第六章 狭义相对论作业答案(2014)

合集下载

1习题课(相对论)

1习题课(相对论)
第六章 狭义相对论 习 题 课
一、选择题 1.下列几种说法: (1)所有惯性系对物理基本规律都是等价的。 (2)在真空中,光的速度与光的频率、光源的运动状 态无关。 (3)在任何惯性系中,光在真空中沿任何方向的传播 速度都相同。其中哪些说法是正确的? (A)只有(1)、(2)是正确的。 (B)只有(1)、(3)是正确的。 (C)只有(2)、(3)是正确的。 (D)三种说法都是正确的。 [ D ]
(D) 0 ; l l 0
5.(1)对某观察者来说,发生在某惯性系中同一地点 、同一时刻的两个事件,对于相对该惯性系作匀速直线运 动的其它惯性系中的观察者来说,它们是否同 时发生? ( 2 )在某惯性系中发生于同一时刻、不同地点的两 个事件,它们在其它惯性系中是否同时发生? (A)(1)同时,(2)不同时。 (B)(1)不同时,(2)同时。 (C)(1)同时,(2)同时。 (D)(1)不同时,(2)不同时。 [ A ]
c 或由: 2 2 1 u / c u t 2 x c t t 2 t 1 270 s c 1 u2 / c 2 t
2
x ct
270(m )
从这道题也可以看出,洛仑兹变换是建立在光速不 变原理这个基础之上的。
12)一观察者测得一沿米尺长度方向匀速运动着的米 8 -1 2.6× 10· 尺的长度为0.5m。则此米尺以速度υ= m s 接近观察者。 解: 匀速运动着的米尺的长度为动长 l
c2 c2
(C) 0 ; l l 0
4. 两个惯性系S 和 S ′,沿x(x ′)轴方向作相对运动,相 对速度为 u ,设在 S ′系中某点先后发生的两个事件,用 固定于该系的钟测出两事件的时间间隔为固有时τ0 。而 用固定在 S 系的钟测出这两个事件的时间间隔为τ 。又 在S ′系x ′轴上放置一固有长度为 l 0 的细杆,从S 系测得 此杆的长度为l ,则 [ D ] (A) 0 ; l l 0 (B) 0 ; l l 0

狭义相对论作业习题及解答.doc

狭义相对论作业习题及解答.doc

4-7.某飞船自地球出发,相对地球以速率v=0.30c匀速飞向月球,在地球测得该旅程的距离为Zo=3.84xl()8m, 在地球测得该旅程的时间间隔为多少?在飞船测得该旅程的距离Z=?利用此距离求出:在飞船测得该旅程的时间间隔为多少?解:取地球为K惯性系、飞船为K,惯性系。

在地球测得该旅程的时间间隔为:Az = L Q/V M4.27(S)在地球地球测得的£o=3.84xlO8 (m),为地球〜月球的固有距离。

则在飞船测得该旅程的距离为在飞船观测,地球与月球共同以速率v=0.30c匀速运行,先是地球、随后是月球掠过飞船,则在飞船测得该旅程的时间间隔为:Ar = Z/v^4.07(s)说明:显然,飞船测自身旅程的时间间隔宜为固有时,在地球测得该旅程的&为观测时。

△t与显然满足狭义相对论时间膨胀效应,即4-8.在K惯性系测两个同时发生相距Im的事件(该两事件皆在X、X,轴)。

在K,惯性系测该两事件间距为2m, 问:在K,惯性系测该两事件发生的时间间隔为多少?解:在K系测两事件相距Ax=lm;同时发生则&=0.在K,系测两事件相距Ax,=2m;两事件发生的时间间隔为由洛伦兹变换,有Ax —M A/A X 1 Ax' ~ V3-/ = = -/ —/ = — 2 u —Jl-("/c)2 Jl-(“/c)2Jl-("/c)2 Ax 24-10.测得不稳定粒子广介子的固有寿命平均值TO=2.6X1O8S,(1)当它相对某实验室以0.80c的速度运动时,所测的平均寿命z应是多少?(2)在实验室测该介子在衰变前运行距离L应是多少?解:取花+介子、实验室为K,和K惯性系,沿该介子运行方向取为X、X,轴,在K,系中观测:也,=宣=2.6*10%, Ax,=0在K系中观测:也与皆为待求量。

由时间膨胀效应关系式,有T = M MI Jl-(v/c)2 =T J J1-(0.80C/C)2| 1~。

大学物理_狭义相对论及其习题

大学物理_狭义相对论及其习题
实验室测得的是运动速度(慢)

1 u 1 c
2
7
t ' t = 1.8×10-7(s)
6-4 长度缩短(同时测量) 一、同时测量 0
x2 x2
长度测量与时间测量有关 不同参照系具有 相对的时间间隔 相对的长度 x1
0
x1
棒固定在S’系, S’ 相对S运动,观察者在S S系中观察B’经过x1的t1和A’经过x1的t2 S’ S’ u
光线2:
2L t2 c2 u2 Lu2 2 Lu2 t 2 N 2 c c
r
M2
u
L
约为0.4条,但实际是0结果。 这一悬案被称为是“一朵乌云”。
c u
M1
c2 u 2
三、爱因斯坦基本假设 1、相对性原理:物理学定律在所有惯性系 中都是相同的,无特殊的绝对参照系。
(从力学的相对性推广到所有物理定律)
第六章 狭义相对论 6-1 牛顿相对性原理和伽利略变换 6-2 爱因斯坦相对性原理和光速不变 6-3 同时性的相对性和时间膨胀 6-3长度缩短 6-4罗伦兹变换 6-7 相对论质量 6-8 相对论动能 6-9 相对论能量 6-11广义相对论简介
狭义相对论的意义 新的时空观,它建立了高速运动的物体
的力学规则和电动力学规律,揭露了质量 和能量的内在联系。
2、光速不变原理:在所有惯性系中,光 速 具有相同的量值 c。
(电磁波的传播是各向同性的)
6-3 同时性的相对性和时间延缓
A
B
在同一参照系中,光同速走同距,同时到达。
光源和观察者都在S系
S 钟即观察者
A B
光源在S’系,相对S运动
观察者在S系,不同时
S

狭义相对论习题解答 2014版

狭义相对论习题解答 2014版

习题4 一 选择题1.有下列几种说法:(1)所有惯性系对物理基本规律都是等价的。

(2)在真空中,光的速度与光的频率、光源的运动状态无关。

(3)在任何惯性系中,光在真空中沿任何方向的传播速率都相同。

若问其中哪些说法是正确的,答案是 (A )只有(1)、(2)是正确的 (B )只有(1)、(3)是正确的 (C )只有(2)、(3)是正确的 (D )三种说法都是正确的 [ ] 【分析与解答】根据狭义相对论的相对性原理可知(1)是正确的,根据光速不变原理可知(2)和(3)正确 正确答案是D 。

2.(1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其他惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其他惯性系中是否同时发生?关于上述两个问题的正确答案是: (A )(1)同时,(2)不同时 (B )(1)不同时,(2)同 (C )(1)同时,(2)同时 (D )(1)不同时,(2)不同时 [ ] 【分析与解答】根据洛仑兹变换有2'u t x t ∆-∆∆=,对于(1)0,0t x ∆=∆=,所以'0t ∆=; 对于(2)0,0t x ∆=∆≠,所以'0t ∆≠。

正确答案是A 。

3.某地发生两件事,静止位于该地的甲测得时间间隔为4s ,若相对于甲作匀速直线运动的乙测得时间间隔为5s ,则乙相对于甲的运动速度是(c 表示真空中光速) (A )(4/5)c. (B )(3/5)c. (C )(2/5)c. (D )(1/5)c. [ ] 【分析与解答】根据时间膨胀关系式't ∆=,4,'5t t ∆=∆=,解得35u c =正确答案是B 。

4.一宇航员要到离地球为5光年的星球去旅行,如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度应是(c 表示真空中光速) (A )()1/2.v c = (B )()3/5.v c =(C )()4/5.v c = (D )()1/5.v c = [ ]【分析与解答】根据长度收缩关系式l =,03,5l l ==,解得45u c = 正确答案是C 。

狭义相对论基础习题解答

狭义相对论基础习题解答

狭义相对论基础习题解答一 选择题1.判断下面几种说法是否正确 ( ) (1) 所有惯性系对物理定律都是等价的。

(2) 在真空中,光速与光的频率和光源的运动无关。

(3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。

A. 只有 (1) (2) 正确B. 只有 (1) (3) 正确C. 只有 (2) (3) 正确D. 三种说法都正确解:答案选D 。

2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是:( )A. (1) 同时, (2) 不同时B. (1) 不同时, (2) 同时C. (1) 同时, (2) 同时D. (1)不同时, (2) 不同时 解:答案选A 。

3.在狭义相对论中,下列说法中哪些是正确的?( )(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(2) 质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变 (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。

A. (1),(3),(4)B.(1),(2),(4)C.(1),(2),(3)D.(2),(3),(4) 解:同时是相对的。

答案选B 。

4. 一宇宙飞船相对地球以0.8c 的速度飞行,一光脉冲从船尾传到船头。

飞船上的观察者测得飞船长为90m ,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 ( )A. 90mB. 54mC. 270mD. 150m 解:x ′=90m, u =0.8c ,8790/(310)310s t -'∆=⨯=⨯2()/1(/)270m x x u t u c ''∆=∆+∆-=。

第六章狭义相对论

第六章狭义相对论
原长最长
2
l
l0

l0
u 1 2 c
运动长度 l l0
★ 注意:长度收缩只发生在速度方向
例4(4357)在O参照系中,有一个静止的正方
形,其面积为100cm2。观测者O’以0.8C的
匀速度沿正方形的对角线运动求O’所测得
的该图形的面积。 解:在O参照系中A、B间对角线长度
在O’参照系中A、B间长 度 ★ O’所测得的该图形的面积
u
例5(4370)在K惯性系中,相距 的两个地方发生两事件,时间间隔 而在相对于K系沿正 方向匀速运动的K’系中 观测到这两事件却是同时发生的。试计算:在 K’系中发生这两事件的地点间的距离是多少? 解1 :
解2 :
作业:P339~340 6.1 6.3
6.4
6.5 6.6
练习(5616)一列高速火车以速度 驶过车站时, 固定在站台上的两只机械手在车厢上同时划 出两个痕迹,静止在站台上的观察者同时测 出两痕迹之间的距离为1m,则车厢上的观察 者应测出这两个痕迹之间的距离为多少? 解:车上观察者测的两痕迹之间的距离 =原长 l0 静止在站台上的观察者同时测出两痕迹之间 的距离 =运动长 l
5 4 u2 1 2 c
0
(2)乙测得这两个事件发生的地点的距离
例2(4167) 子是一种基本粒子,在相对于它静 止的坐标系中测得其寿命为 ,如 果 子相对于地球的速度为 ( 为真空中光速),则在地球坐标系中测 出的 子的寿命 解:设:相对于 子静止的参照系为 S’
★ 在地球坐标系中测出的 子的寿命
两个事件的空间间隔 事件二:测量尺子(棒) 右端坐标
长度 右端坐标 — 左端坐标

在相对于尺子(棒)运动的参照系中要 条件: 同时记录尺子(棒)两端的坐标。 (如:相对于尺子(棒)运动的参照系是S’ 系 则: t1’ ) t2’ l x’ x ’

张三慧《大学物理学:力学、电磁学》(第3版)(B版)(章节题库 狭义相对论基础)【圣才出品】

张三慧《大学物理学:力学、电磁学》(第3版)(B版)(章节题库 狭义相对论基础)【圣才出品】

依题意,
,所以
则飞船相对地球的运动速度为
5 / 25
圣才电子书

(2)根据洛伦兹正变换
十万种考研考证电子书、题库视频学习平 台
可得飞船上测得这两城市相距为
2.某观察者测得一静止细棒的长度为 l,质量为 m,于是求得此棒的线密度匀.λ
在相对论情况下解下列问题: (1)若此棒以速度 υ 在棒长方向上运动,观察者再测此棒的线密度应为多少? (2)若此棒以速度 υ 在垂直于棒长的方向上运动,此棒的线密度又为多少? 解:(1)沿棒长方向运动时,由长度收缩公式可得观察者测得的棒长为
3.作用于物体上的外力,是否会因为惯性系的不同而不同?分别从经典力学与相对 论力学的角度讨论.
答:在惯性系中,力的定义是被作用物体的动量随时间的变化率,即
在经典力学中,动量
其中质量 m 是常量.故
因为加速度 a 在所有惯性系中相等,所以力 F=ma 是个不变量,即与惯性系的选取无 关.
在相对论力学中,m 是个随惯性系的不同而变化的量.故
5.经典力学的动能定理和相对论力学的动能定理有什么相同和不同之处?
答:相同之处在于都认为动能是物体因运动而具有的能量,而且都以

形式表明物体动能的增量与外力对其所做功等值.不同之处在于经典力学中
其中质量 m 是常量;相对论力学中
其中 是物体静止时
的质量,运动质量 m 是随其运动速度变化的量,
称静止能量,
圣才电子书

十万种考研考证电子书、题库视频学习平 台
第 6 章 狭义相对论基础
一、选择题 1.一宇航员要到离地球为 5 光年的星球去旅行,如果宇航员希望把这路程缩短为 3 光年,则他所乘的火箭相对于地球的速度为( )。

第六章狭义相对论

第六章狭义相对论

′ = αλν αµσTνσ 二阶张量: Tλµ
对称张量: Tµν = Tνµ ,有10个独立分量(四维) 例如三维空间中对称张量:电四极矩张量Qij;转动惯量 张量I;材料力学中的应力张量 ;Maxwell应力张量;电 磁场动量流密度张量Tij等等。
Tµν = −Tνµ 只有6个独立分量,因为 Tµ µ=0 反对称张量:
三阶张量有43=64个分量:Tµνλ
三阶全反对称张量:Tµνλ ,若对每两个脚标都是反对称的 称之为三阶全反对称张量。即有二个及二个以上脚标相同 时矩阵元为零,共40个0元素,24个非零元素。 24个非零元素中只有4个独立元素T234,T314,T412 和 T123. 它们可用一个4维矢量表示。
A′ µ = α µν A ν
同意味着求和。
约定脚标希腊字母从1取到4,英文字母从1取到3,脚标相 这种约定求和的脚标如上式中ν称为“哑标”,对不参加求和 的脚标,如上式中的μ称为“自由脚标”。 等式两边的自由脚标必须对应。 由于哑标只表示对该脚标从1到4求和的一个约定,所以哑 脚标的字母可以更换,如上式中 A′ µ = α µν A ν = α任意一个二阶张量总可以分解为一个二阶对称张量和一个 二阶反对称张量之和”。 证明:设Tµ σ 为任意一个二阶张量,
Tµ σ = Tµ σ + Tσµ 2 + Tµ σ − Tσµ 2 = Sµ σ + Aµ σ
式中 S µ σ = S σµ 是对称张量,
A µ σ = − A σ µ 是反对称张量,证毕。
三维空间中反对称张量是两矢量叉乘出来的,又叫赝矢 r r r r r r r r r r r υ = ω× r,L = r × F , J = r × p 量。例如 B = ∇ × A , r r r r B, ω, L, J 构成三维空间的二阶反对称张量,因只有三个独 立分量故可用一矢量表示,叫赝矢量。 在坐标变换时不能当矢量处理,否则会出错。 在四维空间二阶反对称张量有六个独立分量,比空间维数 多2,不能用4-矢量表示。 坐标变换时必须还物理量的本来面目。 顺便指出:在正交变换下,对称张量保持为对称;反对称张量 保持为反对称。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AHA12GAGGAGAGGAFFFFAFAF第六章 狭义相对论基础(2014)一.选择题1、(基础训练1)宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为( ).(c 表示真空中光速)(A) c ·t (B) v ·t (C) 2/1(v /)c t c ∆⋅-(D)2)/(1c t c v -⋅⋅∆解答:[A].飞船的固有长度为飞船上的宇航员测得的长度,即为c ·t 。

2、(基础训练2)在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c . (B) (3/5) c . (C) (2/5) c . (D) (1/5) c .解答:[B].AHA12GAGGAGAGGAFFFFAFAF3、(基础训练3) K 系与K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿Ox 轴正方向匀速运动.一根刚性尺静止在K '系中,与O'x'轴成 30°角.今在K 系中观测得该尺与Ox 轴成 45°角,则K '系相对于K 系的速度是:(A) (2/3)c . (B) (1/3)c . (C) (2/3)1/2c . (D) (1/3)1/2c .解答:[C].K '系中:00'cos30;'sin30x yl l l l ︒︒==K 系中:()2'tan 45'1/1/3x xy y l l l l v c v ===⇒-=⇒=4、(自测提高3)设某微观粒子的总能量是它的静止能量的K 倍,则其运动速度的大小为 (以c 表示真空中的光速) (A)1-K c. (B) 21K Kc -.(C)12-K Kc . (D))2(1++K K K c解答:[C].111122020-=⇒=-=⇒-=K K c v K c v E E c v E E )/()/(总能量:AHA12GAGGAGAGGAFFFFAFAF二.填空题5、(基础训练7)一门宽为a .今有一固有长度为l 0 (l 0 > a )的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动.若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u 至少为_______.解答:[].门外的观察者测得杆的长度'l l au =≤⇒≥6、(基础训练8)(1) 在速度=v ____________情况下粒子的动量等于非相对论动量的两倍.(2) 在速度=v ____________情况下粒子的动能等于它的静止能量.AHA12GAGGAGAGGAFFFFAFAF解答:]. (1)0022p mv m v m m v ==⇒==⇒=(2)c v c v m m m c m c m mc E k 23122020202=⇒-==⇒=-=)/(7、(自测提高5)地面上的观察者测得两艘宇宙飞船相对于地面以速度 v = 0.90c 逆向飞行.其中一艘飞船测得另一艘飞船速度的大小v ′=______.解答:[0.994c ].2222()220.9'0.994()1/10.91v v v cv c v v c v c --⨯====-++-8、(自测提高8)已知一静止质量为m 0的粒子,其固有寿命为实验室测量到的寿命的1/n ,则此粒子的动能是______.解答:[20(1)n m c -].01t t t n∆∆=⇒==∆22222000(1)k E mc m c m c n m c =-=-=-9、(附录B :11)两惯性系中的观察者O 和'O 以c 60.的相对速度互AHA12GAGGAGAGGAFFFFAFAF相接近。

如果O 测得两者的初始距离是20m ,'O 测得两者经过='t ∆ s 后相遇.解答:O 系中测得的相遇时间为:c v x t 60./20/==∆∆考虑't ∆是相对于'O 静止的'O 系中测得的时间间隔,为固有时间,而t ∆为相对于'O 运动的O 系中测得的时间间隔,为膨胀时间,因此,s c v t t 8210898-⨯=-=.)/(1'∆∆三.计算题10、(基础训练10)两只飞船相向运动,它们相对地面的速率是v .在飞船A 中有一边长为a 的正方形,飞船A 沿正方形的一条边飞行,问飞船B 中的观察者测得该图形的周长是多少?解答:222222222()22'()1/1'/224/()v v v vc u v v c c v v cu c C a ac c v β--===-++-==+=+;11、(基础训练13)要使电子的速度从v 1 =1.2×108m/s 增加到v2 =2.4×108 m/s必须对它做多少功?AHA12GAGGAGAGGAFFFFAFAF(电子静止质量m e=9.11×10-31 kg)解答:2212;E E==214214.7210()eA E E E m c J-=∆=-=-=⨯12、(基础训练14)跨栏选手刘翔,在地球上以12.88s时间跑完110m栏,在飞行速度为0.98c的飞船中观察者观察,试求(1)刘翔跑了多少时间,(2)刘翔跑了多长距离?解答:2121110()12.88()x x x m t t t s∆=-=∆=-=280.9812.88110'64.7()vt xt s∆-∆-⨯∆===8''1021' 1.9110()x x x m∆=-===-⨯负号表示运动员沿轴反方向跑动。

13、(基础训练15)已知m子的静止能量为105.7MeV,平均寿命为2.2´10-6s,试求动能为150MeV的m子的速度v和平均寿命t。

AHA12GAGGAGAGGAFFFFAFAF解答:222200021)0.91kkm cE mc m c m cm c Ev c=-=⇒=+⇒===66' 5.3110()t s--∆===⨯14、(自测提高12)飞船A以0.8c的速度相对地球向正东飞行,飞船B以0.6c的速度相对地球向正西方向飞行.当两飞船即将相遇时AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAFA 飞船在自己的天窗处相隔2s 发射两颗信号弹.在B 飞船的观测者测得两颗信号弹相隔的时间间隔为多少?解答:以地面为K 系,飞船A 为K ˊ系,以正东为x 轴正向;则飞船B 相对于飞船A 的相对速度220.60.8 1.4'0.9460.810.80.61(0.6)1B A B A B v v c c v c c v c c v c c----====-+⨯---' 6.17()t s ∆===15、(自测提高18)火箭相对于地面以c v 60.=(c 为真空中光速)匀速向上飞离地球,在火箭发射s t 10='∆后(火箭上的钟),该火箭向地面发射一导弹,其速度相对于地面为c v 30.1=,问火箭发射后多长时间(地球上的钟),导弹到达地球?计算中假设地面不动。

解答:火箭发射s t 10='∆(火箭上的钟,原时)后发射导弹,此时,地球上经历的时间为:s c v t t 51212.)/(/'=-=∆∆以地球为参考系,火箭高度m t v H 910252⨯==.∆导弹运动到地面需要时间(地球上的钟)s v H t 2511==/∆因此,火箭发射s t t T 537.'=+=∆∆后,导弹到达地球。

附加题:16、(自测提高14) (1) 质量为m0 的静止原子核(或原子)受到能量为E 的光子撞击,原子核(或原子)将光子的能量全部吸收,则此合并系统的速度(反冲速度)以及静止质量各为多少?(2) 静止质量为m'的静止原子发出能量为E 的光子,则发射光子后原子的静止质量为多大?解答:(1)设合并系统的速度为v,质量为M,静止质量为M0。

由动量守恒和能量守恒得:2220022;/m c E Mc m c EEcv Mm c E cp E c MvM m ⎧+=+⇒===⎨+==⎩⇒===(2) 设静止质量为M'。

由动量守恒和能量守恒得:()22//m c E M cp E c M v M m mM M⎧''+-=⎪⎪'''==⇒==⎨⎪''=⎪⎩如有侵权请联系告知删除,感谢你们的配合!&29224 7228 爨31818 7C4A 籊^20740 5104 億27969 6D41 流37176 9138 鄸 *-c20656 50B0 傰 31010 7922 礢26991 696F 楯AHA12GAGGAGAGGAFFFFAFAF。

相关文档
最新文档