12哈夫曼树及其应用
哈夫曼树与树的应用31页PPT

71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
哈夫曼树与树的应用
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
哈夫曼树定义

哈夫曼树定义
哈夫曼树是一种二叉树,它用来表示一组符号权值的最优编码。
它应用于编码论,通常用来代表数据权值的树。
哈夫曼树是指一种最短带宽传输时能够有效工作的最优编码树。
哈夫曼树是每个节点都包含一个权值的二叉树。
它的定义如下:每一个权值所构成的数据集合,其最优树形式是每一个数据项的权值都比它的子节点的权值大,最终形成一个哈夫曼树。
哈夫曼树的构建一般是以权值的大小为基础进行的,权值越大,在哈夫曼树上就越靠近根节点,在结点之间的路径越短,这样便可以减少树的总长度,可以加快数据的传输速度。
此外,哈夫曼树还可以用于实现多种额外的功能。
哈夫曼树的构建有一种特别的方法,叫做“哈夫曼编码”,它采用“编码”和“解码”的方法来把一个数据集分成不同的组,这些组就是哈夫曼树的节点。
每组的数据都含有一个权值,当这些组被组合到一起时,它们就构成了一棵哈夫曼树。
哈夫曼树的建立是低耗时的,最优建立方式是将权值数组排序,然后依次添加,添加过程为:先将最小的两个数字添加到根节点,再将它们的和也添加到根节点,重复此过程,直到所有数字都被添加完为止。
哈夫曼树在编码的时候,如果一个字符出现的次数越多,它的权值就越大,它就越接近根节点。
哈夫曼树

哈夫曼树及其应用一、基本术语1.路径和路径长度在一棵树中,从一个结点往下可以达到的孩子或子孙结点之间的通路,称为路径。
通路中分支的数目称为路径长度。
若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。
2.结点的权及带权路径长度若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。
结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。
3.树的带权路径长度树的带权路径长度(Weighted Path Length of Tree):也称为树的代价,定义为树中所有叶结点的带权路径长度之和,通常记为:其中:n表示叶子结点的数目wi和li分别表示叶结点ki的权值和根到结点ki之间的路径长度。
二、哈夫曼树构造1.哈夫曼树的定义在权为w l,w2,…,w n的n个叶子所构成的所有二叉树中,带权路径长度最小(即代价最小)的二叉树称为最优二叉树或哈夫曼树。
【例】给定4个叶子结点a,b,c和d,分别带权7,5,2和4。
构造如下图所示的三棵二叉树(还有许多棵),它们的带权路径长度分别为:(a)WPL=7*2+5*2+2*2+4*2=36(b)WPL=7*3+5*3+2*1+4*2=46(c)WPL=7*1+5*2+2*3+4*3=35其中(c)树的WPL最小,可以验证,它就是哈夫曼树。
2.哈夫曼树的构造假设有n个权值,则构造出的哈夫曼树有n个叶子结点。
n 个权值分别设为w1,w2,…,wn,则哈夫曼树的构造规则为:(1) 将w1,w2,…,wn看成是有n 棵树的森林(每棵树仅有一个结点);(2) 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;(3)从森林中删除选取的两棵树,并将新树加入森林;(4)重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为我们所求得的哈夫曼树。
下面给出哈夫曼树的构造过程,假设给定的叶子结点的权分别为1,5,7,3,则构造哈夫曼树过程如下图所示。
简述哈夫曼原理的应用

简述哈夫曼原理的应用1. 哈夫曼编码哈夫曼编码是一种用于数据压缩的无损编码方法,通过根据字符出现的频率来构建一个最优的二进制编码表。
具体过程如下:1.统计字符的频率:遍历待编码的文本,统计每个字符出现的频率。
2.构建哈夫曼树:根据字符频率构建哈夫曼树,频率越高的字符距离根节点越近。
3.生成哈夫曼编码表:从根节点开始,左子树编码为0,右子树编码为1,通过深度优先遍历生成每个字符的编码。
4.进行编码:用生成的编码表将文本中的字符替换为对应的哈夫曼编码,从而实现数据的压缩。
哈夫曼编码的应用可以大大减少数据的存储空间,常见的应用场景包括文本文件压缩、图片文件压缩等。
2. 音频压缩在音频压缩中,哈夫曼编码经常被用来压缩音频数据。
音频数据通常包含大量的冗余信息,利用哈夫曼编码可以消除这些冗余并减小数据体积。
具体步骤如下:1.分析音频数据的频谱:将音频数据转换为频域数据,通过傅里叶变换等方法提取频谱特征。
2.统计频谱特征的出现频率:根据频谱特征的出现频率构建哈夫曼树。
3.生成哈夫曼编码表:根据哈夫曼树生成对应的哈夫曼编码表。
4.进行编码:利用哈夫曼编码表将频谱特征进行编码,替代原始的音频数据。
通过音频压缩可以减小音频文件的大小,提高存储效率,同时保证音质的基本不损失。
3. 图像压缩图像压缩是指将图像数据压缩为更小的文件大小,同时尽量保持图像的视觉质量不受太大影响。
哈夫曼编码在图像压缩中也有着广泛的应用。
具体应用如下:1.图像预处理:将图像转换为灰度图或者进行颜色空间的变换。
2.图像分块:将图像划分为若干个小块,每个小块包含多个像素点。
3.统计每个小块中像素点的频率:根据像素点的灰度值统计频率,并构建哈夫曼树。
4.生成哈夫曼编码表:根据哈夫曼树生成对应的哈夫曼编码表。
5.进行编码:利用哈夫曼编码表将图像数据进行编码,代替原始的像素值。
图像压缩技术通过减少冗余信息和去除人眼不敏感的细节,可以大幅度减小图像文件的大小,常见的图像压缩格式如JPEG就广泛应用了哈夫曼编码。
哈夫曼树的实际应用

哈夫曼树的实际应用
哈夫曼树(Huffman Tree)是一种重要的数据结构,它在信息编码和压缩、数据传输和存储、图像处理等领域有广泛应用。
1. 数据压缩:哈夫曼树是一种无损压缩的方法,能够有效地减小数据的存储空间。
在进行数据压缩时,可以使用哈夫曼树构建字符编码表,将出现频率较高的字符用较短的编码表示,而出现频率较低的字符用较长的编码表示,从而减小数据的存储空间。
2. 文件压缩:在文件压缩领域,哈夫曼树被广泛应用于压缩算法中。
通过构建哈夫曼树,可以根据字符出现的频率来生成不同长度的编码,从而减小文件的大小。
常见的文件压缩格式如ZIP、GZIP等都使用了哈夫曼树。
3. 图像压缩:在图像处理中,哈夫曼树被用于图像压缩算法中。
通过将图像中的像素值映射为不同长度的编码,可以减小图像的存储空间,提高图像传输和存储的效率。
常见的图像压缩格式如JPEG、PNG等都使用了哈夫曼树。
4. 文件传输:在数据传输中,哈夫曼树被用于数据压缩和传输。
通过对数据进行压缩,可以减小数据的传输时间和带宽占用。
在传输过程中,接收方可以通过哈夫曼树解码接收到的数据。
5. 数据加密:在数据加密中,哈夫曼树可以用于生成密钥,从而实现数据的加密和解密。
通过将字符映射为不同长度的编码,可以实
现对数据的加密和解密操作。
哈夫曼树在信息编码和压缩、数据传输和存储、图像处理等领域有广泛应用,能够有效地减小数据的存储空间、提高数据传输效率、实现数据加密等功能。
哈夫曼树

F
K
11110
111111 110
F 24
0
Z 2
1
K 7
L
U
Z
100
111110
哈夫曼编码的效率。
我们定义该编码方案的平均编码长度为: B(T)=(c1p1+ c2p2 +…+ cnpn)/pt 其中: ci和pi是字符集中第i个字符的代码长度及 其相对频率,pt是字符集的总频率。对本例计算平 均编码长度≈2.565 若采用固定长度编码,每个字母需log28=3位, 而哈夫曼编码只需2.565位,节省空间约12%。 哈夫曼编码对于典型的文本文件将比ASCII编 码节省约40%的空间。
用途:用于通信和数据传送中字符的二进制编码,可以 使文件编码总长度最短。 例字符集: C D E F K L U Z 频 率:32 42 120 24 7 42 37 2
306
0
1 186
C D E
1110 101 0
E 79 0 1 120 0 U D 37 42
1 107 1 65 0 1 L 0 33 42 C 0 1 9
哈夫曼树及其应用
1.问题的提出
在程序设计中,常用一个代码来表示一个 元素,标准ASCII码就是一个例子。它用log2128 即7位提供了128个不同的代码来表示ASCII表中 的128个字符。假设所有代码都等长,则表示n 个不同的代码需要log2n位,称为固定长度编码 (如ASCII码)。如果每个字符的使用频率相等, 则固定长度编码的空间效率最高。但事实上,每 个字符的使用频率并非一样。
if (socre<60) printf(“bad”); else if (socre<70) printf(“pass”); else if (score<80) printf(“general”); else if (score<90) printf(“good”); esle printf(“very good”);
哈夫曼树经典例题
哈夫曼树经典例题哈夫曼树是一种经典的缩小数据存储空间的算法。
它是由David Huffman在1952年提出的,被广泛应用于数据压缩、编码和解码等领域。
本文将介绍哈夫曼树的定义、构建算法和常见的应用示例。
一、哈夫曼树的定义哈夫曼树是一种特殊的二叉树,它的构建基于一组给定的权值集合。
每个权值都与二叉树中的一个叶子节点相关联。
哈夫曼树的特点是权值较大的节点越接近于根节点,权值较小的节点越接近于叶子节点。
这种结构使得较高频率的字符具有较短的编码,而较低频率的字符具有较长的编码,从而达到压缩数据的目的。
二、哈夫曼树的构建算法哈夫曼树的构建算法主要分为以下几个步骤:1. 创建一个权值表,记录每个字符的权值。
2. 将权值表按照权值从小到大进行排序。
3. 选择权值最小的两个字符,创建一个新的内部节点,将这两个字符作为其子节点,并将其权值设为这两个字符的权值之和。
4. 将新创建的节点插入到排序后的权值表中,并删除原先两个节点。
5. 重复步骤3和步骤4,直到只剩下一个节点,即根节点为止。
三、哈夫曼树的应用示例:数据压缩数据压缩是哈夫曼树最常见的应用之一。
在压缩数据时,哈夫曼树根据字符出现的频率进行构建,将频率较高的字符用较短的编码表示,而频率较低的字符用较长的编码表示,从而达到压缩数据的目的。
举个例子,假设我们要压缩一个文本文件,其中包含6个不同的字符:A: 2次B: 3次C: 4次D: 4次E: 5次F: 6次首先,我们根据字符频率构建哈夫曼树。
按照步骤2,我们将字符按照频率从小到大排序,得到以下顺序:A, B, C, D, E, F然后,按照步骤3和步骤4,我们构建哈夫曼树的过程如下:1. 构造A和B的新节点AB,权值为2+3=5,得到新权值表:AB, C, D, E, F2. 构造AB和C的新节点ABC,权值为5+4=9,得到新权值表:ABC, D, E, F3. 构造D和E的新节点DE,权值为4+5=9,得到新权值表:ABC, DE, F4. 构造ABC和DE的新节点ABCDE,权值为9+9=18,得到新权值表:ABCDE, F5. 构造ABCDE和F的新节点全集,权值为18+6=24,得到最终的哈夫曼树。
数据结构-哈夫曼树及其应用
15
40 a
30 b
5
c
10 d
15 e
二、哈夫曼树及其应用
2.哈夫曼树的求解过程 ③实例:已知有5个叶子结点的权值分别为:5 , 15 , 40 , 30 , 10 ;试画出一棵相应的哈夫曼树。
30
40 a
30 b
15
15 e
5
c
10 d
二、哈夫曼树及其应用
2.哈夫曼树的求解过程 ③实例:已知有5个叶子结点的权值分别为:5 , 15 , 40 , 30 , 10 ;试画出一棵相应的哈夫曼树。
WPL=∑wi*li最小的二叉树称为“最优
i=1 n
二叉树”或称为“哈夫曼树”。
二、哈夫曼树及其应用
2.哈夫曼树的值为{w1,w2,...wn},构 造一棵最优二叉树。
二、哈夫曼树及其应用
2.哈夫曼树的求解过程 ②方法:
步骤1:构造一个具有n棵二叉树的森林F={T1,T2,......,Tn}, 其中Ti是只有一个根结点且根结点的权值为wi的二叉树。 步骤2:在F中选取两棵其根结点的权值最小的二叉树,从F 中删除这两棵树,并以这两棵二叉树为左右子树构造一棵 新的二叉树添加到F中,该新的二叉树的根结点的权值为 其左右孩子二叉树的根结点的权值之和。 步骤3:判断F中是否只有唯一的一棵二叉树。若是,则求 解过程结束;否则,转步骤2。
二、哈夫曼树及其应用
3.哈夫曼编码 ②压缩编码:
例如:对于刚才的4个字符的编码问题,可以按如 下不等长编码方案进行编码: A: 0 B: 00 C: 1 D: 01 则对于电文“ABACCDA”的二进制电码为: 000011010 总长为9位 问题:译码时可能出现多意性,即译码不唯一:
二、哈夫曼树及其应用
哈夫曼树的总结
哈夫曼树的总结引言哈夫曼树(Huffman Tree)是一种用于无损数据压缩的重要数据结构。
它是由美国数学家大卫·哈夫曼于1952年提出的,被广泛应用于各种领域,如文件压缩、网络传输、数据存储等。
哈夫曼树的概念哈夫曼树是一种二叉树,其中每个叶子节点代表一个字符,且树的形状是通过字符出现频率构造而成的。
哈夫曼树的特点是,出现频率高的字符位于树的较低层,频率低的字符位于树的较高层,使得出现频率高的字符用较少的编码表示,出现频率低的字符用较多的编码表示,达到数据压缩的目的。
哈夫曼编码哈夫曼树的构建过程中,每个字符的出现频率是关键。
为了压缩数据,我们需要为每个字符分配一个唯一的二进制编码。
哈夫曼编码是通过哈夫曼树来生成的,它保证了没有任何一个字符的编码是其他字符编码的前缀,因此可以方便地进行数据的解压。
构建哈夫曼树的步骤构建哈夫曼树的步骤一般如下:1.统计每个字符的出现频率。
2.将每个字符作为一个单独的树节点,构建一个森林。
3.从森林中选择出现频率最低的两棵树合并为一棵新的树,新树的权重为两棵树的权重之和。
4.将新树放回森林,重复步骤3,直到森林中只剩下一棵树,即哈夫曼树。
5.对每个叶子节点,根据路径从根节点到该叶子节点的方向,赋予唯一的二进制编码。
哈夫曼树的性质哈夫曼树具有以下几个重要的性质:1.哈夫曼树是一棵最优二叉树,即带权路径长度最短的二叉树。
2.哈夫曼树的带权路径长度是所有叶子节点的权重乘以路径长度的总和。
3.哈夫曼树的路径长度定义为从树根到叶子节点的路径上的边的数量。
4.哈夫曼树的路径长度最小,即带权路径最短,适用于数据压缩等场景。
哈夫曼树的应用哈夫曼树广泛应用于数据压缩和编码领域。
通过构建哈夫曼树和哈夫曼编码,可以实现文本、图像等数据的无损压缩。
此外,哈夫曼树还被用于文件传输、网络传输等场景,可以大大提高数据传输效率和降低带宽消耗。
总结哈夫曼树是一种重要的数据结构,通过构建哈夫曼树和哈夫曼编码,可以实现数据的无损压缩和高效传输。
哈夫曼树的实际应用
哈夫曼树的实际应用
哈夫曼树在实际中有许多应用,以下是一些例子:
1. 数据压缩:哈夫曼树常用于数据压缩算法,如哈夫曼编码。
哈夫曼编码是一种前缀编码,它可以将数据中的字符编码为二进制字符串,使得平均编码长度最短,从而达到数据压缩的效果。
2. 文件存储:在文件存储中,哈夫曼树可以用于数据存储和检索。
例如,可以使用哈夫曼树来存储文件索引,以便快速找到文件。
3. 图像处理:在图像处理中,哈夫曼树可以用于图像压缩和编码。
例如,可以使用哈夫曼树来编码图像中的像素值,从而减小图像文件的大小。
4. 通信网络:在通信网络中,哈夫曼树可以用于数据传输和调度。
例如,可以使用哈夫曼树来优化数据的传输路径和顺序,以提高网络传输的效率和可靠性。
5. 数据库优化:在数据库优化中,哈夫曼树可以用于索引和查询处理。
例如,可以使用哈夫曼树来构建索引,以便快速检索数据库中的数据。
总的来说,哈夫曼树在许多领域中都有广泛的应用,特别是在需要数据压缩、文件存储、图像处理、通信网络和数据库优化的领域中。