相似三角形及其应用学案

合集下载

27.2相似三角形(教案)

27.2相似三角形(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
5.培养学生的创新意识:鼓励学生在解决相似三角形问题时,敢于尝试新方法,勇于突破传统思维,培养创新意识。
本节课旨在使学生在学习相似三角形的过程中,全面提升学科核心素养,为未来的学习和生活打下坚实基础。
三、教学难点与重点
1.教学重点
(1)相似三角形的定义及判定方法:理解并掌握相似三角形的定义,以及SSS、SAS、ASA、AAS等判定方法,这是本节课的核心内容。
此外,在小组讨论环节,虽然学生们都能够积极参与,但在成果分享时,部分学生表达能力较弱,不能很好地将讨论成果展示出来。针对这个问题,我计划在接下来的课程中,多给予学生一些表达机会,培养他们的语言组织和表达能力。
还有一个值得注意的地方是,在课堂总结时,我发现部分学生对相似三角形在实际生活中的应用仍然感到困惑。为了让学生更好地理解这一点,我打算在下一节课引入更多生活中的实例,让学生们感受到数学知识在实际生活中的重要性。
在教学方法上,我认识到传统的讲授式教学并不能满足所有学生的需求。今后,我需要尝试更多元化的教学方法,如翻转课堂、小组合作学习等,以提高学生的学习兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指具有相同形状但大小不同的三角形。它们在几何学中具有重要地位,广泛应用于实际问题中。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例,展示相似三角形在实际中的应用,以及如何帮助我们解决问题。

《相似三角形的性质》 导学案

《相似三角形的性质》 导学案

《相似三角形的性质》导学案一、学习目标1、理解相似三角形的对应角相等,对应边成比例。

2、掌握相似三角形的周长比、面积比与相似比之间的关系。

3、能运用相似三角形的性质解决简单的实际问题。

二、学习重点1、相似三角形的性质的理解和应用。

2、相似三角形周长比、面积比与相似比的关系。

三、学习难点相似三角形性质的综合应用,以及在实际问题中的灵活运用。

四、知识回顾1、什么是相似三角形?相似三角形是指对应角相等,对应边成比例的三角形。

2、如何判定两个三角形相似?(1)两角分别相等的两个三角形相似。

(2)两边成比例且夹角相等的两个三角形相似。

(3)三边成比例的两个三角形相似。

五、新课讲解(一)相似三角形的对应角相等,对应边成比例例 1:已知△ABC∽△DEF,∠A = 50°,∠B = 70°,则∠D =____,∠F =____。

解:因为△ABC∽△DEF,所以∠D =∠A = 50°,∠F = 180°∠D ∠E = 180° 50° 70°= 60°(二)相似三角形的周长比等于相似比例 2:若△ABC∽△A'B'C',相似比为 2:3,△ABC 的周长为 12,则△A'B'C'的周长为____。

解:因为相似三角形的周长比等于相似比,所以△ABC 的周长:△A'B'C'的周长= 2:3。

设△A'B'C'的周长为 x,则 12:x = 2:3,解得x = 18。

(三)相似三角形的面积比等于相似比的平方例 3:两个相似三角形的相似比为 1:4,它们的面积比为____。

解:因为相似三角形的面积比等于相似比的平方,所以面积比为1²:4²= 1:16。

六、课堂练习1、已知△ABC∽△A'B'C',相似比为 3:5,AB = 9,则 A'B' =____。

相似三角形教案

相似三角形教案

相似三角形教案I. 教学目标通过本教案的学习,学生将能够:1. 掌握相似三角形的定义;2. 理解相似三角形的性质和判定方法;3. 运用相似三角形的性质解决实际问题。

II. 教学准备1. 教师准备:投影仪、幻灯片、黑板、粉笔等教学工具;2. 学生准备:教材、笔、纸等学习用具。

III. 教学过程Step 1: 导入新知1. 教师引导学生回顾已经学过的一些基础概念,如平行线、角等。

2. 引入相似三角形的概念,让学生尝试给出相似三角形的定义。

Step 2: 相似三角形的定义与性质1. 教师通过幻灯片展示相似三角形的定义,并与学生一起讨论其特点。

2. 学生借助教材,归纳相似三角形的性质,如对应角相等、对应边成比例等。

Step 3: 判断相似三角形的方法1. 教师介绍判定相似三角形的方法,包括AAA(角-角-角)相似判定法、AA(角-角)相似判定法和SAS(边-角-边)相似判定法。

2. 通过幻灯片展示实例,让学生运用这些方法判断相似三角形。

Step 4: 案例分析与讨论1. 教师提供一些实际问题,要求学生分析并运用相似三角形的性质解决。

2. 学生在小组中合作讨论,找出解决问题的方法,并向全班展示他们的解决思路。

Step 5: 练习与巩固1. 教师布置一些练习题,要求学生运用相似三角形的性质进行求解。

2. 学生独立完成练习,并检查答案。

Step 6: 拓展与应用1. 教师推荐一些与相似三角形相关的拓展阅读资料,鼓励学生深入了解这一概念的应用和意义。

2. 学生可以选择阅读其中的一篇文章,并做一份读后感。

IV. 教学反思通过本教案的设计,学生在活动中能够借助幻灯片、小组合作讨论以及个人练习等方式全面了解相似三角形的定义、性质和判定方法。

此外,通过解决实际问题的过程,学生能够培养思维能力和解决问题的策略意识。

教学过程中要注意调动学生积极性,激发他们的学习兴趣,让他们充分参与到教学活动中。

相似三角形应用举例教案

相似三角形应用举例教案

27.2.3 相似三角形应用举例一、课标要求: 会利用图形的相似解决一些简单的实际问题.二、课标理解:识现实生活中物体的相似,能利用相似三角形的性质解决一些简单的实际问题;通过把实际问题转化成有关相似三角形的数学模型,培养分析问题、解决问题的能力.三、内容安排:【教学目标】知识与技能:1.能运用相似三角形的数学模型解决现实世界的测量问题;2.通过例题的分析与解决,让学生进一步感受相似三角形在实际生活中的应用.过程与方法:引导学生将实际问题转化为数学问题,建立相似三角形模型,再应用相似三角形知识求解,体会相似三角形的应用方法.情感、态度与价值观:开展学生的转化意识和自主探究、合作交流的习惯,体会相似三角形的实际应用价值,增加学生应用数学知识解决实际问题的经历和感受.【教学重难点】重点:运用相似三角形的知识解决生活中的一些测量问题.难点:如何把实际问题转化相似三角形这一数学模型.四、教学过程〔一〕孕育问题:〔1〕怎样判断两个三角形相似?〔2〕相似三角形的性质有哪些?引入:胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一〞.塔的 4 个斜面正对东南西北四个方向,塔基呈正方形,每边长约230 米.据考证,为建成胡夫金字塔,一共花了20 年时间,每年用工10 万人.该金字塔原高146.59 米,但由于经过几千年的风化吹蚀,高度有所降低.在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!〞这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量金字塔高度的吗?引出课题:今天,我们就来研究利用三角形的相似,解决一些有关测量的问题.〔二〕萌发生长例1:据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.如图,木杆EF 长2m ,它的影长FD 为3m ,测得OA 为201m ,求金字塔的高度BO .追问:怎样测出OA 的长?金字塔的影子可以看成一个等腰三角形,那么OA 等于这个等腰三角形的高与金字塔的边长一半的和.解:太阳光是平行光线,因此∠BAO =∠EDF .又∠AOB =∠DFE =90°,∴△ABO ∽△DEF . BO OA EF FD ∴= 20121343OA EF BO FD ⋅⨯∴===〔m 〕 因此金字塔的高度为134 m.归纳:同一时间,同一地点,物高与影长成比例.【牛刀小试】1.在某一时刻,测得一根高为的竹竿的影长为3m ,同时测得一栋高楼的影长为90m ,这栋高楼的高度是多少?2.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米例2:如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 共线且直线PS 与河垂直,接着在过点S 且与PS 垂直的直线a 上选择适当的点T ,确定PT 与过点Q 且垂直PS 的直线b 的交点R .已测得QS =45m ,ST =90m ,QR =60m ,请根据这些数据,计算河宽PQ .解:∵∠PQR =∠PST =90°,∠P =∠P ,∴△PQR∽△PST.PQ QRPS ST∴=即604590 PQ QR PQPQ QS ST PQ++==PQ×90=〔PQ+45〕×60.解得PQ=90〔m〕.因此,河宽大约为90m.归纳:构造两个共线的相似直角三角形.【随堂练习】1.如图,铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降时,长臂端点升高.AB,在岸边找到了一点C,使AC⊥AB,在AC上找到一点D,在BC上找到一点E,使DE⊥AC,测出AD=35m,DC=35m,DE =30m,那么你能算出池塘的宽AB吗〔三〕收获硕果1.这节课我们学到了哪些知识?2.我们是利用什么方法获得这些知识的?3.通过这节课的学习,你有什么新的想法或发现?〔四〕拓展延伸,布置作业必做题:教材43页习题27.2第8、9题.选做题:教材44页习题27.2第14题.〔五〕学习评价1.要测量出一棵树的高度,除了测量出人高与人的影长外,还需要测出()A.仰角B.树的影长C.标杆的影长D.都不需要2.如图,小芳和爸爸正在散步,爸爸身高1.8 m,某一时刻他在地面上的影长为2.1 m.假设小芳比爸爸矮0.3 m,那么她此时在地面上的影长为()A.1.3 mB.1.65 mC.1.75 mD.1.8 m3.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5 m的大视力表制作一个测试距离为3 m的小视力表.如图,如果大视力表中“E〞的高度是3.5 cm,那么小视力表中相应“E〞的高度是______________.4.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60 m,ST=120 m,QR=80 m,那么河的宽度PQ为__________.5.有一张简易的活动小餐桌,如图,现测得OA=OB=30 cm,OC=OD=50 cm,桌面离地面的高度为40 cm,那么两条桌腿的交点离地面的高度为_____________.附:板书设计§ 27.2.2 相似三角形的性质一:相似三角形对应角相等,对应边成比例二:相似三角形的对应高线、对应中线、对应角平分线的比等于相似比例题板演学生板演三:相似三角形周长比等于相似比推广:相似三角形对应线段的比等于相似比四:相似三角形面积比等于相似的平方。

初中数学初三数学上册《相似三角形的性质及其应用》教案、教学设计

初中数学初三数学上册《相似三角形的性质及其应用》教案、教学设计
2.提问:“同学们,你们观察到了这些图形有什么共同特点吗?”让学生尝试用自己的语言描述相似图形的特点。
3.引导学生回顾已学的全等三角形的性质和判定方法,为新课的学习做好铺垫。
4.揭示本节课的主题——相似三角形的性质及其应用,激发学生的学习兴趣。
(二)讲授新知
在这一环节中,我将系统地讲授相似三角形的性质和判定方法:
-以小组为单位,共同完成一道具有挑战性的相似三角形综合应用题,要求小组成员分工合作,共同讨论解题策略。
-每个小组将解题过程和答案进行整理,并在下一节课上进行汇报,分享学习成果。
4.思考与反思:
-结合本节课的学习,反思自己在解决相似三角形问题时遇到的困难和挑战,分析原因,并总结经验教训。
-撰写一篇学习心得,谈谈自己对相似三角形性质及其应用的认识和理解。
4.学会运用相似三角形的性质解决与实际生活相关的问题,如测量物体的高度、求解线段长度等。
(二)过程与方法
1.通过自主探究、合作交流等形式,引导学生主动发现相似三角形的性质及其应用。
2.培养学生运用几何直观和逻辑推理解决问题的能力,提高学生的几何思维能力。
3.引导学生运用类比、归纳等方法,从特殊到一般,发现几何图形的性质,培养学生发现问题和解决问题的能力。
5.预习与拓展:
-预习下一节课要学习的相似多边形的性质及其应用,为新课的学习做好准备。
-探索相似三角形与其他数学分支(如代数、平面几何等)的联系,拓展知识面。
3.培养学生的几何直观和逻辑推理能力,提高学生解决几何问题的策略和方法。
4.激发学生的学习兴趣,增强学生对数学学科的情感态度,提升学生的数学素养。
(二)教学设想
1.创设情境,引入新课
-通过展示实际生活中的相似图形,如建筑物的立面图、摄影中的缩放效果等,引起学生对相似三角形性质的兴趣。

27.2.3相似三角形应用举例(教案)

27.2.3相似三角形应用举例(教案)
4.实践与探究:引导学生通过实际操作,探究相似三角形在生活中的应用,培养实践能力,增强对数学学科的兴趣和认识。
5.空间观念与数据分析:培养学生运用相似三角形知识分析问题,发展空间观念和数据分析能力,提高数学素养。
三、教学难点与重点
1.教学重点
-理解相似三角形的性质:重点强调相似三角形的对应角相等、对应边成比例的基本性质,以及如何利用这些性质解决实际问题。
3.解决实际问题:结合生活实例,让学生运用相似三角形的性质解决一些实际问题,提高学生的应用能力和解决问题的能力。
4.总结相似三角形在实际生活中的应用,强调数学知识与现实生活的紧密联系。
本节课将引导学生通过实际案例,掌握相似三角形在实际问题中的应用,培养学生的动手操作能力和解决问题的能力。
二、核心素养目标
五、教学反思
在今天的教学中,我发现同学们对相似三角形的应用举例产生了浓厚的兴趣。通过引入日常生活中的实际问题,他们能够更好地理解数学知识在实际中的应用。让我感到高兴的是,大多数同学能够积极参与讨论,提出自己的观点,这充分说明了他们对这一知识点的投入。
然而,我也注意到在讲解相似三角形性质时,部分同学对识别相似三角形和确定对应关系存在一定的困难。这说明在这个环节,我需要更加耐心地引导和解释,或许可以通过更多的例子和直观的图示来帮助他们理解。
-应用相似三角形测量:掌握如何利用相似三角形进行高度和距离的测量,包括在实际问题中如何确定相似三角形和对应关系。
-生活实例的解析:通过具体实例,如测量建筑物高度、桥梁长度等,让学生掌握相似三角形在实际生活中的应用。
-数据处理与分析:学会在测量过程中处理数据,分析误差,提高测量的准确性。
举例:在测量建筑物高度时,重点讲解如何利用地面上的影子长度和已知的太阳高度角来确定建筑物的高度,强调相似三角形的实际应用。

2024年浙教版数学九年级上册4.5《相似三角形的性质及应用》教学设计

2024年浙教版数学九年级上册4.5《相似三角形的性质及应用》教学设计

2024年浙教版数学九年级上册4.5《相似三角形的性质及应用》教学设计一. 教材分析《相似三角形的性质及应用》是浙教版数学九年级上册第4.5节的内容。

本节主要介绍相似三角形的性质,包括相似三角形的对应边成比例、对应角相等以及相似比的概念。

同时,通过实际例题让学生了解相似三角形在实际问题中的应用。

本节内容是学生学习几何知识的重要环节,为后续学习相似多边形、三角函数等知识打下基础。

二. 学情分析九年级的学生已经掌握了三角形的基本知识,具备一定的逻辑思维能力。

但是,对于相似三角形的性质及应用,部分学生可能还存在一定的困难。

因此,在教学过程中,要关注学生的认知水平,注重引导,激发学生的学习兴趣,提高学生的动手操作能力和解决问题的能力。

三. 教学目标1.理解相似三角形的性质,掌握相似三角形的对应边成比例、对应角相等。

2.学会运用相似三角形的性质解决实际问题,提高学生的应用能力。

3.培养学生的观察能力、动手操作能力和团队协作能力。

四. 教学重难点1.相似三角形的性质及其证明。

2.相似三角形在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究相似三角形的性质。

2.利用多媒体辅助教学,展示相似三角形的动态变化,增强学生的直观感受。

3.运用实例分析法,让学生了解相似三角形在实际问题中的应用。

4.小组讨论,培养学生的团队协作能力。

六. 教学准备1.多媒体教学设备。

2.教学课件。

3.练习题及答案。

4.三角板、直尺等绘图工具。

七. 教学过程1.导入(5分钟)利用多媒体展示两组三角形,让学生观察并判断它们是否相似。

通过直观的展示,引发学生的思考,激发学生的学习兴趣。

2.呈现(10分钟)介绍相似三角形的定义及其性质,包括对应边成比例、对应角相等。

通过示例和证明,让学生理解和掌握相似三角形的性质。

3.操练(10分钟)让学生分组进行动手操作,利用三角板、直尺等工具,绘制一组相似三角形,并验证它们的性质。

教师巡回指导,解答学生的疑问。

相似三角形的性质及其应用-导学案

相似三角形的性质及其应用-导学案

3月16日-相似三角形的性质及其应用-导学案一:知识梳理相似三角形定义:对应角相等,对应边成比例的两个三角形叫做相似三角形知识点1:性质定理1:相似三角形对应角相等,对应边成比例。

知识点2:性质定理2:相似三角形对应线段(高线、中线、角平分线)的比等于相似比。

实战训练一:1. 两个相似三角形的对应边之比是1:2,那么它们的对应中线之比是1:2 。

2. 两个相似三角形的对应高之比是1:4,那么它们的对应中线之比是1:4 。

3. 两个相似三角形的对应角的平分线的长分别是3cm和5cm,那么它们的相似比是3:5 ,对应高的比是3:5 。

知识点3:性质定理3:相似三角形的周长比等于相似比。

实战训练二:1. 两个相似三角形的相似比是1:2,其中较小三角形的周长为6cm,则较大三角形的周长为12cm 。

2. 如果△ABC ∽△DEF,且△ABC的三边长分别为3、4、5,△DEF的最短边长为6,那么△DEF的周长为24 。

3. 如果两个相似三角形的周长比是2:3,其中小三角形一角的角平分线长是6cm,那么大三角形对应角平分线长是9cm 。

知识点4:性质定理4:相似相似三角形面积的比等于相似比的平方。

实战训练三:1. 若△ABC ∽△A’B’C’且相似比为1:2,则△ABC 与△A’B’C’面积之比为1:4 。

2. 两个相似三角形的面积之比是4: 9,则这两个三角形相似比是2:3 。

3. 判断:两个三角形的面积之比是4: 9,则这两个三角形的周长之比是2:3。

(×)二:典例分析例1:如图,已知△ACE△△BDE,AC=6,BD=3,AB=12,CD=18,求AE和DE的长。

解:∵△ACE∽△BDE∴ACBD =AEBE即63=AE12−AE解得AE=8△ ACBD =CEDE即63=18−DEDE解得DE=6相似三角形的应用——测量不能到达顶端的物体高度例2: 《周髀算经》中记载了“偃矩以望高”的方法,“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A、B、Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40cm,BD=20cm,AQ=12m,则树高为6m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§4.6相似三角形及其应用学习目标:1.了解相似三角形的概念,掌握判定三角形相似的方法;会用相似三角形性质证明角相等或线段成比例,或进行角的度数和线段长度的计算等.2.了解图形的位似及性质,能够利用作位似图形等方法将一个图形放大或缩小.3.在利用图形的相似解决一些实际问题的过程中,进一步学习分析问题和解决问题的能力.一、课前预习(一)知识梳理1.相等,成比例的两个三角形相似,相似比是1的两个三角形是三角形。

2.相似三角形的判定:①对应相等的两个三角形相似.②两边对应成,且相等的两个三角形相似.③三边的两个三角形相似.④如果一个直角三角形的和一条边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.⑤平行于三角形一边的直线,截其它两边所得三角形与原三角形 .3.相似三角形的性质①相似三角形的相等,成比例.②相似三角形对应的比,对应的比和对应的比都等于相似比.③相似三角形周长的比等于.面积的比等于.4. 位似图形的定义:如果两个图形不仅是相似图形.而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做图形,这个点叫做,这时的相似比又叫做位似比.(二)基础训练1.如图是小明做的一个风筝的支架,AB=40cm,BP=60cm,△ABC∽△APQ的相似比是()A.3:2 B.2:3 C.2:5 D.3:52.位似图形上任意一对对应点到位似中心的距离之比等于________.3.如图,D、E两点分别在△CAB上,且 DE与BC不平行,请填上一个你认为适合的条件_________,使得△ADE∽△ABC.4.下列说法中正确的是()A.两个直角三角形一定相似; B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似; D.两个等腰梯形一定相似5.厨房角柜的台面是三角形,如图,如果把各边中点的连线所围成的三角形铺成黑色大理石.(图中阴影部分)其余部分铺成白色大理石,那么黑色大理石的面积与白色大理石面积的比是()A.14B .41C.13D.346. 在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D,如果△ABC的周长是16,面积是12,那么△DEF的周长、面积依次为( )A.8,3 B.8,6 C.4,3 D.4,67.如图,点P是Rt△ABC的斜边 BC上异于 B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()条.A.1 B.2 C.3 D.4二、例题精讲例1如图,⊙O中的弦AB截另一弦CD成CE、DE两部分,已知AB=7,CE=2,DE=6,求AE长AEDC B例2如图27-105所示,九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3 m,标杆与旗杆的水平距离BD=15 m,人的眼睛与地面的高度EF=1.6 m,人与标杆CD的水平距离DF=2 m,求旗杆AB的高度.例3如图所示,在△ABC中,AB=5,BC=3,AC=4,PQ∥AB,点P在AC上,点Q在BC上.(1)当△PQ C的面积与四边形P ABQ的面积相等时,求CP的长;(2)当△PQ C的周长与四边形P ABQ的周长相等时,求CP的长;(3)在AB上是否存在点M,使△PQM为等腰直角三角形?若存在,求出PQ的长;若不存在,请说明理由.例4 如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为245个平方单位?CP QB三、当堂反馈1.如图,D是△ABC的边AB上的点,请你添加一个条件,使△ACD与△ABC相似.你添加的条件是___________2.如图27-99所示,在△ABC中,有DE∥BC ,12 ADBD,DE=4 cm,则BC的长为( )A.8 cm B.12 cmC.11 cm D.10 cm3.(2011贵州毕节)两个相似三角形的面积比是16:9,其中较小三角形周长为36cm,则较大三角形周长为( )A.48cm B.54cm C.56cm D.64cm4.要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边长分别为50 cm,60 cm,80 cm,三角形框架乙的一边长为20 cm,那么符合条件的三角形框架乙共有( )A.1种B.2种C.3种D.4种5.如图,AD⊥BC于D,CE⊥AB 于E,交 AD于F,图中相似三角形的对数是()A.3 B.4 C.5 D.66.王明同学为了测量河对岸树AB的高度.他在河岸边放一面平面镜,他站在C处通过平面镜看到树的顶端A.如图,然后他量得B、P间的距离是56米,C、P 间距离是 12米,他的身高是1.74米.⑴他这种测量的方法应用了物理学科的什么知识?请简要说明;⑵请你帮他计算出树AB的高度.C BAPD7.如图所示,在房子外的屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区在△ABD。

已知房子上的监视器高3m,广告牌高为1.5m,广告牌距离房子5m,则盲区的长度AB为多少?8.如图,在ABCD中,过点B作BE⊥CD,垂足为E,连结AE,F为AE上一点,且∠BFE=∠C.⑴求证:△ABF∽△EAD;⑵若AB=4,∠BAE=30°,求AE的长;⑶在⑴、⑵的条件下,若AD=3,求BF的长.9.如图所示,已知∠ABC=∠CDB=90°,AC=a,BC=b.(1)当BD与a,b之间满足怎样的关系时,△ABC∽△CDB;(2)过A作BD的垂线,与DB的延长线交于点E,若△ABC∽△CDB,试判断四边形AEDC是什么四边形.ACE DB10.如图①,在△ABC 中,AB=AC ,BC=acm ,∠B=30°.动点P 以1cm/s 的速度从点B 出发,沿折线B ﹣A ﹣C 运动到点C 时停止运动.设点P 出发x s 时,△PBC 的面积为y cm 2.已知y 与x 的函数图象如图②所示.请根据图中信息,解答下列问题:(1)试判断△DOE 的形状,并说明理由;(2)当a 为何值时,△DOE 与△ABC 相似?四、课堂小结:略五、课后作业1.用作位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可选在 ( )A .原图形的外部B .原图形的内部C .原图形的边上D .任意位置2. 若△ABC ∽△A ′B ′C ′,AC =5,A ′C ′=8,则 S △ABC :S △A ′B ′C ′ = .3. 如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )4. 雨后初晴,一学生在运动场上玩耍,从他前面2m 远一块小积水处,他看到旗杆顶端的倒影,如果旗杆底端到积水处的距离为40m ,该生的眼部高度是1.5m ,那么旗杆的高度是___________m.5. 小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm ,幻灯片到屏幕的距离是1.5m ,幻灯片上小树的高度是10cm ,则屏幕上小树的高度是( )B .C .D . A B C AA .50cmB .500cmC .60cmD 、600cm6. 如图,在两个直角三角形中,∠ACB=∠ADC=90°, AC= 6 ,AD=2,那么当AB 的长等于 时,使得两个直角三角形相似.7. 如图所示,已知CD 是Rt △ABC 的斜边AB 上的高,若AD =10,BD =5,求AC 的长.8. (2011江西)某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.结论:在探讨过程中,有三位同学得出如下结果:甲同学:在钝角、直角、不等边锐角三角形中分别存在 个、 个、 个大小不同的内接正方形.乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小. 任务:(1)填充甲同学结论中的数据;(2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明;(3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明.六、拓展延伸C B1. (2011甘肃兰州)已知:如图所示的一张矩形纸片ABCD (AD >AB ),将纸片折叠一次,使点A 与点C 重合,再展开,折痕EF 交AD 边于点E ,交BC 边于点F ,分别连结AF 和CE 。

(1)求证:四边形AFCE 是菱形;(2)若AE =10cm ,△ABF 的面积为24cm 2,求△ABF 的周长;(3)在线段AC 上是否存在一点P ,使得2AE 2=AC ·AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.2. .如图,已知抛物线y =43x 2+bx +c 与坐标轴交于A 、B 、C 三点,A 点的坐标为(-1,0),过点C 的直线y =t43x -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1.(1)填空:点C 的坐标是___________,b =_______,c =_______; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有tA BC DE F O。

相关文档
最新文档