数学高考(文)第一轮复习(江苏版):第3讲函数及其性质2018新题赏析
江苏版2018年高考数学一轮复习专题3.2利用导数研究函数的极值与最值讲20171129353

专题3.2 利用导数研究函数的极值与最值【考纲解读】要求备注内容A B C导数及利用导数研究函数的单√其应用调性与极值【直击考点】题组一常识题1.[教材改编] 函数f(x)=e x-2x的单调递增区间是______________.【解析】f′(x)=e x-2,令f′(x)>0,解得x>ln 2,则函数f(x)=e x-2x的单调递增区间为(ln 2,+∞).2.[教材改编] 函数f(x)=x3-12x的极小值是________,极大值是________.【解析】由题意得f′(x)=3x2-12,令f′(x)=0,解得x=-2或x=2.当x∈(-∞,-2)时,f′(x)>0,3.[教材改编] 一条长为2a的铁丝截成两段,分别弯成两个正方形,要使两个正方形的面积之和最小,两段铁丝的长分别是________,________.x2 (2a-x)2 【解析】设两段铁丝的长分别为x,2a-x.则两个正方形的面积之和为S=+16 16x2 ax a2 x a=-+,则S′(x)=-,令S′(x)=0得x=a.当x<a时,S′(x)<0;当x>a时,8 4 4 4 4S′(x)>0.所以S在x=a处取得极小值也是最小值,所以两段铁丝的长都是a.题组二常错题14.函数y=x2-ln x的单调递减区间为______________.21 1 x2-1 (x-1)(x+1)【解析】y=x2-ln x,y′=x-==(x>0).令y′<0,得0<x2 x x x<1,∴单调递减区间为(0,1).5.设a∈R,若函数y=e x+ax,x∈R有大于零的极值点,则a的取值范围是____________.【解析】∵y=e x+ax,∴y′=e x+a.∵函数y=e x+ax有大于零的极值点,则方程y′=e x+a=0有大于零的解,∵x>0时,-e x<-1,∴a=-e x<-1.6.已知f(x)=x e x,g(x)=-(x+1)2+a,若∃x1,x2∈R,使f(x2)≤g(x1)成立,则实数a的取值范围是________.题组三常考题7.若函数f(x)=kx-ln x在区间(2,+∞)上单调递增,则k的取值范围是________________________________________________________________________.1 1 【解析】f′(x)=k-,由已知得f′(x)≥0在(2,+∞)上恒成立,故k≥.x(x)max1 1 1 因为x>2,所以0< < ,故k的取值范围是.2 [,+∞)x 28.函数f(x)=x-ln x在(2,+∞)上的单调性是__________________.1 x-1【解析】f′(x)=1-=,令f′(x)>0,得x>1,所以函数f(x)的单调递增区间x x为(1,+∞),所以函数f(x)在(2,+∞)上是增函数.【知识清单】考点1 运用导数求函数的单调性在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.考点2 运用导数求函数的极值极小值点,极大值点统称为极值点,极大值和极小值统称为极值.考点3 运用导数求函数的最值- 2 -f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.【考点深度剖析】【重点难点突破】考点1 运用导数求函数的单调性ln x+k【1-1】已知函数f(x)=(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)e x在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间.【答案】(1) k=1. (2) 单调递增区间为(0,1),单调递减区间为(1,+∞).x∈(1,+∞)时,f′(x)<0.因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).【1-1】【1-2】已知f(x)=x3-ax在[1,+∞)上是单调增函数,则a的最大值是__________. 【答案】3【思想方法】求可导函数单调区间的一般步骤和方法(1)确定函数f(x)的定义域;(2)求f′(x),令f′(x)=0,求出它在定义域内的一切实数根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f′(x)在各个开区间内的符号,根据f′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.【温馨提醒】在函数f(x)的定义域内研究函数单调性.考点2 运用导数求函数的极值a【2-1】已知函数f(x)=x-1+(a∈R,e为自然对数的底数).e x(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.【答案】(1)a=e. (2)当a≤0时,函数f(x)无极值;当a>0时,f(x)在x=ln a处取得极小值ln a,无极大值.a a【解析】(1)由f(x)=x-1+,得f′(x)=1-.e x e x又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,a得f′(1)=0,即1-=0,解得a=e.ea(2)f′(x)=1-,e x①当a≤0时,f′(x)>0,f(x)为(-∞,+∞)上的增函数,所以函数f(x)无极值.②当a>0时,令f′(x)=0,得e x=a,即x=ln a.x∈(-∞,ln a),f′(x)<0;x∈(ln a,+∞),f′(x)>0,所以f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增,故f(x)在x=ln a处取得极小值,且极小值为f(ln a)=ln a,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,f(x)在x=ln a处取得极小值ln a,无极大值.【2-2】已知函数f(x)=x3+ax2+bx+a2在x=1处取极值10,则f(2)=__________.【答案】18【思想方法】求函数极值的步骤:(1)确定函数的定义域;(2)求方程f′(x)=0的根;(3)用方程f′(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;(4)由f′(x)=0根的两侧导数的符号来判断f′(x)在这个根处取极值的情况.【温馨提醒】判断函数极值时要注意导数为0的点不一定是极值点,所以求极值时一定要判断导数为0的点左侧与右侧的单调性,然后根据极值的定义判断是极大值还是极小值.考点3 运用导数求函数的最值【3-1】已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.【答案】(1) 单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).(2) (1-k)e.【解析】(1)f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.f(x)与f′(x)的情况如下:x (-∞,k -1) k -1(k -1,+∞) f ′(x ) -+f (x )-e k-1所以,f (x )的单调递减区间是(-∞,k -1);单调递增区间是(k -1,+∞).(2)当 k -1≤0,即 k ≤1 时,函数 f (x )在[0,1]上单调递增,所以 f (x )在区间[0,1]上的最小 值为 f (0)=-k ;当 0<k -1<1,即 1<k <2时,由(1)知 f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以 f (x )在区间[0,1]上的最 小值为 f (k -1)=-e k -1;当 k -1≥1 时,即 k≥2 时,函数 f(x)在[0,1]上单调递减,所以 f(x)在区间[0,1]上的最小值 为 f(1)=(1-k)e.【3-2】 设函数 f (x )=ln x -ax ,g (x )=e x -ax ,其中 a 为实数.若 f (x )在(1,+∞)上是单调减函数,且 g (x )在(1,+∞)上有最小值,求 a 的取值范围. 【答案】(e ,+∞).【思想方法】求函数 f (x )在[a ,b ]上的最大值和最小值的步骤 (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值 f (a ),f (b );(3)将函数 f (x )的各极值与 f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值. 【温馨提醒】极值是函数局部性质,最值是函数整体性质【易错试题常警惕】1、已知函数的极值求参数问题,一定要注意在极值点处左右两端导函数的符号.如:已知 fx x 3 3ax 2 bx a 2 在 x 1时有极值 0 ,求 a ,b 的值.【分析】f x x ax b,由题意得362ff10,即16a b 30,解之得a 3ab 102a1或b3ab 29,当a 1,b 3时,f x x x x 2恒成立,所以3633102f x在x1处无极值,舍去.所以a 2,b 9.【易错点】用导数求极值时容易忽视左右两端导函数的符号而致误.- 7 -。
(江苏版)2018年高考数学一轮复习(讲、练、测):_专题2.12_函数模型及其应用(测)(有解析)

专题2.12 函数模型及其应用班级__________ 姓名_____________ 学号___________ 得分__________(满分100分,测试时间50分钟)一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每小题6分,共计60分). 1. 在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m. 【答案】202.如果在今后若干年内,我国国民经济生产总值都控制在平均每年增长9%的水平,那么要达到国民经济生产总值比1995年翻两番的年份大约是________.(lg2=0.301 0,lg3=0.477 1,lg109=2.037 4,lg0.09=-2.954 3) 【答案】2011年【解析】 设1995年总值为a ,经过x 年翻两番,则a ·(1+9%)x=4a .∴x =2lg2lg1.09≈16.3. 给出下列函数模型:①一次函数模型;②幂函数模型;③指数函数模型;④对数函数模型.下表是函数值y 随自变量x 变化的一组数据,它最可能的函数模型是________(填序号).【答案】①【解析】根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型. 4.一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e-bt(cm 3),若经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一. 【答案】16【解析】当t =0时,y =a ;当t =8时,y =a e-8b=12a , ∴e-8b=12,容器中的沙子只有开始时的八分之一时, 即y =a e -bt=18a . e-bt=18=(e -8b )3=e -24b,则t =24,所以再经过16 min. 5.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式y =(116)t -a (a 为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________________.(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室. 【答案】(1)y =⎩⎪⎨⎪⎧10t ,0≤t ≤0.1,116t -0.1,t >0.1 (2)0.66.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:mg/L)与过滤时间t (单位:h)之间的函数关系为P =P 0e -kt (k ,P 0均为正的常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么至少还需过滤 才可以排放. 【答案】5 h【解析】设原污染物数量为a ,则P 0=a .由题意有10%a =a e -5k,所以5k =ln10.设t h 后污染物的含量不得超过1%,则有1%a ≥a e-tk,所以tk ≥2ln10,t ≥10.因此至少还需过滤10-5=5 h 才可以排放.7.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km. 【答案】9【解析】设出租车行驶x km 时,付费y 元,则y =⎩⎪⎨⎪⎧9,0<x ≤3,8+x -+1,3<x ≤8,8+2.15×5+x -+1,x >8.由y =22.6,解得x =9.8.某杂志每本原定价2元,可发行5万本,若每本提价0.20元,则发行量减少4 000本,为使销售总收入不低于9万元,需要确定杂志的最高定价是 【答案】3元9.某单位“五一”期间组团包机去上海旅游,其中旅行社的包机费为30 000元,旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团中的人数在30或30以下,飞机票每张收费1 800元.若旅游团的人数多于30人,则给以优惠,每多1人,机票费每张减少20元,但旅游团的人数最多有75人,那么旅游团的人数为_______人时,旅行社获得的利润最大. 【答案】60【解析】设旅游团的人数为x 人,飞机票为y 元,利润为Q 元,依题意,①当1≤x ≤30时,y =1 800元,此时利润Q=yx-30 000=1 800x-30 000,此时最大值是当x=30时,Q max =1 800×30-30 000=24 000(元);②当30<x ≤75时,y=1 800-20(x-30)=-20x+2 400,此时利润Q=yx-30 000 =-20x 2+2 400x-30 000=-20(x-60)2+42 000,所以当x=60时,旅行社可获得的最大利润42 000元.综上,当旅游团的人数为60人时,旅行社获得的利润最大.10.某地西红柿从2 月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100 kg)与上市时间t(单位:天)的数据如下表:. Q=at+b,Q=at 2+bc+c,Q=a ·b t,Q=a ·log b t 利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是________. (2)最低种植成本是________(元/100kg).【答案】(1)120 (2)80二、解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.....。
2018届高三数学文一轮总复习江苏专用课件:第四章 第三节 三角函数的图象与性质 精品

1.用五点法作正弦函数和余弦函数的简图 正弦函数 y=sin x,x∈[0,2π]的图象上,五个关键点是: (0,0),π2,1,(π,0),_3_2π__,__-__1_ ,(2π,0). 余弦函数 y=cos x,x∈[0,2π]的图象上,五个关键点是: (0,1),π2,0,(π,-1) ,32π,0,(2π,1).
考点三 三角函数的奇偶性、周期性及对称性 常考常新型考点——多角探明 [命题分析]
正、余弦函数的图象既是中心对称图形,又是轴对称图 形.正切函数的图象只是中心对称图形,应把三角函数的对称 性与奇偶性结合,体会二者的统一.
常见的命题角度有: (1)三角函数的周期; (2)求三角函数的对称轴或对称中心; (3)三角函数对称性的应用.
答案:2
6.设偶函数 f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π) 的部分图象
如图所示,△KLM 为等腰直角三角形,
∠KML=90°,KL=1,则 f 16的值 为________. 解析:由题意知,点 M 到 x 轴的距离是12,根据题意可设
f(x)=12cos ωx,又由题图知12·2ωπ=1,所以 ω=π,所以 f(x)
角度二:求三角函数的对称轴或对称中心 3.已知函数f(x)=sin ωx+π4 (ω>0)的最小正周期为π,则函数
f(x)的对称轴为________.
解析:由题意得,2ωπ=π,ω=2, 所以f(x)=sin2x+π4. 令2x+π4=π2+kπ(k∈Z), 得x=π8+k2π(k∈Z)即为函数f(x)的对称轴. 答案:x=π8+k2π(k∈Z)
“课后·三维演练”见“课时跟踪检测(十九)” (单击进入电子文档)
2018高考(江苏专版)大一轮数学(文)复习课件第三章导数及其应用18

2.判定函数单调性的一般步骤 (1)确定函数y=f(x)的定义域; (2)求导数f′(x); f′(x)>0 f′(x)<0 (3)在函数f(x)的定义域内解不等式 _________或_________; (4)根据(3)的结果确定函数的单调区间.
课堂导学
求函数的单调区间
例1
求下列函数的单调区间.
b ④当2>1,即 b>2 时,列表如下: b b 1, ,+∞ (0,1) x 2 2
1 x∈1,a-1时,f(x)单调递增.
含参函数单调性的讨论
已知函数f(x)=x2-(2+b)x+bln x(x>0,b为实常数),讨论函数f(x)的单调性. 【思维引导】先确定函数的定义域为(0,+ ∞),然后求解函数f(x)的导数,最后利用导数 的符号判断函数的单调性.
例2
变 式
1-a 已知函数 f(x)=lnx-ax+ x -1,a∈R.当
1 0<a<2时,讨论函数 f(x)的单调性. 1-a 【解答】因为 f(x)=lnx-ax+ x -1,x∈(0,+∞),
a-1 ax2-x+1-a 1 所以 f′(x)=x-a+ x2 =- . x2 1 令 f′(x)=0,得 x1=1,x2=a-1. 1 1 因为 0<a<2,所以a-1>1>0,
x f′(x) f ( x)
b 0, 2
b ,1 2
(1, +∞) +
+
-
所以函数
b f(x)的单调增区间为0,2,(1,+∞),单调减
b 区间为2,1;
b ③当2=1,即 b=2 时,函数 f(x)的单调增区间为(0,+ ∞);
2018届高三数学文一轮总复习江苏专用课件:第三章 第二节 第一课时 导数与函数的单调性 精品

3.函数的最值 (1)在闭区间[a,b]上连续的函数 f(x)在[a,b]上必有最大值与
最小值. (2)若函数 f(x)在[a,b]上单调递增,则 f(a) 为函数的最小值,
_f_(b_)_为函数的最大值;若函数 f(x)在[a,b]上单调递减, 则 f(a) 为函数的最大值, f(b) 为函数的最小值.
考点三 已知函数的单调性求参数的范围 题点多变型考点——纵引横联
[典型母题]
已知函数 f(x)=x3-ax-1. (1)讨论 f(x)的单调性; (2)若 f(x)在 R 上为增函数,求实数 a 的取值范围.
[解] (1)f′(x)=3x2-a. ①当 a≤0 时,f′(x)≥0, 所以 f(x)在(-∞,+∞)上为增函数. ②当 a>0 时,令 3x2-a=0 得 x=± 33a; 当 x> 33a或 x<- 33a时,f′(x)>0; 当- 33a<x< 33a时,f′(x)<0.
[由题悟法] 导数法证明函数 f(x)在(a,b)内的单调性的 3 步骤 (1)一求.求 f′(x); (2)二定.确认 f′(x)在(a,b)内的符号; (3)三结论.作出结论:f′(x)>0 时为增函数;f′(x) <0 时为减函数. [提醒] 研究含参数函数的单调性时,需注意依据参 数取值对不等式解集的影响进行分类讨论.
∴解当得-x>13<0 时x<,0f或′23(x<)>x<0.1. ∴∴实f(x数)在x(0的,取+值∞范)上围单为调-递13增,.0∪23,1.
考点二 求函数的单调区间重点保分型考点——师生共研 [典例引领]
已知函数 f(x)=mx3+nx2(m,n∈R,m≠0),函数 y=f(x) 的图象在点(2,f(2))处的切线与 x 轴平行. (1)用关于 m 的代数式表示 n; (2)求函数 f(x)的单调增区间.
热点5 基本函数的性质及其应用-2018届高考数学三轮核心热点深度剖析与训练 (江苏版)

热点5 基本函数的性质及其应用【名师精讲指南篇】【热点深度剖析】1. 函数在15-17年均是以填空题、解答题的形式进行考查,涉及到函数与方程、分类讨论和数形结合的思想,题目多为中高档题,有时也会出现基础题,着重考查学生运算求解能力、推理论证能力及分析问题和解决问题的能力.函数常与导数、方程、不等式等结合考查,有时单独设置题目.2. 对于函数复习,一要明确函数的定义域和值域,二要锻炼分析问题和解决问题的能力,三要从数和形两个角度理解函数的性质,注意加强对函数与方程、数形结合数学和分类讨论思想的运用.函数知识属于重点知识,考查的难点中等偏上,复习时应以中档题为主,适当难题为辅,加强对函数的性质、分段函数、对数函数的图像与性质和函数的模型及其应用的题目的训练.3. 预计18年考查函数的基本性质、函数模型及其应用、分段函数和对数函数的图像与性质的可能性较大.函数与方程也有可能考查.【最新考纲解读】【重点知识整合】 一、 (1)函数奇偶性: 奇函数)()(x f x f -=-; 偶函数)()(x f x f =-。
(2)函数单调性: 单调递增0)()(2121>--x x x f x f 或0))()()((2121>--x f x f x x ;单调递增0)()(2121<--x x x f x f 或0))()()((2121<--x f x f x x 。
(3)函数周期性周期为T :)()(x f T x f =+或)2()2(Tx f T x f -=+; (4)对称性关于y 轴对称:)()(x f x f =-; 关于原点对称:)()(x f x f -=-;关于直线a x =对称:)()(x a f x a f -=+或)2()(x a f x f -=;关于点),(b a 对称:)2(2)(x a f b x f --=或)()(x a f b b x a f --=-+。
(江苏专用)2018版高考数学大一轮复习 第三章 导数及其应用 3.2 导数的应用 第1课时 导数与函数的单调性
f′(x)<0
一般地,当函数f(x)在点fx′0处(x连)<续0 时, f′(x)>0
①如果在x0附近的左侧
,右侧
极大值;
,那么f(x0)是
(2)求可导函数极值的步骤:
①求f′(x);f′(x)=0
②求方程
的f′根(x;)=0
③考察f′(x)在方程
的根极附大近值的左右两侧导数值的符号.如果左
极小值
含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以 下几种可能: (1)方程f′(x)=0是否有根; (2)若f′(x)=0有根,求出根后判断其是否在定义域内; (3)若根在定义域内且有两个,比较根的大小是常见的分类方法.
课时作业
1.(2015·课标全国Ⅱ改编)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1) =(-0∞,,当-x>10)∪时(,0,xf1′) (x)-f(x)<0,则使得f(x)>0成立的x的取值范围是 __答__案____解__析_________.
解答 几何画板展示
思想与方法系列5 用分类讨论思想研究函数的单调性 典例 (16分)已知函数f(x)=ln x,g(x)=f(x)+ax2+bx,其中函数g(x)的图象 在点(1,g(1))处的切线平行于x轴. (1)确定a与b的关系; (2)若a≥0,试讨论函数g(x)的单调性. 思想方法指导 规范解答
2.本题(2)中,若h(x)在[1,4]上存在单调递减区间,求a的取值范围.
解答
h(x)在[1,4]上存在单调递减区间, 则h′(x)<0在[1,4]上有解, 即当 x∈[1,4]时,a>x12-2x有解, 又当 x∈[1,4]时,(x12-2x)min=-1, ∴a>-1,即a的取值范围是(-1,+∞).
2018版高考数学文江苏专用大一轮复习讲义文档 第三章
1.导数与导函数的概念(1)设函数y=f(x)在区间(a,b)上有定义,x0∈(a,b),若Δx无限趋近于0时,比值Δy Δx=f(x0+Δx)-f(x0)Δx无限趋近于一个常数A,则称f(x)在x=x0处可导,并称该常数A为函数f(x)在x=x0处的导数(derivative),记作f′(x0).(2)如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数y=f(x)在开区间内的导函数.记作f′(x)或y′.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k=f′(x0).3.基本初等函数的导数公式4.导数的运算法则若f ′(x ),g ′(x )存在,则有 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )g 2(x )(g (x )≠0). 【知识拓展】1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[1f (x )]′=-f ′(x )f 2(x )(f (x )≠0). 3.[af (x )+bg (x )]′=af ′(x )+bg ′(x ).4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)f ′(x 0)与[f (x 0)]′表示的意义相同.( × ) (3)曲线的切线不一定与曲线只有一个公共点.( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × )1.(教材改编)若f (x )=x ·e x ,则f ′(1)= . 答案 2e解析 f ′(x )=e x +x ·e x ,∴f ′(1)=2e.2.(教材改编)①(cos x )′=sin x ;②若y =1x 2,则y ′=-1x ;③(-1x )′=12x x .其中正确的个数是 . 答案 1解析 因为(cos x )′=-sin x ,所以①错误; (1x2)′=(x -2)′=-2x -3,所以②错误;(-1x )′=(-x -12)′=3212x -=12x x ,所以③正确.3.(教材改编)曲线y =-5e x +3在点(0,-2)处的切线方程为 . 答案 5x +y +2=0解析 因为y ′|x =0=-5e 0=-5,所以曲线在点(0,-2)处的切线方程为y -(-2)=-5(x -0),即5x +y +2=0.4.(教材改编)若过曲线y =1x 上一点P 的切线的斜率为-4,则点P 的坐标为 .答案 (12,2)或(-12,-2)解析 ∵y ′=(x -1)′=-1x 2=-4,∴x 2=14,x =±12.∴切点坐标为(12,2)或(-12,-2).5.(教材改编)函数f (x )=x 3的斜率等于1的切线有 条. 答案 2解析 ∵y ′=3x 2,设切点为(x 0,y 0),则3x 20=1,得x 0=±33,即在点(33,39)和点(-33,-39)处有斜率为1的切线.题型一 导数的计算 例1 求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +1x ;(3)y =cos xe x .解 (1)y ′=(x 2)′·sin x +x 2·(sin x )′ =2x sin x +x 2cos x .(2)y ′=(ln x +1x )′=(ln x )′+(1x )′=1x -1x2. (3)y ′=(cos xe x )′=(cos x )′·e x -cos x (e x )′(e x )2=-sin x +cos x e x.思维升华 求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0= .(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)= . 答案 (1)1 (2)-2解析 (1)f ′(x )=2 016+ln x +x ×1x =2 017+ln x ,故由f ′(x 0)=2 017,得2 017+ln x 0=2 017,则ln x 0=0,解得x 0=1. (2)f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且f ′(1)=2,∴f ′(-1)=-2. 题型二 导数的几何意义 命题点1 求切线方程例2 (1)(2016·南通一调)在平面直角坐标系xOy 中,直线l 与曲线y =x 2(x >0)和y =x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则x 1x 2的值为 .(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 . 答案 (1)43(2)x -y -1=0解析 (1)方法一 由题设可知曲线y =x 2在A (x 1,y 1)处的切线方程为y =2x 1x -x 21,曲线y =x3在B (x 2,y 2)处的切线方程为y =3x 22x -2x 32,所以⎩⎪⎨⎪⎧2x 1=3x 22,x 21=2x 32,解得x 1=3227,x 2=89,所以x 1x 2=43.方法二 由题设得⎩⎪⎨⎪⎧2x 1=3x 22,x 32-x 21x 2-x 1=2x 1,解得x 1=3227,x 2=89,所以x 1x 2=43.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2 求参数的值例3 (1)(2016·徐州模拟)函数y =e x 的切线方程为y =mx ,则m = .(2)(2016·苏州暑假测试)已知函数f (x )=x -1+1e x ,若直线l :y =kx -1与曲线y =f (x )相切,则实数k = . 答案 (1)e (2)1-e解析 (1)设切点坐标为P (x 0,y 0),由y ′=e x , 得00|e xx x y '==,从而切线方程为000e e ()xxy x x -=-, 又切线过定点(0,0),从而000e e ()xxx -=-, 解得x 0=1,则m =e.(2)设切点为(x 0,y 0).因为f ′(x )=1-1e x ,则f ′(x 0)=k ,即1-01e x =k ,且kx 0-1=x 0-1+01e x , 所以x 0=-1,所以k =1-1e -1=1-e. 命题点3 导数与函数图象的关系例4 如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的 .答案 ④解析 函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图象是上升的且图象是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图象是上升的且图象是上凸的;当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面 (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.(1)(2016·泰州模拟)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为 .(2)(2016·昆明模拟)设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a= . 答案 (1)3 (2)-1解析 (1)设切点的横坐标为x 0,∵曲线y =x 24-3ln x 的一条切线的斜率为12,∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意), 即切点的横坐标为3.(2)∵y ′=-1-cos xsin 2x ,∴2|x y π='=-1.由条件知1a =-1,∴a =-1.3.求曲线的切线方程典例 若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 错解展示现场纠错解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0, 依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,k =0|x x y '==3x 20-6x 0+2, ① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.纠错心得 求曲线过一点的切线方程,要考虑已知点是切点和已知点不是切点两种情况.1.(2016·天津)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为 . 答案 3解析 因为f (x )=(2x +1)e x ,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x , 所以f ′(0)=3e 0=3.2.已知曲线y =ln x 的切线过原点,则此切线的斜率为 . 答案 1e解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则0|x x y '==1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.3.若直线y =x 是曲线y =x 3-3x 2+px 的切线,则实数p 的值为 . 答案 1或134解析 ∵y ′=3x 2-6x +p ,设切点为P (x 0,y 0),∴⎩⎪⎨⎪⎧3x 20-6x 0+p =1,x 30-3x 20+px 0=x 0, 解得⎩⎪⎨⎪⎧x 0=0,p =1或⎩⎨⎧x 0=32,p =134.4.若f (x )=2xf ′(1)+x 2,则f ′(0)= . 答案 -4解析 f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4.5.(2016·江苏扬州中学期中)若x 轴是曲线f (x )=ln x -kx +3的一条切线,则k = . 答案 e 2解析 由f (x )=ln x -kx +3, 得f ′(x )=1x-k ,设点M (x 0,y 0)是曲线f (x )上的一点,则曲线f (x )=ln x -kx +3在点M 处的切线方程为 y -(ln x 0-kx 0+3)=(1x 0-k )(x -x 0),∵x 轴是曲线f (x )=ln x -kx +3的一条切线, ∴⎩⎪⎨⎪⎧ln x 0-kx 0+3=0,1x 0-k =0,解得k =e 2. 6.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为 . 答案 14解析 由题意可知f ′(x )=1212x -,g ′(x )=ax ,由f ′(14)=g ′(14),得12×121()4-=a 14,可得a =14,经检验,a =14满足题意.7.已知函数f (x )满足f (x )=f ′(1)e x -1-f (0)x +12x 2,那么f (x )的解析式为 .答案 f (x )=e x -x +12x 2解析 由已知得f ′(x )=f ′(1)e x -1-f (0)+x ,所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1,所以f ′(1)=e.从而f (x )=e x -x +12x 2.8.(2016·南京模拟)曲线y =log 2x 在点(1,0)处的切线与坐标轴所围成三角形的面积等于 . 答案12ln 2解析 y ′=1x ln 2,∴k =1ln 2,∴切线方程为y =1ln 2(x -1).∴三角形面积S =12×1×1ln 2=12ln 2.9.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是 .答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x.∵f (x )存在垂直于y 轴的切线, ∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x≥2.10.(2016·扬州中学期末)已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 . 答案 [34π,π)解析 ∵y =4e x +1,∴y ′=-4e x (e x +1)2=-4e x (e x )2+2e x +1=-4e x +1e x +2≥-1(当且仅当e x =1e x ,即x =0时取等号), ∴-1≤tan α<0.又∵0≤α<π,∴3π4≤α<π. 11.(2016·江苏五校联考)已知曲线y =x 与y =8x的交点为P ,两曲线在点P 处的切线分别为l 1,l 2,则切线l 1,l 2与y 轴所围成的三角形的面积为 .答案 6解析 由⎩⎪⎨⎪⎧ y =x ,y =8x , 解得⎩⎪⎨⎪⎧x =4,y =2,即P (4,2), 由y =x ,得y ′=(x )′=12x,则直线l 1的斜率k 1=14, ∴l 1:y =14x +1.同理可得l 2:y =-12x +4, 如图,易知S △P AB =12×3×4=6,即所求的面积为6.12.已知曲线y =13x 3+43. (1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,y ′=x 2, ∴在点P (2,4)处的切线的斜率为y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0. (2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A (x 0,13x 30+43),则切线的斜率为0|x x y '==x 20. ∴切线方程为y -(13x 30+43)=x 20(x -x 0),即y =x 20·x -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43, 即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0.13.设函数f (x )=ax -bx,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3. 当x =2时,y =12.又f ′(x )=a +b x 2, 于是⎩⎨⎧ 2a -b 2=12,a +b 4=74, 解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x . (2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2,知曲线在点P (x 0,y 0)处的切线方程为 y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0, 从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值且此定值为6.。
(江苏版)2018年高考数学一轮复习(讲、练、测):_专题4.5_函数y=Asin(ωx+φ)的图象及其应用(练)(有解析)
专题4.5 函数y =Asin (ωx +φ)的图象及其应用【基础巩固】一、填空题1.(2016·全国Ⅱ卷改编)若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为________. 【答案】x =k π2+π6(k ∈Z )2.(2017·衡水中学金卷)若函数y =sin(ωx -φ)(ω>0,|φ|<π2)在区间⎣⎢⎡⎦⎥⎤-π2,π上的图象如图所示,则ω,φ的值分别是________.【答案】2,π3【解析】由题图可知,T =2⎣⎢⎡⎦⎥⎤π6-⎝ ⎛⎭⎪⎫-π3=π,所以ω=2πT =2,又sin ⎝ ⎛⎭⎪⎫2×π6-φ=0,所以π3-φ=k π(k∈Z ),即φ=π3-k π(k ∈Z ),而|φ|<π2,所以φ=π3.3.(2017·苏北四市调研)如图,已知A ,B 分别是函数f (x )=3sin ωx (ω>0)在y 轴右侧图象上的第一个最高点和第一个最低点,且∠AOB =π2,则该函数的周期是________.【答案】4【解析】设函数的周期为T ,由图象可得A ⎝ ⎛⎭⎪⎫T 4,3,B ⎝ ⎛⎭⎪⎫3T 4,-3,则OA →·OB →=3T 216-3=0,解得T =4.4.(2017·南京师大附中、淮阴中学、海门中学、天一中学四校联考)将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数y =f (x )的图象,若函数f (x )的图象过原点,则φ=________.【答案】3π4【解析】将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8+φ=sin ⎝ ⎛⎭⎪⎫2x +π4+φ的图象,若函数f (x )的图象过原点,则f (0)=sin ⎝ ⎛⎭⎪⎫π4+φ=0,π4+φ=k π,k ∈Z ,φ=k π-π4,k ∈Z ,又0<φ<π,则φ=3π4.5.(2017·南京调研)如图,它是函数f (x )=A sin(ωx +φ)(A >0,ω>0,φ∈[0,2π))图象的一部分,则f (0)的值为________.【答案】3226.(2017·龙岩模拟)某城市一年中12个月的平均气温与月份的关系可近似地用函数y =a +A cos ⎣⎢⎡⎦⎥⎤π6x -(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃. 【答案】20.5【解析】因为当x =6时,y =a +A =28; 当x =12时,y =a -A =18,所以a =23,A =5, 所以y =f (x )=23+5cos ⎣⎢⎡⎦⎥⎤π6x -, 所以当x =10时,f (10)=23+5cos ⎝ ⎛⎭⎪⎫π6×4 =23-5×12=20.5.7.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝ ⎛⎭⎪⎫2,-12,则函数f (x )的解析式为________.【答案】f (x )=sin ⎝⎛⎭⎪⎫πx 2+π68.函数f (x )=3sin π2x -log 12x 的零点的个数是________.【答案】5【解析】函数y =3sin π2x 的周期T =2ππ2=4,由log 12x =3,可得x =18.由log 12x =-3,可得x =8.在同一平面直角坐标系中,作出函数y =3sin π2x 和y =log 12x 的图象(如图所示),易知有5个交点,故函数f (x )有5个零点.二、解答题9.已知函数f (x )=sin ωx +cos ⎝⎛⎭⎪⎫ωx +π6,其中x ∈R ,ω>0.(1)当ω=1时,求f ⎝ ⎛⎭⎪⎫π3的值;(2)当f (x )的最小正周期为π时,求f (x )在⎣⎢⎡⎦⎥⎤0,π4上取得最大值时x 的值.10.(2017·苏、锡、常、镇四市调研)已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻最高点的距离为π.(1)求f ⎝ ⎛⎭⎪⎫π4的值; (2)将函数y =f (x )的图象向右平移π12个单位后,得到y =g (x )的图象,求g (x )的单调递减区间.解 (1)因为f (x )的图象上相邻最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2(k ∈Z ),因为-π2≤φ<π2,所以k =0, 所以φ=π2-2π3=-π6,所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6,则f ⎝ ⎛⎭⎪⎫π4=3sin ⎝ ⎛⎭⎪⎫2×π4-π6=3sin π3=32.(2)将f (x )的图象向右平移π12个单位后,得到f ⎝⎛⎭⎪⎫x -π12的图象,所以g (x )=f ⎝ ⎛⎭⎪⎫x -π12=3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6=3sin ⎝⎛⎭⎪⎫2x -π3. 当2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),即k π+5π12≤x ≤k π+11π12(k ∈Z )时,g (x )单调递减.因此g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12(k ∈Z ).【能力提升】11.(2017·南京模拟)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,给出下列结论:①f (x )的图象关于直线x =π3对称;②f (x )的图象关于点⎝⎛⎭⎪⎫π6,0对称;③f (x )的最小正周期为π,且在⎣⎢⎡⎦⎥⎤0,π12上为增函数;④把f (x )的图象向右平移π12个单位,得到一个偶函数的图象.其中正确的是________(填序号). 【答案】③12.(2017·泰州一模)已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是________.【答案】(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞ 【解析】当ω>0时,-π3ω≤ωx ≤π4ω,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,π4ω≤ωx ≤-π3ω,由题意知π4ω≤-π2,∴ω≤-2.综上可知,ω的取值范围是(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞.13.(2015·湖南卷)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________. 【答案】π214.(2017·扬州中学质检)如图,函数y =2cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0≤φ≤π2的部分图象与y 轴交于点(0,3),最小正周期是π.(1)求ω,φ的值;(2)已知点A ⎝ ⎛⎭⎪⎫π2,0,点P 是该函数图象上一点,点Q (x 0,y 0)是PA 的中点,当y 0=32,x 0∈⎣⎢⎡⎦⎥⎤π2,π时,求x 0的值.解 (1)将点(0,3)代入y =2cos(ωx +φ), 得cos φ=32, ∵0≤φ≤π2,∴φ=π6.∵最小正周期T =π,且ω>0,∴ω=2πT=2.(2)由(1)知y =2cos ⎝⎛⎭⎪⎫2x +π6.∵A ⎝ ⎛⎭⎪⎫π2,0,Q (x 0,y 0)是PA 中点,y 0=32, ∴P ⎝ ⎛⎭⎪⎫2x 0-π2,3.。
2018届高三数学文一轮总复习江苏专用课件:第二章 第三节 函数的奇偶性及周期性 精品
2.设 f(x)是定义在 R 上的周期为 2 的函数,当 x∈[-1,1)时, f(x)=- x,4x2+0≤2,x<-1,1≤x<0, 则 f 32=________. 解析:由题意得,f 32=f -12=-4×-122+2=1. 答案:1
3.函数 f(x)=(2x+2)
22+ -xx的奇偶性为________.
∴f(∴x)f既(x)是是奇奇函函数数.又是偶函数. (2)∵(关5)函于易数原知点函f(对x数)称=的,定又3义-当域2为x>+(0-时∞2,,x-0)3∪的(0定,义+∞域),为32, 不关f(x于)=坐x标2+原x,点对称,
则当 x<0 时,-x>0,
∴函故数f(-f(xx))=既x不2-是x=奇f函(x)数;,也不是偶函数.
2.设函数 f(x)=x+1xx+a为奇函数,则 a=________. 解析:∵f(x)=x+1xx+a为奇函数, ∴f(1)+f(-1)=0, 即1+111+a+-1+1-1-1+a=0, ∴a=-1. 答案:-1
角度二:单调性与奇偶性结合 3.(2016·刑台摸底考试)已知定义在(-1,1)上的奇函数 f(x),其
答案:(1, 2)
角度三:周期性与奇偶性结合 4.已知 f(x)是定义在 R 上的以 3 为周期的偶函数,若 f(1)<1,
f(5)=2aa+-13,则实数 a 的取值范围为________.
解析:∵f(x)是定义在 R 上的周期为 3 的偶函数, ∴f(5)=f(5-6)=f(-1)=f(1), ∵f(1)<1,f(5)=2aa+-13, ∴2aa+-13<1,即aa- +41<0, 解得-1<a<4. 答案:(-1,4)
(2)f(0)=0,f(1)=1,f(2)=0, f(3)=f(-1)=-f(1)=-1. 又∵f(x)是周期为 4 的周期函数, ∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=… =f(2012)+f(2 013)+f(2 014)+f(2 015)=0, ∴f(0)+f(1)+f(2)+…+f(2 015)=0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲 函数及其性质2018新题赏析
金题精讲 题一:函数sin 21cos x y x
=-的部分图象大致为( )
A B
C D
题二:若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – m ( )
A .与a 有关,且与b 有关
B .与a 有关,但与b 无关
C .与a 无关,且与b 无关
D .与a 无关,但与b 有关 题三:函数()f x 在(,)-∞+∞ 单调递减,且为奇函数.若(1)1f =-,则满足1(2)1-≤-≤f x 的x 的取值范围是___________.
题四:已知当[0,1]x ∈ 时,函数2(1)y mx =- 的图象与y m 的图象有且只有一个交点,则正实数m 的取值范围是___________.
题五:已知α∈R ,函数4()||f x x a a x
=+
-+在区间[1,4]上的最大值是5,则a 的取值范围是_______________. 题六:设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,2,(),x x D f x x x D
⎧∈=⎨∉⎩,其中集合1{|,}n D x x n n
+-==∈N ,则方程f (x )-lg x =0的解的个数是 .
第1讲函数及其性质2018新题赏析金题精讲
题一:C
题二:B
题三:[1,3]
题四:(0,1][3,)
+∞
题五:
9 (,]
2 -∞
题六:8。