算法设计与分析

合集下载

算法设计与分析习题答案

算法设计与分析习题答案

算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。

以下是一些典型的算法设计与分析习题及其答案。

习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。

答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。

这个过程会不断重复,直到找到目标值或搜索范围为空。

```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。

答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。

```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。

电大计算机本科_算法设计与分析

电大计算机本科_算法设计与分析

电大计算机本科_算法设计与分析
算法设计与分析是计算机科学和数学领域的重要课程。

它涉及到一系
列算法设计、分析和实现的方面,涉及到算法流程、语法、数据结构等多
方面。

在算法设计与分析这门课程中,学生首先要学习怎么设计一个算法,
怎么从实际问题中提取算法,怎么分析算法复杂度,怎么评价算法效率。

接下来要学习算法,基本排序算法和选择算法,分治算法,贪婪算法,动
态规划,回溯算法,朴素贝叶斯,马尔科夫链等等各种算法。

学生还要熟
悉现代算法建模工具(如Matlab、SAS、C++),熟悉算法的优化技巧,
掌握算法的编码实现方法,并研究其实际应用。

本课程可以使学生充分发挥自己的能力,培养学生的算法设计能力,
提高实践能力,掌握算法的基本原理及运用,把握算法分析及其优化技术。

它不仅帮助学生提高数学思维能力,同时也有助于他们在计算机编程方面
的能力。

学习算法设计与分析有助于学生全面掌握算法设计这一重要组成
部分,也可以拓展学生的应用领域,使学生更具有竞争力。

学习算法设计与分析也有其困难之处,首先是算法编程比较抽象,学
生需要有较强的理论功底和数学能力。

计算机算法的设计与分析

计算机算法的设计与分析

计算机算法的设计与分析计算机算法的设计和分析随着计算机技术的不断发展,算法成为了关键的核心技术之一。

算法的设计和分析是指通过一系列的步骤和方法来解决计算机问题的过程。

本文将详细介绍计算机算法的设计和分析。

一、算法设计的步骤:1. 理解和定义问题:首先需要明确所要解决的问题,并对其进行深入的理解,确定问题的输入和输出。

2. 分析问题:对问题进行分析,确定问题的规模、特点和约束条件,以及可能存在的问题解决思路和方法。

3. 设计算法:根据问题的性质和特点,选择合适的算法设计方法,从而得到解决问题的具体算法。

常见的算法设计方法包括贪心算法、分治算法、动态规划算法等。

4. 实现算法:将步骤3中设计的算法转化为计算机程序,并确保程序的正确性和可靠性。

5. 调试和测试算法:对实现的算法进行调试和测试,包括样本测试、边界测试、异常输入测试等,以验证算法的正确性和效率。

二、算法分析的步骤:1. 理解算法的效率:算法的效率是指算法解决问题所需的时间和空间资源。

理解算法的时间复杂度和空间复杂度是进行算法分析的基础。

2. 计算时间复杂度:时间复杂度用来表示算法解决问题所需的时间量级。

常用的时间复杂度包括常数时间O(1)、对数时间O(logn)、线性时间O(n)、平方时间O(n^2)等。

3. 计算空间复杂度:空间复杂度用来表示算法解决问题所需的空间资源量级。

常用的空间复杂度包括常数空间O(1)、线性空间O(n)、指数空间O(2^n)等。

4. 分析算法的最坏情况和平均情况:算法的最坏情况时间复杂度和平均情况时间复杂度是进行算法分析的关键指标。

最坏情况时间复杂度表示在最不利条件下算法所需的时间量级,平均情况时间复杂度表示在一般情况下算法所需的时间量级。

5. 比较算法的优劣:通过对不同算法的时间复杂度和空间复杂度进行分析,可以对算法的优劣进行比较,从而选择合适的算法。

三、常见的算法设计与分析方法:1. 贪心算法:贪心算法通过每一步的选择来寻求最优解,并且这些选择并不依赖于其他选择。

算法设计与分析黄丽韵版

算法设计与分析黄丽韵版

算法设计与分析黄丽韵版(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。

确定性:算法中每一条指令必须有确切的含义。

不存在二义性。

只有一个入口和一个出可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。

输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。

输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。

算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解:健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。

效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。

一般这两者与问题的规模有关。

经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。

迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

《算法设计与分析》课件

《算法设计与分析》课件

常见的贪心算法包括最小生成树算法 、Prim算法、Dijkstra算法和拓扑排 序等。
贪心算法的时间复杂度和空间复杂度 通常都比较优秀,但在某些情况下可 能需要额外的空间来保存状态。
动态规划
常见的动态规划算法包括斐波那契数列、背包 问题、最长公共子序列和矩阵链乘法等。
动态规划的时间复杂度和空间复杂度通常较高,但通 过优化状态转移方程和状态空间可以显著提高效率。
动态规划算法的时间和空间复杂度分析
动态规划算法的时间复杂度通常为O(n^2),空间复杂度为O(n)。
04 经典问题与算法实现
排序问题
冒泡排序
通过重复地遍历待排序序列,比较相邻元素的大小,交换 位置,使得较大的元素逐渐往后移动,最终达到排序的目 的。
快速排序
采用分治策略,选取一个基准元素,将比基准元素小的元 素移到其左边,比基准元素大的元素移到其右边,然后对 左右两边的子序列递归进行此操作。
动态规划是一种通过将原问题分解为若干个子 问题,并从子问题的最优解推导出原问题的最 优解的算法设计方法。
动态规划的关键在于状态转移方程的建立和状态 空间的优化,以减少不必要的重复计算。
回溯算法
01
回溯算法是一种通过穷举所有可能情况来求解问题的算法设计方法。
02
常见的回溯算法包括排列组合、八皇后问题和图的着色问题等。
空间换时间 分治策略 贪心算法 动态规划
通过增加存储空间来减少计算时间,例如使用哈希表解决查找 问题。
将问题分解为若干个子问题,递归地解决子问题,最终合并子 问题的解以得到原问题的解。
在每一步选择中都采取当前状态下最好或最优(即最有利)的 选择,从而希望导致结果是最好或最优的。
通过将问题分解为相互重叠的子问题,并保存子问题的解,避 免重复计算,提高算法效率。

《算法设计与分析》(全)

《算法设计与分析》(全)
巢湖学院计算机科学与技术系
1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论

算法设计与分析

算法设计与分析

算法设计与分析算法是计算机科学中的核心概念,它是解决问题的一系列步骤和规则的有序集合。

在计算机科学的发展中,算法设计和分析扮演着至关重要的角色。

本文将探讨算法设计和分析的相关概念、技术和重要性。

一、算法设计的基本原则在设计算法时,需要遵循一些基本原则来确保其正确性和有效性:1. 正确性:算法设计应确保能够正确地解决给定的问题,即输出与预期结果一致。

2. 可读性:设计的算法应具有清晰的结构和逻辑,易于理解和维护。

3. 高效性:算法应尽可能地减少时间和空间复杂度,以提高执行效率。

4. 可扩展性:算法应具备良好的扩展性,能够适应问题规模的变化和增长。

5. 可靠性:设计的算法应具备稳定性和鲁棒性,对不同的输入都能给出正确的结果。

二、常见的算法设计技术1. 枚举法:按照规定的顺序逐个尝试所有可能的解,直到找到满足条件的解。

2. 递归法:通过将一个大问题分解成若干个小问题,并通过递归地解决小问题,最终解决整个问题。

3. 贪心算法:在每个阶段选择最优解,以期望通过一系列局部最优解达到全局最优解。

4. 分治算法:将一个大问题划分成多个相互独立的子问题,逐个解决子问题,并将解合并得到整体解。

5. 动态规划:通过将一个大问题分解成多个小问题,并存储已解决子问题的结果,避免重复计算。

三、算法分析的重要性算法分析可以评估算法的效率和性能。

通过算法分析,可以:1. 预测算法在不同规模问题上的表现,帮助选择合适的算法解决具体问题。

2. 比较不同算法在同一问题上的性能,从而选择最优的算法。

3. 评估算法在不同硬件环境和数据集上的表现,选择最适合的算法实现。

四、常见的算法分析方法1. 时间复杂度:衡量算法所需执行时间的增长率,常用的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。

2. 空间复杂度:衡量算法所需占用存储空间的增长率,常用的空间复杂度有O(1)、O(n)和O(n^2)等。

3. 最坏情况分析:对算法在最不利情况下的性能进行分析,可以避免算法性能不稳定的问题。

算法分析与设计

算法分析与设计

算法分析与设计在计算机科学领域,算法是解决问题的一种方法或步骤。

对于任何给定的问题,可能有许多不同的算法可用于解决。

算法的效率直接影响着计算机程序的性能,在实践中,我们通常需要进行算法分析和设计来确保程序的高效性和可靠性。

算法分析算法分析是用来评估算法性能的过程。

主要关注的是算法的效率和资源消耗。

常见的算法分析方法包括时间复杂度和空间复杂度。

时间复杂度时间复杂度描述了算法运行时间随输入规模增加而增加的趋势。

通常用大O符号表示,比如O(n)、O(log n)等。

时间复杂度越低,算法执行速度越快。

空间复杂度空间复杂度描述了算法在运行过程中所需的内存空间大小。

同样用大O符号表示。

空间复杂度越低,算法消耗的内存越少。

算法设计算法设计是指为了解决特定问题而创造新的算法的过程。

常见的算法设计方法包括贪心算法、分治法、动态规划等。

贪心算法贪心算法是一种在每一步选择当前状态下最优解的算法。

虽然贪心算法并不总是能得到全局最优解,但它的简单性和高效性使其在实际应用中很受欢迎。

分治法分治法将复杂问题分解为子问题来求解,然后将子问题的解合并起来得到原问题的解。

典型的应用有归并排序和快速排序等。

动态规划动态规划是一种将问题分解为重叠子问题、并存储子问题解的方法。

通过利用已解决的子问题来解决更大规模的问题,动态规划能够显著提高算法的效率。

结语算法分析和设计是计算机科学中至关重要的一部分,它帮助我们理解算法的效率和性能,并指导我们选择合适的算法来解决问题。

通过不断学习和实践,我们可以不断提升自己在算法领域的能力,为创造更高效、更可靠的计算机程序做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法设计与分析期末综合实验试题清单分治与递归1-1 合并排序问题描述:给定n 个整数,利用合并排序思想将其调整成单调序列。

输入:整数的个数n ,以及n 个整数输出:从大到小排序的n 个整数(或从小到大排序)1-2 split 快速排序(枢点法)问题描述:给定n 个整数,利用枢点法快速排序的思想将其调整成单调序列。

输入:整数的个数n ,以及n 个整数输出:从大到小排序的n 个整数(或从小到大排序)1-3 平面最近点对问题描述:平面内有若干点,设计一算法在O (nlogn )时间内求出直线距离最近的一对点,并输它们的距离。

输入:点对的数目n 以及n 对点的坐标输出:最近的点对坐标(x,y )以及距离d1-4 棋盘覆盖问题问题描述:在一个2k ×2k 个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。

在棋盘覆盖问题中,要用图示的4种不同形态的L 型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L 型骨牌不得重叠覆盖。

输入:棋盘的行列数n ,棋盘中特殊方格的行列号(x,y )输出:棋盘的覆盖方案1-5 求k 大(小)元素(基于split 枢点法划分)问题描述:有一数列,设计一分治递归算法,以Ω(nlogn)时间找出其第k 大(小)元素。

输入:整数的个数n 、n 个整数以及k 值输出:第k 大(小)元素值以及其对应的下标i1-6 二分检索问题描述:有一单调序列,设计一分治算法检索出元素x 。

输入:整数的个数n、n个单调增(减)个整数以及需检索的元素值x输出:最近的点对坐标(x,y)以及距离d1-7 大整数乘法(10进制)问题描述:有两个10制的大整数(不少于30位),设计一分治算法,以O(nlogn)时间算出其乘积。

输入:第一个大整数的位数m、第二个大整数的位数n,以及两个大整数x,y输出:两个大整数的乘积s1-8 循环赛比赛安排问题描述:设计一个满足以下要求的比赛日程表:(1)每个选手必须与其他n-1个选手各赛一次;(2)每个选手一天只能赛一次;(3)循环赛一共进行n-1天。

输入:选手的个数n、n个选手的编号输出:每天的赛事安排(共n-1天)1-9 整数的划分问题问题描述:将正整数n表示成一系列正整数之和:n=n1+n2+…+n k,其中n1≥n2≥…≥n k≥1,k≥1。

正整数n的这种表示称为正整数n的划分。

求正整数n的不同划分个数以及划分情况。

输入:正整数n输出:n的划分个数以及划分情况1-10 主元素问题问题描述:有一个整数数列,数列中元素出现次数超过一半的元素定义为主元素,设计一分治算法,求出主元素。

输入:整数的个数n以及n个整数输出:如果有主元素,输出主元素以及它们所在的位置;如果没有主元素,输出-11-11 全排列的生成问题描述:给出一个序列,生成这个序列的全排列输入:整数的个数n以及n个整数输出:生成这n个数的全排列贪婪算法2-1 加油站问题问题描述:一辆汽车加满油后,可行使n千米。

旅途中有若干个加油站。

若要使沿途加油次数最少,设计一个有效算法,对于给定的n和k个加油站位置,指出应在哪些加油站停靠加油才能使加油次数最少。

输入:汽车加满油后可行驶千米数n,加油站个数k。

以及两两加油站之间的距离。

输出:最少的加油次数m,如果无法到达目的地,则输出“No Solution”。

2-2 货币兑换问题问题描述:当前有N种面额的货币,请为M元钱找出最合理的兑换方案(要求找出的货币数目最少)输入:货币面额的种类以及各种货币的面额以及需要兑换的钱数M输出:兑换方案以及用到的货币张数。

2-3 普通背包问题问题描述:给定n种物品和一个背包。

物品i的重量是Wi,其价值为Vi,背包的容量为C。

应如何选择装入背包的物品,使得装入背包中物品的总价值最大?(物体可以分割)输入:物体的件数n,背包的容量C,每件物品的重量和价值输出:背包内物品的总价值以及装载方案。

2-4 单源最短路径问题问题描述:给定一张有向带权图,求源点到其他各个点的最短距离以及路径。

输入:顶点个数n,有向带权图的邻接表数据输出:各个点到源点的最短距离以及最短路径2-5 最小生成树(prim)问题描述:给定一张无向带权图,利用pirm算法的思想求能将图的各个顶点全部连通的最短路径和(即最小生成树)输入:无向带权图输出:最小生成树2-6 最小生成树(kruskal)问题描述:给定一张无向带权图,利用kruscal算法的思想求能将图的各个顶点全部连通的最短路径和(即最小生成树)输入:无向带权图输出:最小生成树2-7 活动安排问题问题描述:设有n个活动的集合E={1,2,…,n},其中每个活动都要求使用同一资源,每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fi,且si <fi 。

如果选择了活动i,则它在半开时间区间[si, fi)内占用资源。

为这样的活动场所安排尽可能多的活动。

输入:活动的个数n,以及每个活动的起始时间si和一个结束时间fi,且si <fi输出:可安排的最大相容活动子集。

2-8 排队接水问题问题描述:有N个人在一个水龙头前排队接水,假如每个人接水的时间为Ti,请编程找出这N个人排队的一种顺序,使得N个人的平均等待时间最小。

输入:人数N以及每个人的接水时间T1,T2,……,Tn,输出:排队顺序,即1到N的一种排列以及这种方案下的平均等待时间。

2-8 田忌赛马问题描述:田忌和齐王赛马各有n匹马,现进行n场比赛,比赛规则如下:1、马匹不得重复参赛。

2、赢一场得2分,输一场得0分,平局各得1分请为田忌安排马匹出场次序,使其得分最高。

输入:马匹数目n, 田忌每匹马的斗争值T1,T2,……,Tn,以及齐王每匹马的斗争值Q1,Q2,……,Qn,(值大的胜值小的马)输出:田忌马的出场次序以及最后的得分。

2-9 程序存储问题问题描述:设有n个程序{1,2,3,…,n}要存放在长度为L的磁带上。

程序i存放在磁带上的长度是l i,1≤i≤n。

要求确定这n个程序在磁带上的一个存储方案,使得能够在磁带上存储尽可能多的程序。

输入:先是两个正整数,分别表示程序文件个数n和磁带长度L,接下来是n个正整数,表示程序存放在磁带上的长度。

输出:最多可以存储的程序个数m,以及已存程序的编号。

2-10 数列极差问题问题描述:在黑板上写了N个正整数作成的一个数列,进行如下操作:每一次擦去其中的两个数a和b,然后在数列中加入一个数a×b+1,如此下去直至黑板上剩下一个数,在所有按这种操作方式最后得到的数中,最大的max,最小的为min,则该数列的极差定义为M=max-min,编程求解这样的极差。

输入:正整数的个数N,以及N个正整数输出:极差d动态规划3-1 导弹拦截问题问题描述:某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。

但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。

某天,雷达捕捉到敌国的导弹来袭。

由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

输入:导弹依次飞来的高度(不大于30000 的正整数),输出:最多能拦截多少导弹数,以及被拦截的导弹飞来时候的高度。

3-2 合唱队型问题问题描述: N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K 位同学排成合唱队形。

合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2...,K,他们的身高分别为T1,T2,...,TK,则他们的身高满足T1<...<Ti>Ti+1>...>TK(1<=i<=K)。

输入:队员人数N和每个学生身高T[i],输出:最长的合唱队形的长度和相应的合唱队员编号。

3-3 最大子段和问题问题描述:给定一个整数序列,求其连续子序列的和的最大值,如果序列中全为负数则规定最大子段和为0,长度L=0。

输入:整数的个数n以及n个整数输出:最大连续子序列之和以及序列长度。

3-4 0/1背包问题问题描述:给定n种物品和一个背包。

物品i的重量是Wi,其价值为Vi,背包的容量为C。

应如何选择装入背包的物品,使得装入背包中物品的总价值最大?(物体不可以分割)输入:物体的件数n,背包的容量C,每件物品的重量和价值。

输出:背包内物品的总价值以及装载方案。

3-5 最长公共子序列问题问题描述:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS (Longest Common Subsequence)。

其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。

设计一算法,求解两个序列的最长公共子序列。

输入:已经序列A、B以及长度对应的长度m、n;输出:最长公共子序列以及其长度3-6 矩阵连乘加括号问题问题描述:给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2 ,…,n-1。

给矩阵加上括号以确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。

输入:矩阵个数和n,以及n个矩阵的行、列信息输出:加括号的信息以及最少的乘法次数。

3-7 金矿开采问题问题描述:现在n座金矿,每座金矿开采需要的人数以及产金量已知(假设人数多或少于金矿开采所需人数均无法开采出一块金子),现有一定数量的人员,设计算法,计算出最多可以开采出的金矿数目。

输入:金矿数目n、人数m、以及每座金矿所需人数Pi以及产金量gi输出:最多开采出的金矿数目以及人员安排方案3-8 多段图最短路径问题问题描述:给定一张有向带权图,设计一动态规划的算法,计算出所有点到最后目标点的最短距离以及路径。

输入:有向带权图的邻接表以及项点个数n输出:每点到最后目标点的最短距离以及路径。

3-9资源最优分配问题问题描述:现在有某种资源共n个单位,准备将它们分配到m个项目上,设在第i个项目上分配j个单位的资源就可以获得的收益为a[i,j],求可以获得的最大总收益。

输入:资源数n,工程数m以及第i个项目上分配j个单位的资源可以获得的收益a[i,j]输出:最优分配方案以及可以获得的最大收益。

3-10 轨道建造问题问题描述:建造滑雪场的升降轨道。

起点和终点的高度已知,x坐标分割成若干份,间隔为1,每一点都给出支架的高度。

要选择尽可能少的支架顶端建立固定点,两个固定点之间用一条直钢轨连接,当然要求中间支架的高度都不能超过钢轨在那里的高度。

而且两个相邻固定点之间的距离不能超过给定的K。

输入:起点和终点海拔高度H1,H2,支架总个数n以及每个支架的海拔高度hi,相邻固定点间的最大限度距离K输出:最少用于固定的支架数目x以及用到的支架编号3-11 乘积最大问题问题描述:向长度为N的数字串中插入r个乘号,将其分成r+1个组成部分,找出一种分法,使得这r+1个部分乘积最大。

相关文档
最新文档