Nd:YAG激光器倍频特性 实验报告
准连续Nd:YAG倍频高功率绿光激光器的研究

o tc lmir rb a k t KTP c y t l n r c v t r q e c o b e AO s t h, n h n o t i e 0 W pia ro rc e . r s a i t a a iy fe u n y d u ld. Q— wi c a d t e b an d 2
Colg fP e iin I sr me ta d (p o lcr nc gn e ig. a j nv r i ' ni 3 0 7 , l e o r cso n tu n n ) t ee to is En ie rn Tin i U ie st l a j e n y, i n 0 0 2
准 连 续 Nd YAG 倍 频 高 功 率 绿 光 激 光 器 的 研 究 :
王 涛 。 ,姚 建铨 ,李 喜 福 ,郭 玲 ,陈 进 ,于 意 仲 ,王 志 勇 。 ,王 鹏 ‘ 。
(. 1 天津 大 学 精 密 仪 器 与 光 电 子 工 程 学 院 , 光 与 光 电 子 研 究 所 , 电 信 息 技 术 科 学 教 育 部 重 点 实 验 室 , 津 3 0 7 ;2 河 北 激 光 天 002 . 工 业 大 学 机 械 学 院 , 津 3 0 3 ;3 华 中 科 技 大 学 激 光 技 术 国 家 重 点 实 验 室 , 汉 4 0 7 ) 天 010 . 武 3 0 4
绿 光 输 出 2 。 Ow
关 键 词 : 光 5 2n 激 光 器 ;K 绿 3 m TP晶 体 ;内腔 倍 频
中 图分 类 号 : TN2 8 1 4 . 文献标 识码 : A 文 章 编 号 :0 50 8 (0 2 0 —5 50 1 0 — 0 6 2 0 ) 60 : G 倍 频 绿 光 激 光 器 , 类 高 斯 光 束 分 析 了 腔 长 对 激 光 功 率 的 影 响 , 用 新 型 研 YA 用 采
激光倍频实验报告

篇一:激光谐振腔与倍频实验激光谐振腔与倍频实验a13组 03光信息陆林轩 033012017 实验时间:2006-4-25[实验目的和内容]1、学习与掌握工作物质端面呈布儒斯特角的钕玻璃激光器的调节,以获得激光红外输出。
2、掌握腔外倍频技术,并了解倍频技术的意义。
3、观察倍频晶体0.53?m绿色光的输出情况。
[实验基本原理]1、激光谐振腔光学谐振腔是激光器的重要组成部分,能起延长增益介质的作用(来提高光能密度),同时还能控制光束的传播方向,对输出激光谱线的频率、宽度、和激光输出功率、等都产生很大的影响。
图1 激光谐振腔示意图(1)组成:光学谐振腔是由两个光学反射镜面组成、能提供光学正反馈作用的光学装置,如图1所示。
两个反射镜可以是平面镜或球面镜,置于激光工作物质两端。
两块反射镜之间的距离为腔长。
其中一个镜面反射率接近100%,称为全反镜;另一个镜面反射率稍低些,激光由此镜输出,故称输出镜。
(2)工作原理:谐振腔中包含了能实现粒子数反转的激光工作物质。
它们受到激励后,许多原子将跃迁到激发态。
但经过激发态寿命时间后又自发跃迁到低能态,放出光子。
其中,偏离轴向的光子会很快逸出腔外。
只有沿着轴向运动的光子会在谐振腔的两端反射镜之间来回运动而不逸出腔外。
这些光子成为引起受激发射的外界光场。
促使已实现粒子数反转的工作物质产生同样频率、同样方向、同样偏振状态和同样相位的受激辐射。
这种过程在谐振腔轴线方向重复出现,从而使轴向行进的光子数不断增加,最后从部分反射镜中输出。
所以,谐振腔是一种正反馈系统或谐振系统,具有很好的准直,选频和放大功能。
(3)种类:图2 谐振腔的种类按组成谐振腔的两块反射镜的形状以及它们的相对位置,可将光学谐振腔区分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。
平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。
对称凹面腔中两块反射球面镜的曲率半径相同。
准连续660nm Nd:YAG内腔倍频激光器的研究

首先优化谐振腔 . 在主要 器件不变的情况 下 , 合理 的缩短腔长 , 可以提高激光 输 出功率 实验表 明 . 多数
固体激光器可 以近似 为对称 共焦球 面腔… , 当菲舍 尔
所含低所模 程度的一个综台参数 , 用公式表示为 :
低阶混合 摸 的光束 看成是 基模高斯 光束半 径增加 K倍的类高斯光 束 , 于本系统 , 对 把具有
热透镜效应 的工作物质 NdY G视为一个 热焦距为 f :A l 的薄透镜 . 如图 l 所示 : 由{ ) 推导得 出: !式
(Ops4 m 。 t
』 m ,
Li y, Wa g曲 Xi, n
。 (
n
w i , Wa gp , b. , aq g。 , a n eg。  ̄
_ I fm ̄: nS ine d e h o  ̄ I b.: tmt fL  ̄, n 。 】 t nc olge0 e iGn ¨ no i ce c F c n k , [k { eo a r a dC o y  ̄t s c 】 C l fPres m s e
维普资讯
《 激光杂志》 o 2年第 2 卷 第 3期 2o 3
L S R J RN L V 12 A E OU A ( o.3
320 ) 0 2
・
激光元件与器件・
准 连 续 6 0 m : AG 内腔 倍 频 激 光 器 的 研 究 6 n Nd Y
Ah t : (W d 、AG … sr n A mt n ig, n KTP r' ¨ a d AO 、 【. n v - fe  ̄ c 1 rqu y—d u h 5r dl v ob, e … i s Ⅲ i nt r,e e u 越 f t f t  ̄p r W s l — l a a c -i : Kr l ・ a. v - L ∞ li 、 D' a r i 】 ha d n ∞h. t b u 一 2w t p rr v r肚 6 n a 'c r l: : h F b .  ̄ d “ i u : e ut  ̄ 6i r I ea i l i cwe h os t
LD泵浦Nd:YAG/LBO腔内倍频蓝光激光器的研究

2 .山东师范大学物理与电子科学学院现代光学实验室, 山东 济南 2 0 1) 50 4 摘要 : L O作倍频 晶体 , 以 B 腔内倍频 N : A d Y G产生 43n 7 m蓝光 , 得到最大平均输 出功 率为 8. W , 76 m 斜效率为 11 , . 倍频转换效率为 12 的连续蓝光的输出。 . 关键词 : B L O晶体 ; 蓝光 ; 倍频; 掺钕 Y G晶体 A
4 0
青岛大学学 报 ( 自然 科 学 版 )
第 1 卷 9
8 8 m, 0 最大输出功率 3 光纤输出孔径 D=0 8m 数值孔径 02 n 0w, . m, .2 mm, 泵源的输出采用脉冲形式 , 以 减小热透镜效应。Y AG激光 晶体的左端兼作输入镜 , 晶体尺寸 4m m×4m m×3m 左端面镀膜对 88 m, 0 n m高透 、 43n 对 7 m和 9 6 m高反 , 4 n 另一端对 9 6n 4 m增透 。输 出镜对 9 6n 4 m全反、7 m高透 , 43n 曲率半 径为 5 0 mm。L O尺寸为 2m B m×2m m×1 m, 0m 两端面均镀制 96n 43n 的增透膜 , 0, 4 m、7 m 0 =9 。 一1. 9 3,类相位匹配切割。输 出镜是 凹面镜 , 。 I 曲率半 径是 5 m, 0m 镀膜参数是 : 16 m 透过率为 6 , 对 04n 5 对 4 3m 透过率为 9 , 47n 透过 率为 8 , 96n 94n 高反。谐振 腔是平 凹腔, 7n 2 对 5 m 8 对 4 m、 1 m 腔长取 2 5 mm。输出光经棱镜分光后 , 用功率计测量输出功率。
2 实验结果 与讨论
选择合适 的泵光 、 不同的占空 比和不同脉宽时输 出功率随泵浦功率 的变化曲线见图 23 、 。我们选择输
Nd∶YAG激光器的特性及应用

激光是60 年代初出现的一种新型光源,激光以其高亮度、高单色性、高方向性和高相干性,引起普遍重视,并很快在工农业生产、科学技术、医疗、国防等各个领域得到广泛应用。
激光医学是激光技术与医疗科学有机结合的产物,激光在70 年代开始广泛用于临床;90 年代,随着新型激光器的研制成功,激光与医疗、生物组织科学紧密结合,研究范围日益扩大。
Nd:YAG 激光器以其增益高、阈值低、量子效率高、热效应小、机械性能良好、适合各种工作模式(连续、脉冲) 等特点,在当今各种固体激光器中应用物质相互作用的效果是不同的, 不同波长的Nd:YAG激光器采用连续、脉冲等方式工作使激光与不同部位的生物组织相互作用,可以获得良好的疗效。
医用Nd:YAG 激光器在外科手术、眼科、牙科、口腔科、耳鼻喉科、皮肤科、美容等方面应用广泛,特别是治疗皮肤色素性疾病,有创伤小、愈合好、无疤痕等独特优点,本文主要介绍Nd:YAG 激光器的特性以及在治疗皮肤疾病方面的应用,使读者了解各种激光器的性能及不同种类激光治疗仪的治疗效果。
一、Nd:YAG 激光器的特性能产生激光的系统,称为激光器。
一台简单的激光器通常由工作物质、泵浦源和谐振腔三部分组成。
自1960 年第一台激光器诞生以来,已有上百种激光器问世。
形形色色的激光器彼此之间差异极大,根据产生激光的工作物质,有气体、液体、固体和半导体激光器等。
固体激光器是以固态基质中掺入少量激活元素为工作物质的激光器,工作物质的物理化学性能主要取决于基质材料,而其光谱特性主要由发光粒子的能级结构决定。
但发光粒子受基质材料的影响,其光谱特性将有所变化,有的甚至变化很大。
用作基质的主要有刚玉、石榴石晶体及各种玻璃等。
发光粒子称为激活离子,最常用的激活离子为钕、铬等稀土元素离子。
例如世界上第一台激光器所用工作物质为红宝石,就是掺入极少量铬离子的刚玉。
以掺有一定量钕离子(Nd3 + ) 的钇铝石榴石( YAG) 晶体为工作物质的激光器,称为掺钕钇铝石榴石(Nd:YAG) 激光器。
YAG激光器自由云状及调Q实验

Nd:YAG激光器自由运转及调Q实验【实验目的】1.了解固体激光器的结构及工作原理(自由运转和染料调Q),掌握其调整方法;2.了解固体激光器的主要参数的测试技术;3.观察调Q脉冲经过KTP晶体实现倍频现象,了解倍频中相位匹配特性。
【实验原理】一、自由振荡1.固体激光器组成固体激光器主要由工作物质,泵浦光源和光学谐振腔三大部分组成。
常用的工作物质有红宝石,掺钕钇铝石榴石(Nd:YAG),钛宝石等晶体和钕玻璃等。
谐振腔常用两个平面或球面反射镜。
泵浦光源常用氙灯、氪灯、高压汞灯,碘钨灯。
在本实验中,激光器的主要元件为:①工作物质:掺钕钇铝石榴石(Nd:YAG);②光学谐振腔:双氙灯,双椭圆聚光腔,重复脉冲电源;③谐振腔镜:双色镜,部分反射镜。
2.自由振荡固体激光器的输出特性自由振荡激光器输出激光脉冲的特点是具有尖峰结构,即由许多振幅、脉宽和间隔作随机变化的尖峰脉冲组成。
每个尖峰的宽度约为0.1~1 μs,间隔为数微秒,脉冲序列的时间长度大致等于闪光灯泵浦持续的时间。
这种现象称为激光器的弛豫振荡。
产生弛豫振荡的主要原因是:当激光器的工作物质被泵浦,上能级的粒子反转数超过阈值条件时,即产生激光振荡,使腔内光子密度增加而发射激光。
随着激光的发射,上能级粒子数被大量消耗,导致粒子反转数降低,当低于阈值水平时,激光振荡就停止,这时,由于光泵的继续抽运,上能级粒子反转数重新积累,当超过阈值时,又产生第二个脉冲,如此不断重复上述过程,直到泵浦结束。
可见每个脉冲都是在阈值附近产生的,因此脉冲的峰值功率水平较低,从这个作用过程可以看出,增加泵浦功率也是无助于峰值功率的提高,而只会使小尖峰的个数增加。
二、调Q 的概念在激光技术中 ,用品质因数 Q 来描述与谐振腔损耗有关的特性。
Q 值定义为2Q v π=腔内存储的激光能量每秒损耗的能量用W 表示腔内存储的能量,δ表示腔的单程损耗,且设谐振腔长度为L,工作介质折射率n,光速c,则Q 值可表示为22/W nLQ v Wc nL ππδδλ==式中λ0为真空激光波长。
电光调Q脉冲YAG激光器与倍频实验

实验8-5 电光调Q 脉冲YAG 激光器与倍频实验一、引言固体激光器是以固体材料作为工作物质的激光器,它具有输出能量大、峰值功率高、器件结构紧凑等优点,在工业激光材料加工、激光医学、激光化学、科学研究以及国防等方面有着重要的应用。
迄今,已实现激光振荡的固体激光工作物质有数百种之多,其中以掺钕钇铝石榴石(Nd 3+:YAG )应用最多。
Nd 3+:YAG 是一种典型的四能级激光工作物质,由于它的热传导性好、激光阈值低和转换效率高,所以用它可以做成高重复频率的脉冲激光器和连续激光器。
如果在脉冲激光器内采用调Q 和放大技术,很容易获得时间宽度为10ns 量级而峰值功率达几百MW 量级的TEM 00激光脉冲。
再通过KD *P 等非线性光学晶体对波长为1.06μm 的Nd 3+:YAG 激光基波进行二倍频、三倍频和四倍频,则可得到532nm 、355nm 和266nm 四种波长的脉冲激光器。
此外,还可以用上述二倍频或三倍频光去泵浦染料激光器,获得从紫外到近红外的波长连续可调谐的脉冲激光。
这种以Nd 3+:YAG 激光器为基础的脉冲激光系统以其高峰值功率、高重复频率和宽范围波长调谐特性等优点在科学技术、医学、工业和军事上得到了广泛的应用。
目前脉冲Nd 3+:YAG 激光器的泵浦方式有两种:闪光灯和半导体激光器。
本实验研究闪光灯泵浦的调Q 脉冲Nd 3+:YAG 激光器,了解其工作原理,掌握该激光器的装配和调试方法以及相应的激光参数测量,学习应用非线性光学晶体产生倍频光的基本原理。
二、实验原理1.Nd 3+:YAG 激光器的工作原理和结构掺钕钇铝石榴石晶体是以钇铝石榴石(简称YAG ,其分子式为Y 3Al 5O 12)单晶为基质材料,掺入适量的三价稀土离子Nd 3+所构成。
YAG 是由Y 2O 3和Al 2O 3按摩尔比为3:5化合生成的,当掺入作为激活剂的Nd 2O 3后,则在原来是Y 3+的点阵上部分地被Nd 3+代换,而形成了淡紫色的Nd 3+:YAG 晶体。
Nd∶YAG激光器的特性及应用

激光是60 年代初出现的一种新型光源,激光以其高亮度、高单色性、高方向性和高相干性,引起普遍重视,并很快在工农业生产、科学技术、医疗、国防等各个领域得到广泛应用。
激光医学是激光技术与医疗科学有机结合的产物,激光在70 年代开始广泛用于临床;90 年代,随着新型激光器的研制成功,激光与医疗、生物组织科学紧密结合,研究范围日益扩大。
Nd:YAG 激光器以其增益高、阈值低、量子效率高、热效应小、机械性能良好、适合各种工作模式(连续、脉冲) 等特点,在当今各种固体激光器中应用物质相互作用的效果是不同的, 不同波长的Nd:YAG激光器采用连续、脉冲等方式工作使激光与不同部位的生物组织相互作用,可以获得良好的疗效。
医用Nd:YAG 激光器在外科手术、眼科、牙科、口腔科、耳鼻喉科、皮肤科、美容等方面应用广泛,特别是治疗皮肤色素性疾病,有创伤小、愈合好、无疤痕等独特优点,本文主要介绍Nd:YAG 激光器的特性以及在治疗皮肤疾病方面的应用,使读者了解各种激光器的性能及不同种类激光治疗仪的治疗效果。
一、Nd:YAG 激光器的特性能产生激光的系统,称为激光器。
一台简单的激光器通常由工作物质、泵浦源和谐振腔三部分组成。
自1960 年第一台激光器诞生以来,已有上百种激光器问世。
形形色色的激光器彼此之间差异极大,根据产生激光的工作物质,有气体、液体、固体和半导体激光器等。
固体激光器是以固态基质中掺入少量激活元素为工作物质的激光器,工作物质的物理化学性能主要取决于基质材料,而其光谱特性主要由发光粒子的能级结构决定。
但发光粒子受基质材料的影响,其光谱特性将有所变化,有的甚至变化很大。
用作基质的主要有刚玉、石榴石晶体及各种玻璃等。
发光粒子称为激活离子,最常用的激活离子为钕、铬等稀土元素离子。
例如世界上第一台激光器所用工作物质为红宝石,就是掺入极少量铬离子的刚玉。
以掺有一定量钕离子(Nd3 + ) 的钇铝石榴石( YAG) 晶体为工作物质的激光器,称为掺钕钇铝石榴石(Nd:YAG) 激光器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Nd:YAG 激光倍频特性
实验目的:1. 了解二次非线性光学效应 2. 了解二倍频晶体中相位匹配 实验原理: 当强光与物质作用后,表征光学的许多参量如折射率、吸收系数、散射截面等不再是常数,而是一个与入射光有关的变量,相应也出现了在线性光学中观察不到的许多新的光学现象,非线性光学的产生与研究大大加深了我们对光与物质相互作用本质的认识,同时也具有极其重要的实用价值。
1. 光学倍频 光学倍频又称二次谐波,指在非线性介质中传播频率为ν的激光,其中一部分能量转换到频率为2ν的光波中去,使在介质中传播的有频率为ν和2ν两种光波。
从量化概念来说,这相当于两个光子在非线性介质内发生湮灭,并产生倍频光子的现象。
在倍频过程中满足能量守恒何动量守恒定律。
2. 二次谐波的效率
由基波的能量(功率)转换成二次谐波的能量(功率)的比值,反映了介质的二次谐波效率,为:
ωωηI I 2=
常用二次谐波非线性材料有KDP 倍频晶体和KTP 倍频晶体等。
KTP 晶体性能优于KDP 晶体,非线性系数是后者的15倍,光损伤阈值也高(大于400mW/cm 2)。
3. 相位匹配
相位匹配物理实质是:基频光在晶体中沿途各点激发的倍频光,在出射面产生干涉,只有相位匹配时才可干涉增强,达到好的倍频效率。
相位匹配要求基频光和倍频光在晶体中的传播速度相等,即折射率相等,对于双折射晶体,基频光在晶体面上的入射则需要一定的角度相位匹配。
实验中,KTP 晶体是加工好的,只需垂直晶体面入射即可满足相位匹配条件。
实验装置
1. He-Ne 激光器
2. 小孔光阑
3. 1064nm 全反凹面镜M 1
4. Cr 4+
:YAG 调Q 晶体
5. Nd:YAG 振荡棒
6. 输出镜M 2
7. Nd:YAG 放大棒
8. 平板玻璃
9. 能量计 10. KTP 晶体
图1 实验光路示意图
本实验采用与“Nd:YAG 激光器调Q 激光束放大特性”相同的实验装置,倍频晶体放置于放大级输出端后方。
实验过程
实验中要特别注意眼睛不可直视Y AG 输出激光以及He-Ne 激光,并小心精密操作设备。
1、倍频激光输出调节
(1)按照与前一实验相同步骤调整Nd:Y AG 激光器,放置调Q 晶体,放大级工作开启。
(2)在Nd:Y AG 放大棒后加入KTP 晶体,轻轻转动KTP 角度,使KTP 输出由一弱散斑汇聚成一耀眼亮点,即达到晶体最佳匹配效果。
倍频后输出激光为1064nm 和532nm 两
个波长,532nm 激光为绿色。
2、倍频输出随输入变化特性测量 与前一实验测量激光能量方法类似,在KTP 输出后方放置一个平板玻璃,小角度反射,将剩余的1064nm 激光反射至能量计,反射率8%。
输入基频光强为: t S E I ∆⋅∆=
出
ω
剩余激光光强为:
t S E I ∆⋅∆'='ω
%
8读
E E =
' ,E 读为能量计测得的能量值;ΔS 为Nd:Y AG 晶体棒截面积,2r S π=∆,r=0.3cm ;Δt 为单脉冲时间宽度,Δt ≈15ns 。
根据能量守恒定律有: ω
ωωI I I '-=2 实验时,保持振荡级稳定工作,放大级泵浦电压从650V 调至900V ,间隔50V 调一次,
用激光能量计记录平板玻璃反射的激光单脉冲能量,每次测量重复记录三个脉冲。
每次记录前,必须对能量计进行复位,记录初始值。
联合“Nd:YAG 激光器调Q 激光束放大特性”的实验数据及本实验记录数据,计算I ω 、I ω′以及I 2ω,并作出I 2ω~I ω的变化曲线。
图2 倍频激光输入输出特性曲线
实验现场。