 是未知函数)
三维极限平衡条分法
提出背景
4.1
概述
4.1 概念
极限平衡条分法(下文简称条分法)起源于20世纪初期,由瑞典学者Petersson提出,后经过Fellenius等人修
正后在世界各国得到普遍推广,发展到70年代,条分法的工程实践案例已经有很多,其理论体系较为完备。
源方法:瑞典圆弧法(整体圆弧法)
平衡条件及其计算公式的区别。
4.1
目录
CONTENTS
4.2
4.3
4.4
4.5
4.6
概述
瑞典条分法
提出背景
基本假设
计算分析
计算方法评析
边坡稳定性分析方法

边坡稳定性分析方法至今为止,广大学者针对边坡稳定性的分析方法主要包括以下两个方面。
(一)定性分析方法此方法的研究对象主要包括边坡稳定性的影响因素、边坡失稳破坏时的力学作用、边坡的工程价值等,以及结合边坡的形成历史,从定性的角度解释和说明了边坡的发展方向及稳定性情况。
该方法的优势在于充分地分析了影响边坡稳定性中各个因素的相互作用关系,能够快速地评价边坡的自稳能力。
具体包括以下几个方面:(1)自然历史分析法自然历史分析法主要是通过分析边坡发育历史进程中的各种自然影响因素,包括边坡自身的变形情况、发育程度以及边坡分布区域的地貌特征、岩层性质、构造活动等,进而评价边坡的总体情况和稳定性特征,同时也可以预测将来可能导致边坡变形和失稳的触发因素。
该方法对边坡稳定性所做出的评价是从边坡的自然演化方面入手的。
(2)工程地质类比法工程地质类比法首先需要对边坡概况进行充分了解,包括组成边坡的岩体岩性、产状和结构面特征。
然后将目前已知的边坡稳定性情况和需要研究的边坡进行对比,记录两者之间的相似性与差异性,以此分析出所要研究边坡的稳定性情况和破坏模式。
为了能够准确地类比分析,就需要对现有边坡的环境地质条件进行全面的调查记录,并建立数据库。
该方法能够大致判断出研究对象的稳定性发展状况和趋势。
(3)图解法图解法通过在示意图上表示出边坡本身各类参数的组合关系来对边坡的稳定情况、破坏特征、破坏因素以及未来的发展方向进行分析。
常用的图解法包括极射赤平投影、边坡等比例投影等。
该方法的优势在于可以直观地表示影响边坡稳定性的因素。
(二)定量分析方法此方法主要通过数值法和极限平衡法等数学手段,依靠计算软件,更加精确地给出满足实际情况的边坡稳定性分析结果。
(1)极限平衡法主要是按照摩尔-库伦强度准则,通过分析作用在土体上的静力平衡条件来判断边坡的稳定性情况,最常见的极限平衡法是条分法,该方法经过100多年的发展,已经成为目前工程实践中使用最为广泛的一种方法。
边坡稳定分析的极限平衡有限元法

道丨路|工|程殄边坡稳定分析的极限平衡有限元法周龙华(广西骏通道桥工程建设监理有限责任公司,广西南宁530023)摘要:极限平衡软件SLOPE/W和有限元程序PU\XIS是目前岩土工程中常用的两种软件程序。
采用极限平衡法进行边坡分析时,需要将地面划分为若干垂直层面,并使用静态平衡方程计算各层面的安全系数(FOS)和应力,而有限元法则需要输入土的性质和单元的弹塑性参数。
文章比较了有限元法和极限平衡法在边坡稳定性分析中的应用,讨论了各种方法的适用性和局限性,并评估了边坡稳定性分析模型输出的实用性,可为边坡稳定性评估提供可靠依据。
关键词:有限元法;极限平衡;边坡稳定性中图分类号:U416. 1+4 文献标识码:A DOI: 10.1較82/ki.wCCSt.2021.01.022文章编号:1673- 4874(2021)01 -0078-03〇引言随着对基础设施和自然资源需求的不断扩大,对工程开挖和道路建设的要求也越来 越高。
在工程建设过程中,山体滑坡和地震等自然灾害是岩土工程师和地质学家面临的重要问题。
边坡的稳定性是施工前、施工中、施工后各利益相关者共同关心的重要问题,如果要改变边坡稳定技术,安全系数(FOS)的微小差异可能导致施工成本的巨大差异。
这一点很重要,因为目前还没有明确的证据表明,哪种方法能产生最可接受的结果[^]。
与基础设施有关的土质边坡失稳是一个持续存在的问题,因为边坡破坏危及公共安 全并导致昂贵的修复工作。
近几十年来,人们开发了一系列功能强大的边坡稳定分析设计软件包。
这些程序包括边坡稳定分析的极限平衡法和有限元法。
极限平衡法有许多局限性和不一致性,但被认为是最常用的方法。
随着技术进步,有限元程序简化了边坡稳定性分析。
SLOPE/W和PLAXIS是目前岩土工程师使用的两种常用软件程序。
SLOPE/W和PLAXIS分别用于极限平衡法和有限元法,每一个程序都被用来确定边坡的安全系数及其随后的设计要求。
边坡稳定的极限平衡法

极限平衡法在边坡工程设计中应用广泛,可以帮助工程师确定边坡的安 全系数和稳定性。
极限平衡法基本原理:通过计算土体的抗剪强度和滑动面的抗剪强度,判断边坡的稳 定性
计算参数:包括土体的内聚力、内摩擦角、黏聚力、黏聚力等
计算方法:采用极限平衡法计算公式,如瑞典圆弧法、毕肖普法等
边界元法:适用于非 连续介质问题,求解 速度快,但需要大量 的计算
极限平衡法与边界元法 的比较:极限平衡法适 用于连续介质问题,而 边界元法适用于非连续 介质问题,两者在求解 速度上都有优势,但都 需要大量的计算。
边坡稳定的极限平 衡法的发展趋势和 未来展望
极限平衡法在 边坡稳定分析 中的应用越来
性的弹性体
计算原理:通 过求解土体的 应力、应变和 位移方程,得 到边坡的稳定
安全系数
应用范围:适 用于各种土质 边坡,特别是 那些受水、温 度等因素影响
的边坡
Байду номын сангаас
基本假设:土体为连续、均匀、各向同性的弹性体
计算方法:通过求解土体的静力平衡方程,得到土体的应力状态和变形状态
适用范围:适用于土体变形较小、应力状态较简单的情况 优点:计算简单、易于理解,能够快速得到土体的应力状态和变形状态
越广泛
极限平衡法的 计算方法和软 件不断改进和
完善
极限平衡法与 其他分析方法 相结合,提高 边坡稳定分析 的准确性和可
靠性
极限平衡法在 边坡稳定预警 和防治中的应
用前景广阔
技术进步:随着科技 的发展,极限平衡法 的计算方法和技术将 不断完善和改进。
应用领域拓展:极限平 衡法将在更多领域得到 应用,如地质灾害防治、 土木工程、环境工程等。
常用的边坡稳定性分析方法

常用的边坡稳定性分析方法边坡稳定性分析是土木工程中的一个重要内容,用于评估边坡的稳定性,并确定边坡设计和防护措施。
下面列举了常用的边坡稳定性分析方法:1.切片平衡法:切片平衡法是一种基本的边坡稳定性分析方法,它假设边坡由一系列无限小的土体切片组成,并基于力平衡原理来确定各个切片的稳定条件。
该方法适用于简单边坡稳定性分析,但对复杂地质条件和荷载情况适用性有限。
2.极限平衡法:极限平衡法是一种常用的边坡稳定性分析方法,它假设边坡存在一个明确定义的滑动面,并基于达到平衡的最不利情况,即极限平衡状态来进行分析。
该方法包括切片法、极限平衡法、回缩平衡法等,可以考虑复杂地质条件和荷载情况,适用范围广。
3.数值模拟方法:数值模拟方法是一种基于计算机模拟的边坡稳定性分析方法,包括有限元法、边界元法、离散元法等。
这些方法能够模拟边坡的实际行为,并对多种复杂因素进行定量分析。
数值模拟方法可以更精确地预测边坡的稳定性,并对工程设计提供参考。
4.基于概率的方法:基于概率的方法将不确定因素考虑在内,通过概率分析来评估边坡的稳定性。
这些方法包括可靠度法、蒙特卡洛方法和贝叶斯法等。
基于概率的方法可以提供边坡发生滑移的概率,并在风险评估和安全设计中发挥重要作用。
5.特殊情况下的分析方法:在一些特殊情况下,常规的边坡稳定性分析方法可能不适用,需要采用一些特殊的分析方法。
例如,在边坡潜在失稳或发生滑坡时,可以使用临界状态平衡、能量平衡或地震动力学方法来分析边坡的稳定性。
总之,边坡稳定性分析是土木工程中的重要任务,通过使用上述方法中的一个或多个,可以评估边坡稳定性,从而制定出合理的边坡设计和防护措施,确保工程的安全可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Geotechnique, Vol. 15, No. 1,79-93.
讨论: 各种简化方法的局限性
瑞典法
N[W (c osruse)c]Q sintan cxsec
Fn1
N[W sinQdR ]
n1
Bishop’s 简化法
N[W (1ru)tan cx]/[ se (1 ctantan /F)]
Fn1
N[W sinQdR ]
n1
仅满足静力平衡条件的简化法
工程师团法 a
Lowe & Karafiath Method
()
2
传递系数法
解答
abp(x)s(x) 0
边坡稳定的极限平衡分析方法
极限平衡法
• 理论背景; • 计算方法; • 计算分析的电子表格
王仁,黄文彬,黄筑平,1992, 塑性力学引论(修正版),北京大学出版社
2pl 4Ms,
p2Ms/l
(a)
3p2l 3Ms,
pMs/2l
(b)
3p2l2pl5Ms,
p5Ms /8l
(c)
3p2l2pl5Ms,
a bp(x)s(x)t(x)d xM e0
s(x ) se e c( )ex a x p ta[ e n ( )d d d ]
t(x ) a x (s i c n o ta s )e n x a tp a e n ()d d d ]d
tan fo(x)f(x)
合理性条件
(a) Initial estimate,=0.117; (b) Critical failure mode,=0.007
Solutions to a Structural Mechanics Problem
A statically admissible stress field
Wi j, ji
ijnj Ti
ijkl kl
ntgc0
边坡稳定分析的下限解(近似) 垂直条分法
土质边坡稳定分析
• 满足力和力矩平衡的严格方法 • 简化方法
圆弧滑裂面 - 瑞典法, Bishop法 任意形状滑裂面 - 工程师团法, Lowe-Karafiath
边坡稳定极限平衡法(垂直条分法)c ec Ftane
tan
F
ce n tan e
力矩平衡方程
(GG)cos()[y(y)(yt yt)1 2y] Gcos(yyt 1 2y)GsinxddW xht 0
G sin yd d(G xco ) sd d(y x tG co ) s d dW h x t
力和力矩平衡方程的解
Chen & Morgenstern, 1983
abp(x)s(x) 0
pMs /4l
(d)
ANALYTICAL APPROACHES
The method of inclined slices
q = 111.4 kPa,
c=98 kPa,=30,γ=0.0 (a) A four slice failure mode, initial estimate, Fo=1.047;
ij ij W iu id vsT iu ids
Solutions to a Structural Mechanics Problem
A kinematically compatible deformation field
ij
ui, j
uj,i 2
Constitutive Law
C ij
G L se e c L ) ( G R [ ce o s R ) ( (W V ) se i n ) u s (s ee i c x n c e sc ee o c x Q s ce o )s ](
对各种简化方法的讨论
State of the art: Limit equilibrium and finite element analysis of slopes. Duncan, J. M. Journal of Geotechnical Engineering. 2019. Vol. 122, No. 7, July. 577-596.
力平衡方程
N si n T co Q s ( G co ) 0 s
N co T s si ( n W q x ) ( G si ) n 0
c o e s ( )d d G x sie n ( )d d G x p (x )
p ( x ) ( d d q W x ) si e n ) r u ( d d s W x e se i c c n e se ce c o d d sc W x e o ) s(
Ac
yt z yz
Spencer 法
基本假定
d/dx0
力平衡
tan
b
p(x)sece ()dx0 a
力矩平衡
bp (x )se e c ( )x (sin yco )d x s M e a
有关参考文献
• Chen, Zuyu and Morgenstern, N. R. 1983 Extensions to the generailised method of slices for stability analysis. Canadian Geotechnical Journal, Vol.20, No.1, pp,. 104119.
(1) 沿着划分的土条两侧垂直面上的剪应力不能超过在这个面上所能发挥的抗剪能力(参见 图2.2) ,即
F v[E taa n X vca (vyz)]F
(2) 为保证在土条接触面上不产生拉力,作用在土条上的有效力的合力作用点不应落在土条 垂直面的外面。
0Ac 1
式中:yt为作用在土条垂直面上的有效法向力的作用点的纵坐标值。
(b) Results of the optimization search, Fm=1.013; (c) Result of the optimization search using 16 slices, Fm= 1.006.
c=30 kPa,=0,γ=0.0 q = 154.25 kPa,
The Prandlt’s bearing capacity solution by the method of inclined slices