高三数学数列复习课件0
合集下载
高三数学最新复习课件数列求和(共42张PPT)

数列的通项的和,分别求出每个数列的和,从
而求出原数列的和.
例1
求下面数列的前 n 项和: 1 1 1 1+1,a+4, 2+7,…, n-1+3n-路点拨】
1 1 1 【解】 Sn= (1+ 1)+( + 4)+ ( 2+ 7)+…+ ( n-1+ 3n a a a - 2) 1 1 1 = (1+ + 2+…+ n-1)+ [1+4+ 7+…+(3n-2)]. a a a 1 1 1 令 Bn= 1+ + 2+…+ n-1, a a a an-1 ∴当 a= 1 时, Bn= n;当 a≠ 1 时, Bn= n n- 1, a -a 3n-1 n Cn= 1+ 4+ 7+…+(3n- 2)= . 2
【名师点评】
利用错位相减法求和时,转化为
等比数列求和.若公比是参数(字母),则应先对参
数加以讨论,一般情况下分等于1和不等于1两种
情况分别进行求和.
裂项相消法求和 裂项相消是将数列的项分裂为两项之差,通过
求和相互抵消,从而达到求和的目的.
例3 (2011 年博州质检 )已知数列 {an}中, a1= 1,
错位相减法求和 一般地,如果数列{an}是等差数列,{bn}是等比 数列,求数列{an· bn}的前n项和时,可采用错位 相减法.
例2
知数列{an}满足a1,a2-a1,a3-a2,…,an
-an-1,…是首项为1,公比为a的等比数列. (1)求an; (2)如果a=2,bn=(2n-1)an,求数列{bn}的前n项 和 S n.
等比数列,再求解.
4.裂项相消法 把数列的通项拆成两项之差求和,正负相消剩 下首尾若干项. 5.倒序相加法 把数列正着写和倒着写再相加(即等差数列求和
公式的推导过程的推广).
第一部分专题二 数列-2021届高三数学二轮专题复习课件

第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
专题二 数 列
真题研析 命题分析 知识方法
所以 an=2n. (2)由于 21=2,22=4,23=8,24=16,25=32,26= 64,27=128, 所以 b1 对应的区间为:(0,1],则 b1=0; b2,b3 对应的区间分别为:(0,2],(0,3]则 b2=b3=1, 即有 2 个 1; b4,b5,b6,b7 对应的区间分别为:(0,4],(0,5],(0, 6],(0,7],则 b4=b5=b6=b7=2,即有 22 个 2;
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
专题二 数 列
真题研析 命题分析 知识方法
b8,b9,…,b15 对应的区间分别为:(0,8],(0,9],…, (0,15],则 b8=b9=…=b15=3,即有 23 个 3;
b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.
(1)证明:{an+bn}是等比数列,{an-bn}是等差数列;
(2)求{an}和{bn}的通项公式. (1)证明:由题设得 4(an+1+bn+1)=2(an+bn),即 an+1+ bn+1=12(an+bn). 又因为 a1+b1=1, 所以{an+bn}是首项为 1,公比为12的等比数列. 由题设得 4(an+1-bn+1)=4(an-bn)+8,即 an+1-bn+1= an-bn+2.
专题二 数 列
真题研析 命题分析 知识方法
-2Sn=1×(-2)+2×(-2)2+3×(-2)3+…(n-1)(- 2)n-1+n(-2)n,②
[精]高三第一轮复习全套课件3数列:数列的综合应用
![[精]高三第一轮复习全套课件3数列:数列的综合应用](https://img.taocdn.com/s3/m/3eccd40a4a7302768e993947.png)
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
证明:①根据 S n a n
a 1 , ( n 1) 得 an=a+(n─1) 2b, S n S n 1 , ( n 2 )
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
例 6 数列{an}的前 n 项和 Sn=na+(n─1)nb,(n=1,2,…),a,b 是常数,且 b≠0, ①求证{an}是等差数列; ②求证以(an,Sn/n─1)为坐标的点 Pn 都落在同一直线上,并求出直线方程; ③设 a=1,b=1/2,C 是以(r,r)为圆心,r 为半径的圆(r>0),求使得点 P1,P2,P3 都落 在圆外的 r 的取值范围
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
解:①依题意,由{an}是等差数列,有 ar+ar+2=2ar+1 (r∈N),即 x=─1 时,方程 成立,因此方程恒有实数根 x=─1; ②设公差为 d(化归思想),先解出方程的另一根 mr=─ar+2/ar, ∴ 1/(mr+1)=ar/(ar─ar+2)=─ar/(2d), ∴ 1/(mr+1+1)─1/(mr+1)= 〔─ar+1/(2d)〕─〔─ar/(2d)〕=─1/2, ∴ {1/(mr+1)}是等差数列
∴{an}是等差数列,首项为 a,公比为 2b
②由 x=an=a+(n─1)2b, y=Sn/n─1=a+(n─1)b 两式中消去 n,得:x─2y+a─2=0, (另外算斜率也是一种办法)
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
证明:①根据 S n a n
a 1 , ( n 1) 得 an=a+(n─1) 2b, S n S n 1 , ( n 2 )
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
例 6 数列{an}的前 n 项和 Sn=na+(n─1)nb,(n=1,2,…),a,b 是常数,且 b≠0, ①求证{an}是等差数列; ②求证以(an,Sn/n─1)为坐标的点 Pn 都落在同一直线上,并求出直线方程; ③设 a=1,b=1/2,C 是以(r,r)为圆心,r 为半径的圆(r>0),求使得点 P1,P2,P3 都落 在圆外的 r 的取值范围
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
解:①依题意,由{an}是等差数列,有 ar+ar+2=2ar+1 (r∈N),即 x=─1 时,方程 成立,因此方程恒有实数根 x=─1; ②设公差为 d(化归思想),先解出方程的另一根 mr=─ar+2/ar, ∴ 1/(mr+1)=ar/(ar─ar+2)=─ar/(2d), ∴ 1/(mr+1+1)─1/(mr+1)= 〔─ar+1/(2d)〕─〔─ar/(2d)〕=─1/2, ∴ {1/(mr+1)}是等差数列
∴{an}是等差数列,首项为 a,公比为 2b
②由 x=an=a+(n─1)2b, y=Sn/n─1=a+(n─1)b 两式中消去 n,得:x─2y+a─2=0, (另外算斜率也是一种办法)
[精]高三第一轮复习全套课件3数列:等差数列
![[精]高三第一轮复习全套课件3数列:等差数列](https://img.taocdn.com/s3/m/0c75904033687e21af45a947.png)
新疆 源头学子小屋
http :/ www.xjktyg .com /wxc /
特级教师 王新敞 wxckt @126 .com
解:设三个数为 a,公差为 d,则这 5 个数依次为 a-2d,a-d ,a ,a+d ,a+2d依题意: 新疆 源头学子小屋 /wxc/
/wxc/
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
⑴求点 Pn 的坐标;
⑵设抛物线列 c1, c2 , c3 ,, cn ,中的每一条的对称轴都垂直于 x 轴,第 n
/wxc/
特级教师 王新敞 wxckt@
⑶ 设 S x | x 2xn , n N, n 1,T y | y 4 yn , n 1 , 等 差 数 列
an 的 任 一 项 an S T , 其 中 a1 是 S T 中 的 最 大 数 ,
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
解:设数列{an}的公差为 d,首项为 a1, 由已知得 5a1 + 10d = -5, 10a1 + 45d = 15 解得 a1=-3 ,d=1
∴Sn =
n(-3)+
n(n 1) 2
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
由此得
a6>-a7>0 因为 新疆 源头学子小屋 /wxc/
特级教师 王新敞 wxckt@
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
(a-2d)2 +(a-d)2 + a2 + (a+d)2 + (a+2d)2 = 85 9
http :/ www.xjktyg .com /wxc /
特级教师 王新敞 wxckt @126 .com
解:设三个数为 a,公差为 d,则这 5 个数依次为 a-2d,a-d ,a ,a+d ,a+2d依题意: 新疆 源头学子小屋 /wxc/
/wxc/
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
⑴求点 Pn 的坐标;
⑵设抛物线列 c1, c2 , c3 ,, cn ,中的每一条的对称轴都垂直于 x 轴,第 n
/wxc/
特级教师 王新敞 wxckt@
⑶ 设 S x | x 2xn , n N, n 1,T y | y 4 yn , n 1 , 等 差 数 列
an 的 任 一 项 an S T , 其 中 a1 是 S T 中 的 最 大 数 ,
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
解:设数列{an}的公差为 d,首项为 a1, 由已知得 5a1 + 10d = -5, 10a1 + 45d = 15 解得 a1=-3 ,d=1
∴Sn =
n(-3)+
n(n 1) 2
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
由此得
a6>-a7>0 因为 新疆 源头学子小屋 /wxc/
特级教师 王新敞 wxckt@
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
(a-2d)2 +(a-d)2 + a2 + (a+d)2 + (a+2d)2 = 85 9
苏教版高三数学复习课件5.5 数列的综合应用

6.数列的递推公式:如果已知数列{an}的第1项(或前几项),且任一项an与它的前一 项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的 递推公式. 7.数列的表示方法:列表法、图象法、通项公式法、递推公式法.
8.数列作为特殊的函数,在解决实际问题过程中有着广泛的应
用,如人口增长问题、存款利率问题、分期付款问题.利用等 差数列和等比数列还可以解决一些简单的已知数列的递推关系 求其通项公式等问题.
5.北京市为成功举办2008年奥运会,决定从2003年到2007年5年间更新市内现 有全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新的 车辆数约为现有总车辆数的________(参考数据1.14=1.46,1.15=1.61). 解析:设市内全部出租车辆为b,2003年底更新的车辆为a,则2004年更新的 车辆为a(1+10%),2005年更新的车辆为a(1+10%)2,2006年更新的车辆为 a (1+10%)3,2007年更新的车辆为a(1+10%)4,由题意可知: a+a·(1+10%) +a(1+10%)2+a·(1+10%)3+a·(1+10%)4=b, ∴a(1+1.1+1.12+1.13+1.14)=b⇒a·=b, ∴ 的16.4%. ≈16.4%.故2003年底更新的车辆数约为现有总车辆数
【例1】 设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和, 已知S3=7,且a1+3,3a2,a3+4构成等差数列. (1)求数列{an}的通项;(2)令bn=ln a3n+1,n=1,2,„,求数 列{bn}的前n项和Tn. 思路点拨:(1)由已知列出方程组求出公比q与首项a1; (2)结合对数的运算,判断数列{bn}是等差数列,再求和.
高三数学 第四篇 第三节等比数列课件 理 北师大版

第二十五页,编辑于星期五:八点 三十五分。
也成等比数列,其公比为qn,于是,问题转化为: A1=2,A1qn+A1q2n=12, 要求A1q3n+A1q4n+A1q5n的值. 由A1=2,A1qn+A1q2n=12, 得q2n+qn-6=0,那么qn=2或qn=-3. 由A1q3n+A1q4n+A1q5n =A1q3n(1+qn+q2n)=2·q3n·7=14·q3n
第四页,编辑于星期五:八点 三十五分。
性质 .
(5)设等比数列{an}的公比为q,则数列 {kan}(k为常数)仍为q等比数列,公比为 .
(6)设数列{an},{bn}为等比数列,公比分别 为q1,q2,则{an·bn}也为等比q1q数2 列,公比为
第五页,编辑于星期五:八点 三十五分。
b2=ac是a,b,c成等比的什么条件? 提示:b2=ac是a,b,c成等比的必要不充分条件,∵ 当b=0,a,c至少有一个为零 时,b2=ac成立,但a,b,c不成等比,反之,假设a,b,c成等比,那么必有 b2=ac.
第三节 等比数列
第一页,编辑于星期五:八点 三十五分。
考纲点击
1.理解等比数列的概念. 2.掌握等比数列的通项公式与前n项和 公式. 3.能在具体的问题情境中识别数列的等 比关系,并能用有关知识解决相应的问 题. 4.了解等比数列与指数函数的关系. 1.以定义及等比中项为背景,考查等比 数列的判定. 2.以考查通项公式、前n项和公式为主,
那么na1=40,2na1=3 280,矛盾.
∴q≠1,∴ a1(11--qqn)=40
①
a1(11--qq2n)=3 280 ②
第二十三页,编辑于星期五:八点 三十五分。
②÷①得1+qn=82,∴qn=81 ③ 将③代入①得q=1+2a1 ④ 又∵q>0,∴q>1,∴a1>0,{an}为递增数列. ∴an=a1qn-1=27 ⑤ 由③、④、⑤得q=3,a1=1,n=4. ∴a2n=a8=1×37=2 187.
也成等比数列,其公比为qn,于是,问题转化为: A1=2,A1qn+A1q2n=12, 要求A1q3n+A1q4n+A1q5n的值. 由A1=2,A1qn+A1q2n=12, 得q2n+qn-6=0,那么qn=2或qn=-3. 由A1q3n+A1q4n+A1q5n =A1q3n(1+qn+q2n)=2·q3n·7=14·q3n
第四页,编辑于星期五:八点 三十五分。
性质 .
(5)设等比数列{an}的公比为q,则数列 {kan}(k为常数)仍为q等比数列,公比为 .
(6)设数列{an},{bn}为等比数列,公比分别 为q1,q2,则{an·bn}也为等比q1q数2 列,公比为
第五页,编辑于星期五:八点 三十五分。
b2=ac是a,b,c成等比的什么条件? 提示:b2=ac是a,b,c成等比的必要不充分条件,∵ 当b=0,a,c至少有一个为零 时,b2=ac成立,但a,b,c不成等比,反之,假设a,b,c成等比,那么必有 b2=ac.
第三节 等比数列
第一页,编辑于星期五:八点 三十五分。
考纲点击
1.理解等比数列的概念. 2.掌握等比数列的通项公式与前n项和 公式. 3.能在具体的问题情境中识别数列的等 比关系,并能用有关知识解决相应的问 题. 4.了解等比数列与指数函数的关系. 1.以定义及等比中项为背景,考查等比 数列的判定. 2.以考查通项公式、前n项和公式为主,
那么na1=40,2na1=3 280,矛盾.
∴q≠1,∴ a1(11--qqn)=40
①
a1(11--qq2n)=3 280 ②
第二十三页,编辑于星期五:八点 三十五分。
②÷①得1+qn=82,∴qn=81 ③ 将③代入①得q=1+2a1 ④ 又∵q>0,∴q>1,∴a1>0,{an}为递增数列. ∴an=a1qn-1=27 ⑤ 由③、④、⑤得q=3,a1=1,n=4. ∴a2n=a8=1×37=2 187.
苏教版高三数学复习课件5.4 数列的求和

答案: 答案:
5. (2010·南京市第九中学调研测试 已知数列 n}满足:an= . 南京市第九中学调研测试)已知数列 满足: 南京市第九中学调研测试 已知数列{a 满足 则数列{a 的前 的前100项的和是 项的和是________. 则数列 n}的前 项的和是 . 解析: 解析:an=
∴a1+a2+…+a100=
6.常见的拆项公式有: .常见的拆项公式有:
(1)
(2)
(3) 思考:用裂项相消法求数列前 项和的前提是什么 项和的前提是什么? 思考:用裂项相消法求数列前n项和的前提是什么? 提示:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提. 提示:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提.
第4课时 数列的求和
掌握数列求和的几种常见方法. 掌握数列求和的几种常见方法. 【命题预测】 命题预测】 数列的求和在近几年高考中,填空题与解答题都有出现 , 重点以容易题和中档 数列的求和在近几年高考中 , 填空题与解答题都有出现, 题为主,基本知识以客观题出现,综合知识则多以解答题体现, 题为主 , 基本知识以客观题出现 , 综合知识则多以解答题体现 , 主要是探索型 和综合型题目.复习时,要具有针对性地训练,并以“注重数学思想方法、 和综合型题目 . 复习时 , 要具有针对性地训练 , 并以 “ 注重数学思想方法 、 强 化运算能力、重点知识重点训练”的角度做好充分准备. 化运算能力、重点知识重点训练”的角度做好充分准备.
1. 数列 . 数列0.9,0.99,0.999,…, ,
项和为________. …的前n项和为 的前 项和为 .
解析:数列的通项公式为 其前n项和 解析:数列的通项公式为an=1-0.1n,其前 项和 -
高一数学数列高三总复习.pptx

若项数为2n-1(n∈N),则S奇-S偶
=an ,
S奇 / S偶=n / (n-1)
⑥ 等差数列{an }、{bn }的前n项和为Sn、Tn, 则an S2n1
bn T2n1
第11页/共52页
⑦
am an
n m
amn
0
Sm Sn
n m
Smn
(
m
n
)
第12页/共52页
设元的技巧:
三个数成等差数列,可设为a-d , a ,
第9页/共52页
练习1. 等差数列{an }、{bn }的 前n项和为Sn、Tn . (1)若am n, an m,求amn; (2)Sm n, Sn m(m n),求Smn; (3)若 Sn 7n 1 ,求an .
Tn 4n 27 bn
第10页/共52页
⑤若项数为2n(n∈N),则S偶-S奇=nd , S偶 / S奇=an+1 / an
}
的前 T n项和,求 n.
第17页/共52页
6.在等差数列{an}中, a16+ a17+ a18= a9=-36,其前n 项和为Sn.
(1)求Sn的最小值,及取得最小值时的n 值
(2)求Tn=| a1 |+| a2 |+…+| an |
第18页/共52页
(2010全国)如果等差数列{an}中,a3+a4+a5=12,那么a1+a2+…+a7=
第27页/共52页
140 85
8. 有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家电商场均有销售,甲 商场用如下的方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多 买一台则所买各台单价均再减少20元,但每台最低价不能低于440元;乙商场一律都按原 价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12,an1
12an
1(nN) (构造新数列)
(2)a11,an3an 21(n2) (分解因式)
(3)a11,an1n2na a n2(n1) (取倒数、累加)
2. 数列 an满足 Sn23(an1)(nN),
求an
谢谢聆听
a6 30
(2)若 a52,a1010,则 a 1 5 50
(3)已知 a3a4a5 8,求 a2a3a4a5a6.
= 32
(4)若a 1 a 2 3 2 4 ,a 3 a 4 3 6 ,则a5 a6 4
3、已知等比数列 a n ,an>0,Sn=80,S2n=6560,
且在前n项中最大的项为54,求n的值
6、等差数列与等比的 数联 列系 (1)“{an}为等比数列”是{lo“gm an}为等差数列 的________条_ 件。
(2)“{an}为等差数列”是{m“ an }(m 0,且m 1) 为等比数列”_的 ________条_ 件。
练习:
1、在等比数列 a n 中,
(1)若 a4 5,a8 6,则 a2 a10 30
高
三
数
学
数
列
复
习
课
5.等差数列性质:
(1) anamnmd
(2)若 mnpq 则 amanapaq
d an am nmຫໍສະໝຸດ (3)若数列 { a n } 是等差数列,则
S k ,S 2 k S k ,S 3 k S 2 k ,S 4 k S 3 k ,
也是等差数列
d k2d
(4)等差数列{an}的任意等距离的项构成的数列 仍为等差数列
练习: a n 为等差数列
1. a 3 a 1 1 4 , a 5 7 , 求 a 9 , a 7 , d , s 13 2 . a 1 a 4 a 8 a 1 2 a 1 5 2 ,求 s 15 3 .s 1 00 ,则 a 2 a 9
4.a7m ,a14n,a求 2.1
5.
已知 an,bn
5、已知数列 a n ,满足
S n 1 4 a n 2n N ,a 1 1
(1)设 , b na n 12 a nn N 求证数列 bn 是等比数列;
(2)设 cn 2ann nN ,
求证cn 是等差数列.
四、一般数列求和法
①倒序相加法求和,如an=3n+1 ②错项相减法求和,如an=(2n-1)2n ③拆项法求和, 如an=2n+3n ④裂项相加法求和,如an=1/(2n-1)(2n+1) ⑤公式法求和, 如an=2n2-2n
5.等比数列的性质
(1) anam•qnm
qnm an
求q
am
(2)若 mnpq, 则 a m •a nap•a q
(3)若数列 { a n } 是等比数列,则
S k ,S 2 k S k ,S 3 k S 2 k ,S 4 k S 3 k ,
也是等比数列
q qk
(4)等比数列{an}的任意等距离的项 构成的数列仍为等比数列
练习:1.求下列各数列的前n项和
(1)Sn1 133 155 172n11 2n1
(2) an( 1 )n(2n1 )
(3)an(2n1)•3n,求 sn
2. 求
sn
1(11)(111)...
2
24
(11214...2n11) 的值
五、已知数列递推公式求通项公式
①累加法,如 an1anf(n)
②累乘法,如 an1 f (n)
M,求M的取值范围
三、等比数列
1、定义:{an }为等比数列
an1 常数
__a_n_____
2.通项公式: an _a_n__a_1_q_n1
推广: an __a_m_q__n_m__
3.前 n项和公式 4.重要结论:
: Sn
a1
(1
qn
)
(q
1)
1q
na1(q 1)
若{an }是等比数列 an k qn
an
③构造新数列:如 an1kanb
an1ankn a an1
④分解因式:如
a 1 1 ,a n 0 ,( n 1 ) a 2 n 1 n n 2 a a n 1 a n 0 ,n N *
⑤取倒数:如
a1
3,an
3an1 (n2) 3an1
1.求数列 a n 通项公式
(11.) 已知a1 求an.
分别是 A
和
n
B
n
是两个等差数列,前 n , 且 An 7 n 2 , 求
Bn n 3
a b
项和
8.
8
an A2 n1 bn B2 n 1
a8 A157152107 b8 B15 153 18
6.已 知 等 差 数 列 {an}的 首 项 为 a1, 公 差 为 d, a4= 84,且 S 10> 0,S 11< 0 ( 1) 求 公 差 d的 取 值 范 围 ( 2) 求 使 an<0的 最 小 的 n值 ( 3) 记 : {S1,S2,S3… ,Sn}中 的 最 大 值 为