算法分析与设计实验报告
《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一递归与分治策略应用基础学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期第九周一、实验目的1、理解递归的概念和分治法的基本思想2、了解适用递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:以下题目要求应用递归与分治策略设计解决方案,本次实验成绩按百分制计,完成各小题的得分如下,每小题要求算法描述准确且程序运行正确。
1、求n个元素的全排。
(30分)2、解决一个2k*2k的特殊棋牌上的L型骨牌覆盖问题。
(30分)3、设有n=2k个运动员要进行网球循环赛。
设计一个满足要求的比赛日程表。
(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运行报告。
三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m){if (k == m){for (int i=0; i<m; i++)cout << list[i] << " ";cout << endl;return;}else{for (int i=m; i<k; i++){swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输入排列数据总个数:";cin>>n;cout<<"请输入数据:";for(i=0;i<n;i++){cin>>a[i];}cout<<"该数据的全排列:"<<endl;Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验二递归与分治策略应用提高学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期一、实验目的1、深入理解递归的概念和分治法的基本思想2、正确使用递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:从以下题目中任选一题完成,要求应用递归与分治策略设计解决方案。
算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。
实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。
它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。
回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。
2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。
它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。
3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。
4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。
通过回溯法可以求解出所有的可能解。
实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。
从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。
当搜索到第八行时,获取一组解并返回。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。
算法分析_实验报告

一、实验目的1. 理解算法分析的基本概念和方法。
2. 掌握时间复杂度和空间复杂度的计算方法。
3. 比较不同算法的效率,分析算法的适用场景。
4. 提高编程能力,培养算法思维。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 开发工具:PyCharm三、实验内容本次实验主要分析了以下几种算法:1. 冒泡排序2. 选择排序3. 插入排序4. 快速排序5. 归并排序四、实验步骤1. 编写各种排序算法的Python实现代码。
2. 分别对长度为10、100、1000、10000的随机数组进行排序。
3. 记录每种排序算法的运行时间。
4. 分析算法的时间复杂度和空间复杂度。
5. 比较不同算法的效率。
五、实验结果与分析1. 冒泡排序```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]```时间复杂度:O(n^2)空间复杂度:O(1)冒泡排序是一种简单的排序算法,其时间复杂度较高,适用于小规模数据排序。
2. 选择排序```pythondef selection_sort(arr):n = len(arr)for i in range(n):min_idx = ifor j in range(i+1, n):if arr[min_idx] > arr[j]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]```时间复杂度:O(n^2)空间复杂度:O(1)选择排序也是一种简单的排序算法,其时间复杂度与冒泡排序相同,同样适用于小规模数据排序。
3. 插入排序```pythondef insertion_sort(arr):for i in range(1, len(arr)):key = arr[i]j = i-1while j >=0 and key < arr[j]:arr[j+1] = arr[j]j -= 1arr[j+1] = key```时间复杂度:O(n^2)空间复杂度:O(1)插入排序是一种稳定的排序算法,其时间复杂度与冒泡排序和选择排序相同,适用于小规模数据排序。
算法课设实验报告(3篇)

第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。
为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。
二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。
1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。
(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。
- 对每种算法进行时间复杂度和空间复杂度的分析。
- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。
(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。
- 编写三种排序算法的代码。
- 分析代码的时间复杂度和空间复杂度。
- 编写测试程序,生成随机测试数据,测试三种算法的性能。
- 比较三种算法的运行时间和内存占用。
2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。
(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。
- 分析贪心算法的正确性,并证明其最优性。
(3)实验步骤:- 分析活动选择问题的贪心策略。
- 编写贪心算法的代码。
- 分析贪心算法的正确性,并证明其最优性。
- 编写测试程序,验证贪心算法的正确性。
3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。
(2)实验内容:- 实现一个动态规划算法问题,如背包问题。
- 分析动态规划算法的正确性,并证明其最优性。
(3)实验步骤:- 分析背包问题的动态规划策略。
- 编写动态规划算法的代码。
- 分析动态规划算法的正确性,并证明其最优性。
- 编写测试程序,验证动态规划算法的正确性。
三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。
算法分析与设计实验报告合并排序快速排序

算法分析与设计实验报告:合并排序与快速排序一、引言算法是计算机科学中非常重要的一部分,它涉及到解决问题的方法和步骤。
合并排序和快速排序是两种经典而常用的排序算法。
本文将对这两种排序算法进行分析和设计实验,通过对比它们的性能和效率,以期得出最优算法。
二、合并排序合并排序是一种分治算法,它将原始数组不断分解为更小的数组,直到最后细分为单个元素。
然后,再将这些单个元素两两合并,形成一个有序数组。
合并排序的核心操作是合并两个有序的数组。
1. 算法步骤(1)将原始数组分解为更小的子数组,直到每个子数组只有一个元素;(2)两两合并相邻的子数组,同时进行排序,生成新的有序数组;(3)重复步骤(2),直到生成最终的有序数组。
2. 算法性能合并排序的最优时间复杂度为O(nlogn),其中n为待排序数组的长度。
无论最好情况还是最坏情况,合并排序的复杂度都相同。
合并排序需要额外的存储空间来存储临时数组,所以空间复杂度为O(n)。
三、快速排序快速排序也是一种分治算法,它将原始数组根据一个主元(pivot)分成两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元。
然后,递归地对这两个子数组进行排序,最后得到有序数组。
快速排序的核心操作是划分。
1. 算法步骤(1)选择一个主元(pivot),可以是随机选择或者固定选择第一个元素;(2)将原始数组根据主元划分为两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元;(3)递归地对这两个子数组进行快速排序;(4)重复步骤(2)和(3),直到每个子数组只有一个元素,即得到最终的有序数组。
2. 算法性能快速排序的平均时间复杂度为O(nlogn),其中n为待排序数组的长度。
最坏情况下,当每次选择的主元都是最小或最大元素时,时间复杂度为O(n^2)。
快速排序是原地排序,不需要额外的存储空间,所以空间复杂度为O(1)。
四、实验设计为了验证合并排序和快速排序的性能和效率,我们设计以下实验:1. 实验目的:比较合并排序和快速排序的时间复杂度和空间复杂度。
算法分析与设计实验报告

算法分析与设计实验报告算法分析与设计实验报告一、引言算法是计算机科学的核心,它们是解决问题的有效工具。
算法分析与设计是计算机科学中的重要课题,通过对算法的分析与设计,我们可以优化计算机程序的效率,提高计算机系统的性能。
本实验报告旨在介绍算法分析与设计的基本概念和方法,并通过实验验证这些方法的有效性。
二、算法分析算法分析是评估算法性能的过程。
在实际应用中,我们常常需要比较不同算法的效率和资源消耗,以选择最适合的算法。
常用的算法分析方法包括时间复杂度和空间复杂度。
1. 时间复杂度时间复杂度衡量了算法执行所需的时间。
通常用大O表示法表示时间复杂度,表示算法的最坏情况下的运行时间。
常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。
其中,O(1)表示常数时间复杂度,O(log n)表示对数时间复杂度,O(n)表示线性时间复杂度,O(n log n)表示线性对数时间复杂度,O(n^2)表示平方时间复杂度。
2. 空间复杂度空间复杂度衡量了算法执行所需的存储空间。
通常用大O表示法表示空间复杂度,表示算法所需的额外存储空间。
常见的空间复杂度有O(1)、O(n)和O(n^2)等。
其中,O(1)表示常数空间复杂度,O(n)表示线性空间复杂度,O(n^2)表示平方空间复杂度。
三、算法设计算法设计是构思和实现算法的过程。
好的算法设计能够提高算法的效率和可靠性。
常用的算法设计方法包括贪心算法、动态规划、分治法和回溯法等。
1. 贪心算法贪心算法是一种简单而高效的算法设计方法。
它通过每一步选择局部最优解,最终得到全局最优解。
贪心算法的时间复杂度通常较低,但不能保证得到最优解。
2. 动态规划动态规划是一种将问题分解为子问题并以自底向上的方式求解的算法设计方法。
它通过保存子问题的解,避免重复计算,提高算法的效率。
动态规划适用于具有重叠子问题和最优子结构的问题。
3. 分治法分治法是一种将问题分解为更小规模的子问题并以递归的方式求解的算法设计方法。
算法设计与分析实验报告(中南民族大学)

院系:计算机科学学院专业:年级:课程名称:算法设计与分析基础班号:组号:指导教师:年月日实验结果及分析1.求最大数2.递归法与迭代法性能比较递归迭代3.改进算法1.利用公式法对第n项Fibonacci数求解时可能会得出错误结果。
主要原因是由于double类型的精度还不够,所以程序算出来的结果会有误差,要把公式展开计算。
2.由于递归调用栈是一个费时的过程,通过递归法和迭代法的比较表明,虽然递归算法的代码更精简更有可读性,但是执行速度无法满足大数问题的求解。
3.在当前计算机的空间较大的情况下,在一些速度较慢的问题中,空间换时间是一个比较周全的策略。
实验原理(算法基本思想)定义:若A=(a ij), B=(b ij)是n×n的方阵,则对i,j=1,2,…n,定义乘积C=A⋅B 中的元素c ij为:1.分块解法通常的做法是将矩阵进行分块相乘,如下图所示:二.Strassen解法分治法思想将问题实例划分为同一问题的几个较小的实例。
对这些较小实例求解,通常使用递归方法,但在问题规模足够小时,也会使用另一种算法。
如果有必要,合并这些问题的解,以得到原始问题的解。
求解矩阵相乘的DAC算法,使用了strassen算法。
DAC(A[],B[],n){If n=2 使用7次乘法的方法求得解ElseDivide(A)//把A分成4块Divide(B)//把B分成4块调用7次strassen算法求得解的4块合并这4块得到解并返回}伪代码Serial_StrassenMultiply(A, B, C) {T1 = A0 + A3;T2 = B0 + B3;StrassenMultiply(T1, T2, M1);T1 = A2 + A3;StrassenMultiply(T1, B0, M2);T1 = (B1 - B3);StrassenMultiply (A0, T1, M3);T1 = B2 - B0;StrassenMultiply(A3, T1, M4);T1 = A0 + A1;StrassenMultiply(T1, B3, M5);T1 = A2 – A0;T2 = B0 + B1;StrassenMultiply(T1, T2, M6);T1 = A1 – A3;T2 = B2 + B3;StrassenMultiply(T1, T2, M7);C0 = M1 + M4 - M5 + M7C1 = M3 + M5C2 = M2 + M4C3 = M1 - M2 + M3 + M6}实验结果及分析时间复杂度1.分块相乘总共用了8次乘法,因而需要Θ(n log28)即Θ(n3)的时间复杂度。
算法设计与分析:递归与分治法-实验报告(总8页)

算法设计与分析:递归与分治法-实验报告(总8页)实验目的:掌握递归与分治法的基本思想和应用,学会设计和实现递归算法和分治算法,能够分析和评价算法的时间复杂度和空间复杂度。
实验内容:1.递归算法的设计与实现3.算法的时间复杂度和空间复杂度分析实验步骤:1)递归定义:一个函数或过程,在其定义或实现中,直接或间接地调用自身的方法,被成为递归。
递归算法是一种控制结构,它包含了解决问题的基础情境,也包含了递归处理的情境。
2)递归特点:递归算法具有以下特点:①依赖于递归问题的部分解被划分为若干较小的部分。
②问题的规模可以通过递推式递减,最终递归终止。
③当问题的规模足够小时,可以直接求解。
3)递归实现步骤:①确定函数的定义②确定递归终止条件③确定递归调用的过程4)经典实例:斐波那契数列递推式:f(n) = f(n-1) + f(n-2)int fib(int n) {if (n <= 0)return 0;else}5)优化递归算法:避免重复计算例如,上述斐波那契数列的递归算法会重复计算一些中间结果,影响效率。
可以使用动态规划技术,将算法改为非递归形式。
int f1 = 0, f2 = 1;for (int i = 2; i <= n; i++) {f1 = f2;使用循环避免递归,重复计算可以大大减少,提高效率。
1)分治算法的定义:将原问题分解成若干个规模较小且类似的子问题,递归求解子问题,然后合并各子问题得到原问题的解。
2)分治算法流程:②将问题分解成若干个规模较小的子问题。
③递归地解决各子问题。
④将各子问题的解合并成原问题的解。
3)分治算法实例:归并排序归并排序是一种基于分治思想的经典排序算法。
排序流程:②分别对各子数组递归进行归并排序。
③将已经排序好的各子数组合并成最终的排序结果。
实现源代码:void mergeSort(int* arr, int left, int right) {if (left >= right)while (i <= mid && j <= right)temp[k++] = arr[i] < arr[j] ? arr[i++] : arr[j++];temp[k++] = arr[i++];1) 时间复杂度的概念:指完成算法所需的计算次数或操作次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法设计与分析实验报告班级:计科0902班姓名:张华敏学号:0909090814矩阵连乘问题一,实验内容:二,写一个完整的代码来完整的实现矩阵连乘问题。
三,算法设计:在矩阵连乘问题中,根据老师所讲和自己看书对动态规划方法的理解,通过最优子结构性质。
再结合书上的算法,便可顺利的写出了代码四,遇到的问题及解决方案:只根据算法写出具体的实现过程刚开始觉得很难,觉得无从下手,不知道该用什么结构形式来存放各个参数,也不知道该怎样具体的实施算法的细节,但是课本上给出了一段实现代码给了我很大的启发,通过借鉴树上的代码实现再结合自己的努力,才终于完成了矩阵连乘全部的代码实现,包括最少连乘次数以及剖分方法。
五,源代码package suanfa;public class Juzhen {public void matrixchain(int p[],int m[][],int s[][]){i nt n=p.length-1;f or(int i=1;i<=n;i++){m[i][i]=0;}f or(int r=2;r<=n;r++){for(int i=1;i<=n-r+1;i++){int j=i+r-1;m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j];s[i][j]=i;for(int k=i+1;k<j;k++){int t=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];if(t<m[i][j]){m[i][j]=t;s[i][j]=k;}}} }}public static void main(String[] args) {int p[]={50,10,40,30,5};int m[][]=new int[5][5];int s[][]=new int[5][5];Juzhen a=new Juzhen();a.matrixchain(p,m, s);//a.traceback(s,1,4);System.out.println("最少数乘次数:"+m[1][4]);}}五,测试结果:背包问题一,实验内容:二,写一个完整的代码来完整的实现背包问题。
三,算法设计:贪心算法,首先算出每个货物单位重量的价值,然后进行排序,往背包里种货物时总是先装单位重量价值最大的货物,这样便可得到最优解。
四,遇到的问题及解决方案:种种方法很简单,没有遇见什么问题。
五,源代码package suanfa;public class Beibao {static float w[]=new float[]{5,1,3,4,5};static float p[]=new float[]{4,5,3,2,1};static float capacity=12;static float value=0;public static void sort(){float x;for(int i=0;i<5;i++){for(int j=i+1;j<5;j++){if((p[i]/w[i])<(p[j]/w[j])){x=w[i];w[i]=w[j];w[j]=x;x=p[i];p[i]=p[j];p[j]=x;}}}}public static void main(String[] args) {sort();for(int i=0;i<5;i++){if((capacity!=0)&&(w[i]<=capacity)){value=value+p[i];}if((capacity!=0)&&(capacity<w[i])){value=value+capacity*p[i]/w[i];}capacity=capacity-w[i];}System.out.println(value);}}五,测试结果:最大数最小数一,实验内容:二,写一个完整的代码来完整的实现最大数最小数问题。
三,算法设计:利用分治思想,先将数列分成两组,在每一组中分别求最大数最小数,然后从这两组最大数最小数中选出最大的和最小的,分组后的做法也像上面一样在分成两组,直到把组分成只含两个数。
四,遇到的问题及解决方案:种种方法很简单,没有遇见什么问题。
五,源代码package suanfa;//import java.util.Scanner;public class Maxmin {static int n;static int a[]=new int[]{1,24,3,9,5};static int fmax,fmin;public static int max(int i,int j){int x;int y;int mid;if(i==j){fmax=a[i];return fmax;}if(i==(j-1)){if(a[i]<a[j]){fmax=a[j];}else{fmax=a[i];}return fmax;}mid=(i+j)/2;x=max(i,mid);y=max(mid+1,j);if(x>y) fmax=x;else fmax=y;return fmax;}public static int min(int i,int j){int x;int y;int mid;if(i==j){fmin=a[i];return fmin;}if(i==(j-1)){if(a[i]<a[j]){fmin=a[i];}else{fmin=a[j];}return fmin;}mid=(i+j)/2;x=min(i,mid);y=min(mid+1,j);if(x<y) fmin=x;else fmin=y;return fmin;}public static void main(String[] args) { // TODO Auto-generated method stub//Scanner input=new Scanner(System.in);//int x=input.nextInt();fmax=max(0,4);fmin=min(0,4);System.out.println(fmax);System.out.println(fmin);}}六,测试结果:N皇后问题一,实验内容:写一个完整的代码用递归和非递归两种方式来完整的实现N皇后问题。
二,算法设计:利用回溯法,构造解空间,将所有的可能构成一棵空间状态树。
然后利用递归或非递归的方法来深度优先遍历整棵空间状态树知道找到所有答案把空间状态树遍历完为止,在这个过程中要根据皇后不能同行同列同斜线这一限制来修剪空间状态树。
如果有节点不符合要求则不再向下遍历。
三,遇到的问题及解决方案:递归的方法比较好些,非递归的方法有点难想,但是经过静静的思考最终还是想到的解决的方法。
四,源代码递归算法:package suanfa;public class NQueen {static int n; //皇后个数static int x[]; //当前解static long sum; //当前已找到的可行方案private static boolean place(int k){for(int j=1;j<k;j++)if((Math.abs(k-j)==Math.abs(x[j]-x[k]))||(x[j]==x[k]))return false;return true;}private static void backtrack(int t){ if(t>n){sum++;for(int i=0;i<n+1;i++)System.out.println(x[i]);System.out.println("一种结束");}elsefor(int i=1;i<=n;i++){x[t]=i;if(place(t)) backtrack(t+1);}}public static long input(int nn){n=nn;sum=0;x=new int[n+1];for(int i=0;i<=n;i++) x[i]=0;backtrack(1);return sum;}public static void main(String[] args) { long x;x=input(5);System.out.println(x);}}非递归算法:package suanfa;public class Nhuanghou {static int n; //皇后个数static int x[]; //当前解static long sum; //当前已找到的可行方案private static boolean place(int k){for(int j=1;j<k;j++)if((Math.abs(k-j)==Math.abs(x[j]-x[k]))||(x[j]==x[k])) return false;return true;}private static void backtrack(int t){x[1]=0;int k=1;while(k>0){x[k]++;while((x[k]<=n)&&!(place(k))) x[k]++;if(x[k]<=n){if(k==n) {sum++;for(int i=0;i<n+1;i++)System.out.println(x[i]);System.out.println("一种结束");}else{k++;x[k]=0;}}else k--;}}public static long input(int nn){n=nn;sum=0;x=new int[n+1];for(int i=0;i<=n;i++) x[i]=0;backtrack(1);return sum;}public static void main(String[] args) {// TODO Auto-generated method stublong x;x=input(5);System.out.println(x);}}五,测试结果:装载问题一,实验内容:写一个完整的代码来完整的实现装载问题。
二,算法设计:和贪心算法背包问题一模一样。
三,遇到的问题及解决方案:种种方法很简单,没有遇见什么问题。
四,源代码package suanfa;public class Zhuangzai {static int w[]=new int[]{5,4,3,2,1};static int capacity=10;static int x;static void sort(){for(int i=0;i<5;i++)for(int j=i+1;j<5;j++){if(w[i]>w[j]){x=w[i];w[i]=w[j];w[j]=x;}}}public static void main(String[] args) {// TODO Auto-generated method stubsort();for(int i=0;i<5;i++){if(capacity>=w[i]){capacity=capacity-w[i];System.out.println("重量为"+w[i]+"的集装箱已经装上船");}elseSystem.out.println("重量为"+w[i]+"的集装箱未能装上船");}}}五,测试结果:实验感悟:通过本次不仅增加了我对各个算法的深入理解与实现,更是自己的编程能力获得了很大的提高,面对一个问题时不再显得手忙脚乱无从下手。