不等式的定义PPT课件
合集下载
基本不等式课件(共43张PPT)

02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。
人教版数学下册.1不等式及其解集 (共20张PPT)教育课件

D.18≤t≤27
2.无论x取什么数,下列不等式总成立的是(D )
A.x+5>0
B.x+5<0
C.x2<0 D.x2≥0
随堂检测
3.高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指( B )
A.每100克内含钙150毫克 B.每100克内含钙不低于150毫克 C.每100克内含钙高于150毫克 D.每100克内含钙不超过150毫克
• • 理财的时候需要做的一方面提高收入, 令一方 面是节 省开支 。这就 是所谓 的开源 节流。 时间管 理也是 如此, 一方面 要提高 效率, 另一方 面是要 节省时 间。主 要做法 有:1、 同时做 两件事 情(备 注:请 认真选 择哪些 事情可 以同时 做), 比如跑 步的时 候边听 有声书 ;2、 压缩休 息时间 提升睡 眠效率 ,比如 晚睡半 小时早 起半小 时(6~7个小 时即可 );3、 充分利 用零碎 时间学 习,比 如做公 交车、 等车、 上厕所 等。
2.若m是非负数,则用不等式表示正确的是( D )
A.m<0 B.m>0 C.m≤0
D.m≥0
预习反馈
3.用不等号“>、<、≥、≤”填空:a2+1 > 0.
4.“a<b”的反面是( C )
A.a≠b B.a>b
C.a≥b
D.a=b
课堂探究
问题
一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00之前驶过A地,车 速应满足什么条件?
的解吗?x=75呢?x=72呢?
解:当x=75时,2 x=50 , 3
不等式不成立,
所以 x=75不是不等式 2 x 50 的 3
解
课堂探究
思考: x=78是不等式 2 x 50 的解吗?x=75呢?x=72呢? 3
高中必修高一数学PPT课件不等式的性质

3.数轴的三要素:
原点、长度单位、正方向
4.如何表示数轴上两个点所对数的大小:
数轴上右边的点所对的数大于左边的点所对的数。
B 。 A 。
bLeabharlann a5.如图,A、B是数轴上的两个点,A、B所对数分别为a、b, 试比较a-b与0的大小
a>b a-b>0
a<b a-b<0
a=b a-b=0
例1.比较(a 3)(a 5)与(a 2)(a 4)的大小。
a+2 > a+1----------------(1) a+3>3a-------------------(2) 3x+1<2x+6--------------(3) x<a------------------------(4)
同向不等式: • 在两个不等式中,如果每一个的左边都 大于右边,或每一个的左边都小于右边. 异向不等式: • 在两个不等式中,如果一个不等式的左 边大于右边,而另一个的左边小于右边.
2 2
(a a 1)(a a 1)的大小。
2 2
课外作业:
1.书P8习题6.1(1—3) 2. 设 a 0 且 a 1 , t 0 1 t 1 的大小. log t 与 log a a 比较 2 2
3.比较M a 1 a和N a a 1的大小(a 1 ).
解:(a 3)(a 5) (a 2)(a 4)
(a 2 2a 15) (a 2 2a 8) 7 0
(a 3)(a 5) (a 2)(a 4)
2 2 4 2 ,比较 ( x 1) 与x x 1 的大小 例2.已知 x 0
《不等式及其基本性质》课件

《不等式及其基本性质》 课件ppt
这个课件介绍了不等式的定义、运算性质、解集表示,还包括一元一次不等 式、多元一次不等式的求解方法,以及不等式组的求解方法和在实际问题中 的应用。
不等式的定义
1 概念解释
不等式是用不等号连接的两个数或两个式子,表示大小关系。
2 种类
常见的不等式类型有大于、小于、不大于、不小于等。
不等式在实际问题中的应用
1 金融领域
利用不等式来决材料强度、承重能力等问题。
3 生活领域
通过不等式来优化日常生活,如控制饮食、调整作息等。
图像法
将多元不等式的解集表示在平面直角坐标系上,求出解集的范围。
线性规划法
利用线性规划方法求解多元不等式问题,找到最优解。
不等式组的求解方法
1
代入法
2
通过代入变量的方式,逐个求解不等式
组的每个不等式。
3
图形解法
将不等式组在平面直角坐标系上展示, 找出满足所有不等式的交集。
矩阵解法
利用矩阵运算和线性方程组的方法求解 不等式组。
可以用数轴上的点或线段来表示解集的范围。
3
区间表示
可以用开区间、闭区间或半开半闭区间来表示解集的范围。
一元一次不等式的求解方法
图形法
将不等式在数轴上表示成线段或阴影部分,求出解 集。
代数法
使用代数方法进行计算和推导,求出解集。
多元一次不等式的求解方法
子代数法
将多元不等式化简为含有一个变量的式子,再进行求解。
3 示例
例如:2x + 3 > 7 是一个不等式。
不等式的运算性质
加减法性质
• 对不等式两边同时加减一个相同的数,不等 式方向不变。
这个课件介绍了不等式的定义、运算性质、解集表示,还包括一元一次不等 式、多元一次不等式的求解方法,以及不等式组的求解方法和在实际问题中 的应用。
不等式的定义
1 概念解释
不等式是用不等号连接的两个数或两个式子,表示大小关系。
2 种类
常见的不等式类型有大于、小于、不大于、不小于等。
不等式在实际问题中的应用
1 金融领域
利用不等式来决材料强度、承重能力等问题。
3 生活领域
通过不等式来优化日常生活,如控制饮食、调整作息等。
图像法
将多元不等式的解集表示在平面直角坐标系上,求出解集的范围。
线性规划法
利用线性规划方法求解多元不等式问题,找到最优解。
不等式组的求解方法
1
代入法
2
通过代入变量的方式,逐个求解不等式
组的每个不等式。
3
图形解法
将不等式组在平面直角坐标系上展示, 找出满足所有不等式的交集。
矩阵解法
利用矩阵运算和线性方程组的方法求解 不等式组。
可以用数轴上的点或线段来表示解集的范围。
3
区间表示
可以用开区间、闭区间或半开半闭区间来表示解集的范围。
一元一次不等式的求解方法
图形法
将不等式在数轴上表示成线段或阴影部分,求出解 集。
代数法
使用代数方法进行计算和推导,求出解集。
多元一次不等式的求解方法
子代数法
将多元不等式化简为含有一个变量的式子,再进行求解。
3 示例
例如:2x + 3 > 7 是一个不等式。
不等式的运算性质
加减法性质
• 对不等式两边同时加减一个相同的数,不等 式方向不变。
《不等式与不等式组》ppt完美课件

的解的有
5 3
,
是-32x>1 的解的有 -2,-2.5 .
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
10.将下列不等式的解集在数轴上表示出来:
(1)x<-3;
(2)x≥-1;
(3)x≠2;
(4)x>-2.
解:
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
七年级数学(下册)·人教版
第九章 不等式与不等式组
9.1 不等式 9.1.1 不等式及其解集
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
1.用“> ”或“ < ”表示大小关系的式子叫做不等式,用“ ≠ ” 表示不等关系的式子也是不等式. 2.使不等式成立的未知数的值叫做不等式的解;一般地,一个含有未知数 的不等式的 所有的解 组成这个不等式的解集.求不等式的 解集 的过程叫 做解不等式.
14.x 与 3 的差的 2 倍小于 x 的 2 倍与 3 的差,用不等式表示为( C )
A.2(x-3)<x-3
B.2x-3<2(x-3)
C.2(x-3)<2x-3
D.2x-3<12(x-3)
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
解:(1)3x>-2; (2)4y+1<5; (3)x2-2>0; (4)2y-6≥0.
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
20.若方程(m+2)x=2 的解为 x=1,想一想(m-2)x>-3 的解集是多少? 试探究-1,-2,0,1,2 这五个数中的哪些数是该不等式的解. 解:由题意可知:m=0,则不等式(m-2)x>-3 可化为-2x>-3.可以看 出其解集为 x<32.故-1,-2,0,1 是该不等式的解.
《认识不等式》课件

详细描述
一元二次不等式的解法相比一元一次不等式稍显复杂,但却是解决许多实际问题的重要工具,应用广 泛。
高次不等式的解法
总结词
高阶不等式,技巧性强
详细描述
高次不等式的解法需要一定的技巧和经验,是数学学习中较为进阶的内容。掌握高次不等式的解法能够更好地 解决复杂的不等式问题。
03
不等式的应用
最大值与最小值的求解
不等式的性质
传递性
01 如果a>b,b>c,那么a>c。
加法单调性
02 也就是不等式f(x+y)≤f(x)+f(y)
的简单性质。
乘法单调性
当正实数a,b>0时, f(ax)≤f(x)+f(a)当a>1时取 ‘=’。
03
正值不等式
04 正值不等式是指不等式的左边
是一个正数,右边是一个非正 数。
负值不等式
05
不等式的练习与巩固
基础练习题
总结词
强化基础、简单易懂、适合全体学生
详细描述
基础练习题主要包括基本的不等式概念和 简单的比较大小题目,旨在帮助全体学生 掌握不等式的基本知识和技能。
进阶练习题
总结词
提高解题速度、增加技巧性、适合中等以上 学生
详细描述
进阶练习题主要包括一些较为复杂的不等式 问题,需要学生运用一定的解题技巧来解决
科学研究
在科学研究中,不领域中。
02
不等式的解法
一元一次不等式的解法
总结词
简单快捷,基础方法
详细描述
一元一次不等式的解法是求解不等式的基本方法,通过简单的步骤和公式即可得 出结果,是学习不等式的基础。
一元二次不等式的解法
一元二次不等式的解法相比一元一次不等式稍显复杂,但却是解决许多实际问题的重要工具,应用广 泛。
高次不等式的解法
总结词
高阶不等式,技巧性强
详细描述
高次不等式的解法需要一定的技巧和经验,是数学学习中较为进阶的内容。掌握高次不等式的解法能够更好地 解决复杂的不等式问题。
03
不等式的应用
最大值与最小值的求解
不等式的性质
传递性
01 如果a>b,b>c,那么a>c。
加法单调性
02 也就是不等式f(x+y)≤f(x)+f(y)
的简单性质。
乘法单调性
当正实数a,b>0时, f(ax)≤f(x)+f(a)当a>1时取 ‘=’。
03
正值不等式
04 正值不等式是指不等式的左边
是一个正数,右边是一个非正 数。
负值不等式
05
不等式的练习与巩固
基础练习题
总结词
强化基础、简单易懂、适合全体学生
详细描述
基础练习题主要包括基本的不等式概念和 简单的比较大小题目,旨在帮助全体学生 掌握不等式的基本知识和技能。
进阶练习题
总结词
提高解题速度、增加技巧性、适合中等以上 学生
详细描述
进阶练习题主要包括一些较为复杂的不等式 问题,需要学生运用一定的解题技巧来解决
科学研究
在科学研究中,不领域中。
02
不等式的解法
一元一次不等式的解法
总结词
简单快捷,基础方法
详细描述
一元一次不等式的解法是求解不等式的基本方法,通过简单的步骤和公式即可得 出结果,是学习不等式的基础。
一元二次不等式的解法
《不等式的性质》不等式与不等式组PPT优秀课件

数轴略.
(2)6x<5x-1;
x<-1
(4)1-1x≥x-2.
3
x≤9
4
8.【例4】(创新题)四个小朋友玩跷跷板,他们的体重分别为 P,Q,R,S,如图所示,则他们的体重大小关系是( D )
A.P>R>S>Q C.S>P>Q>R
B.Q>S>P>R D.S>P>R>Q
小结:关键是两两间大小关系要先表示或判定出来.
4
精典范例
5.【例1】利用不等式的性质,填“>”或“<”.
(1)若x>y,则x-10 > y-10;
(2)若-1.25y<10,则y > -8;
(3)若a<b且k>0,则k+a < k+b;
(4)若-1m>-1n,则 m < n;
2
2
(5)若a>b,则2a+1 > 2b+1;
(6)若a<b且c>0,则ac+c < bc+c.
第九章 不等式与不等式组
不等式的性质
学习目标
1.(课标)探索不等式的基本性质. 2.掌握不等式的三个性质并且能正确应用. 3.理解解不等式的概念. 4.(课标)能解数字系数的一元一次不等式.
知识要点
知识点一:不等式的性质 (1)不等式的性质1 文字语言:不等式两边加(或减)同一个数(或式子),不等号的方 向 不变 . 符号语言:如果a>b,那么a±c > b±c.
★.(新题速递)(人教7下P121改编)根据等式和不等式的基本 性质,我们可以得到比较两数大小的方法: 若a-b>0,则a>b;若a-b=0,则a=b; 若a-b<0,则a<b.反之也成立. 这种比较大小的方法称为“求差法比较大小”. 请运用这种方法尝试解决下面的问题: 比较4+3a2-2b+b2与3a2-2b+1的大小. 解:∵4+3a2-2b+b2-(3a2-2b+1)=b2+3>0, ∴4+3a2-2b+b2>3a2-2b+1.
(2)6x<5x-1;
x<-1
(4)1-1x≥x-2.
3
x≤9
4
8.【例4】(创新题)四个小朋友玩跷跷板,他们的体重分别为 P,Q,R,S,如图所示,则他们的体重大小关系是( D )
A.P>R>S>Q C.S>P>Q>R
B.Q>S>P>R D.S>P>R>Q
小结:关键是两两间大小关系要先表示或判定出来.
4
精典范例
5.【例1】利用不等式的性质,填“>”或“<”.
(1)若x>y,则x-10 > y-10;
(2)若-1.25y<10,则y > -8;
(3)若a<b且k>0,则k+a < k+b;
(4)若-1m>-1n,则 m < n;
2
2
(5)若a>b,则2a+1 > 2b+1;
(6)若a<b且c>0,则ac+c < bc+c.
第九章 不等式与不等式组
不等式的性质
学习目标
1.(课标)探索不等式的基本性质. 2.掌握不等式的三个性质并且能正确应用. 3.理解解不等式的概念. 4.(课标)能解数字系数的一元一次不等式.
知识要点
知识点一:不等式的性质 (1)不等式的性质1 文字语言:不等式两边加(或减)同一个数(或式子),不等号的方 向 不变 . 符号语言:如果a>b,那么a±c > b±c.
★.(新题速递)(人教7下P121改编)根据等式和不等式的基本 性质,我们可以得到比较两数大小的方法: 若a-b>0,则a>b;若a-b=0,则a=b; 若a-b<0,则a<b.反之也成立. 这种比较大小的方法称为“求差法比较大小”. 请运用这种方法尝试解决下面的问题: 比较4+3a2-2b+b2与3a2-2b+1的大小. 解:∵4+3a2-2b+b2-(3a2-2b+1)=b2+3>0, ∴4+3a2-2b+b2>3a2-2b+1.
不等式ppt课件

不等式的应用场景
01
02
03
04
数学领域
解决各种不等关系的问题,如 最值、范围等。
物理领域
描述物理现象和规律,如力学 、电磁学等。
经济领域
描述经济变量之间的关系,如 价格、成本等。
实际生活
描述日常生活中的不等关系, 如时间、距离等。
02
不等式的类型
算术平均数与几何平均数的不等式
总结词
算术平均数与几何平均数的不等式是一种基本的不等式,它反映了平均值与方 差之间的关系。
实际应用定义
描述实际生活中两个量之 间的不等关系,如价格、 距离等。
不等式的性质
加法单调性
即同向不等式相加,不等号不 改变方向。
反身性
任何实数都大于它本身。
传递性
如果a>b,b>c,则a>c。
乘法单调性
即不等式乘以一个正数,不等 号不改变方向;乘以一个负数 ,不等号改变方向。
非空性
不等式的两边都可以取无穷大 或无穷小。
03
不等式的证明方法
利用导数证明不等式
总结词
导数是一阶导数的简称,它描述了函数在某一点的变化率, 可以用来判断函数的单调性和凹凸性,从而帮助我们证明不 等式。
详细描述
首先,我们需要找到不等式两边的函数,然后求导,通过比 较导数值的大小来判断函数的单调性,从而得出不等式的证 明结论。
利用拉格朗日中值定理证明不等式
详细描述
柯西不等式表明,对于任何实数x 和y,都有$x^2+y^2 \geq 2xy$ ,当且仅当x=y时等号成立。这 个不等式在解决一些最优化问题 时非常有用。
排序不等式
总结词
排序不等式是一种基于排序原理的不 等式,它反映了有序实数之间的差值 与乘积之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年10月2日
10
x>2,x<3,t≥-5, t≤10,a<17, a≠b
回忆:用等号连接表示相等 关系的式子叫__等_式___。
类比:那么,向上面这些用不等号 连接表示不等关系的式子叫_不_等__式_
再如: -7<-5,3+4>1+4,
5+3≠10年10月2日
15
请用不等式表示:
(1)a是正数。 (2)a与6的和小于5。 (3)x与2 的差大于-1。
(4)x的4倍小于7。 (5)y的绝对值与3的和小于14。 (6)100与m的7倍的和是负数。
2020年10月2日
16
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
(2)a²+1>0 (4)x<3x+1
(7)a+b≠c
(9)x-2<x-1 2020年10月2日
(10)a-1 ≤3 13
2.用“>”“<”或“≥”“≤”填空
(1)4___-6
(2)-1__0
(3)-8__-3
(4)-4.5__-4
(5)3×(-1)__2×(-1)
(6)x²___0
(7) |x|__0
a<17
2020年10月2日
4
问:若设今天的气温为t ℃,某同学 的 年龄为a岁,那么你能用式子表示 出这些不等关系吗?
4。宋洪亮的体重a千克与孟亚的体重 b千克不相等。
问:怎么用式子表示出这个不等关系?
a≠b
2020年10月2日
5
如下图,用两根长度均 为lcm的绳子,分别围成
一个正方形和圆。
2020年10月2日
6
1、如果要使正方形 的面积不大于25cm2, 那么绳长应满足怎样 的关系式?
2020年10月2日
7
2、如果要使圆的面积 不小于100cm2,那么 绳长l应满足怎样的关 系式?
2020年10月2日
8
•3、当l = 8时,正方 形和圆的面积哪个 大? l = 12呢
2020年10月2日
9
•4、你能得到什么 猜想?改变 l 的取 值再试一试。
汇报人:XXX 汇报日期:20XX年10月10日
17
(8)-
1 3
__
1 2
(9)x²+1__0
2020年10月2日
(10)x²+1__1
14
例题:用不等式表示 1)a是负数。 (1) a<0 2)x的6倍减去3大于10。(2) 6x-3>10 3)y的 15与6的差小于1。 (3) 15y-6<1 4)x²是非负数。 (4) x²≥0
2020年10月2日
不等式的定义
1。如图,天平的左边放 置一个物体A,右边放置 砝码(每个砝码重1克),
(1)如图(一)中,能看 出物体A的重量比 ____克重. 即:物体A 的重量_____2 克.(大 于 小于)
2020年10月2日
1
(2)观看如图(二) 动画后,又能看出物 体A的重量比____ 克轻。
即:物体A得重量 _____3克.(大于 小于)
11
类比:
等式
不等式
用等号连接表 用不等号连接
示相等关系的 表示不等关系
定义 式子 “=”
的式子 “>”“<”“≥ ”
“≤ ” “≠ ”
请用这5个不等号分别写一个不等式。
2020年10月2日
12
1。判断下列式子中哪些是不等 式?哪些是等式?为什么?
(1)3>2 (3)3x²+2x (5)x=2x+5 (6)x²+4x<3x+1 (8)|x-1|≥0
2020年10月2日
图(二)
2
(3)若设物体A的重量 为x克,用式子怎样表 示出这个不等关系?
2020年10月2日
图(二)
3
2。据气象预报,今天的最 高气温是
10℃ 。最低气温为-5 ℃,由此我 们可以说这一天的气温不低于_-_5_ ℃,并且不高于_1_0_ ℃ t ≥-5且t ≤10
3。统计全班同学的年龄,年龄最大 者为16岁,因此可以知道全班每个 学生的年龄都_小_于_17岁。(大于,小 于)