几何证明中的截长补短法
八年级上册数学截长补短法

八年级上册数学截长补短法一、截长补短法的概念。
1. 定义。
- 截长补短法是几何证明题中一种常用的辅助线添加方法。
“截长”就是将一条较长的线段截成两段或几段,使得其中的一段或几段与已知线段相等;“补短”就是将一条较短的线段延长,使得延长后的线段与已知的较长线段相等。
- 例如,在三角形ABC中,要证明AB = AC+CD(假设AB>AC),“截长”的做法可以是在AB上截取AE = AC,然后去证明BE=CD;“补短”的做法可以是延长AC到F,使CF = CD,然后去证明AB = AF。
2. 适用情况。
- 当题目中出现证明两条线段之和等于第三条线段或者两条线段之差等于第三条线段等类型的问题时,常常考虑使用截长补短法。
- 比如在四边形或者三角形的边的关系证明中经常用到。
如在等腰三角形的相关证明中,如果要证明等腰三角形腰长与底边一部分线段的关系时,可能就需要用到这种方法。
二、截长补短法的解题步骤。
1. 截长法解题步骤。
- 第一步:观察图形和已知条件,确定要截的线段。
一般选择较长的那条线段进行截取。
- 第二步:根据已知条件截取合适的长度,使得截取后的线段与其他已知线段有一定的联系。
例如,在三角形中,如果有角平分线的条件,可能会截取与角平分线到角两边距离相等的线段。
- 第三步:连接截取点与其他点,构造全等三角形或者其他特殊的几何关系。
- 第四步:利用全等三角形的性质或者其他几何定理进行推理,得出要证明的结论。
- 例如:在三角形ABC中,AD是∠BAC的角平分线,∠C = 2∠B,求证:AB = AC+CD。
- 证明(截长法):在AB上截取AE = AC,连接DE。
- 因为AD是角平分线,所以∠EAD = ∠CAD。
- 在△AED和△ACD中,AE = AC,∠EAD = ∠CAD,AD = AD,根据SAS(边角边)定理,△AED≌△ACD。
- 所以∠AED = ∠C,CD = ED。
- 又因为∠C = 2∠B,∠AED = ∠B + ∠EDB,所以∠B = ∠EDB。
几何辅助线之截长补短 总结+例题

截长补短专题知识导航“截长补短”是几何证明题中十分重要的方法,通常用来证明几条线段的数量关系,即若题目条件或结论中含有“c b a =+”的条件,需要添加辅助线时可以考虑“截长补短”的方法。
截长法:在较长的线段上截取一条线段等于较短线段,再设法证明较长线段的剩余线段等于另外的较短线段。
补短法:①延长较短线段中的一条,使延长出来的线段等于另外的较短线段,然后证明两线段之和等于较长线段。
即延长a ,得到b ,证:c b a =+。
②延长较短线段中的一条,使延长后的线段等于较长线段,然后证明延长出来的部分等于另一条较短线段。
即延长a ,得到c ,证:a c b -=。
【核心考点1】角平分线相关截长补短1. 如图,BP 平分ABC ∠,D 为BP 上一点,E ,F 分别在BA ,BC 上,且满足DE DF =,若140BED ∠=︒,则BFD ∠的度数是( )A .40︒B .50︒C .60︒D .70︒【分析】作DG AB ⊥于G ,DH BC ⊥于H ,根据角平分线的性质得到DH DG =,证明Rt DEG Rt DFH ∆≅∆,得到DEG DFH ∠=∠,根据互为邻补角的性质得到答案.【解答】解:作DG AB ⊥于G ,DH BC ⊥于H ,D 是ABC ∠平分线上一点,DG AB ⊥,DH BC ⊥, DH DG ∴=,在Rt DEG ∆和Rt DFH ∆中, DG DHDE DF=⎧⎨=⎩, ()Rt DEG Rt DFH HL ∴∆≅∆,DEG DFH ∴∠=∠,又180DEG BED ∠+∠=︒, 180BFD BED ∴∠+∠=︒,BFD ∴∠的度数18014040=︒-︒=︒,故选:A .2. 已知,如图,ABC ∆中,2C B ∠=∠,12∠=∠,求证:AB AC CD =+.【分析】在AB 上截取AE AC =,由“SAS ”可证ADE ADC ∆≅∆,可证DE DC =,C AED ∠=∠,可证B BDE ∠=∠,可得BE DE DC ==,即结论可得. 【解答】证明:如图,在AB 上截取AE AC =,AE AC =,12∠=∠,AD AD =()ADE ADC SAS ∴∆≅∆DE DC ∴=,C AED ∠=∠, 2C B ∠=∠,AED B BDE ∠=∠+∠,B BDE ∴∠=∠ BE DE DC ∴==,AB AE BE =+, AB AC DC ∴=+。
“截长补短法”在一类几何证明题中的运用

“截长补短法”在一类几何证明题中的运用探究线段的和、差、倍、分是平面几何中常见的问题,“截长补短法”是解决这一类问题的一种常用的特殊方法,“截长”就是将题中的某条线段截成题中的几条线段之和;“补短”就是将题中某条线段延长(补上某线段),然后,证明它与题中某条线段相等。
例1 已知:△ABC是⊙O的内接等边三角形,点P为弧BC上一动点,求证:PA=PB+PC。
分析:直接证明PA=PB+PC,困难较大。
可用截长法:在PA上截取PD=PB,再证明PC=DA即可(或用补短法:在BP或CP上各补上与CP或BP相等的线段,再证明PA与这条线段相等)。
证明(截长法):在PA上截取PD=PB,连接BD,∵△ABC是圆O的内接等边三角形,∴ BA=BC,∠ABC=∠ACB=60°。
∵∠BPA=∠BCA,∴∠BPA=60°。
∴△BPD是等边三角形。
∴ BD=BP,∠DBP=60°。
∴∠ABD=∠CBP。
∴△ABD≌△CBP。
∴ PC=DA。
又∵ PA=PD+DA,∴ PA=PB+PC。
证明(补短法):延长BP到D使PD=PC,连接CD,∵△ABC是圆内接等边三角形,∴ AC=BC,∠ABC=∠ACB=60°。
∵∠BPA=∠BCA,∠ABC=∠APC,∴∠BPA=60°=∠APC。
∴∠CPD=60°。
∴△CPD是等边三角形。
∴ CD=CP ∠DCP=60°。
∴∠ACP=∠BCD。
∴△ACP≌△BCD。
∴ PA=BA。
又∵ BD=PD+BP,∴ PA=PB+PC。
例2 已知:四边形ABCD是☉O的内接正方形,点P为弧BC上一动点,求证:PA=PC+■PB。
分析一:要证明PA=PC+■PB,我们可以在PA上取AD=PC,连接BD,再想办法证明PD=■PB,问题可以解决。
证明:在AP上截取AE=PC,连接BE。
∵四边形ABCD是圆内接正方形,∴ AB=CB,∠BPA=45°。
一题多解|截长补短问题6种证明方法

一题多解|截长补短问题6种证明方法重庆一中初2019级九下半期考试数学试题24题如图, 在正方形ABCD中, 点M是边BC上一点, 连接AM, 过点C作CH⊥AM交AM的延长线于点H, 延长CH于点N, 连接MN、BN.若∠MAD=∠BMN, 求证: AM=MN+CN.分析题目条件:(1)正方形(2)∠MAD=∠BMN(3)CH⊥AM结论让证明: AM=MN+CN, 这是一道截长补短的题目。
解析思路(1)由CH⊥AM和正方形这两个条件可以得到一个几何模型: “8”字型倒角。
由上图可知: ∠BAM=∠BCN;(2)由∠MAD=∠BMN和正方形这两个条件, 可以得到:∠MAD=∠BMN=∠AMB;方法1: 在AM上截取MN'=MN, 连接CN'(1)首先证明△BMN≌△BMN', 得到BN=BN', ∠MBN=∠MBN';(2)再次证明△BCN≌△BCN', 得到CN=CN', ∠BCN=∠BCN'=∠BAM;(3)其次∠BAC=∠BAM+∠CAM=45°, ∠BCA=∠BCN'+∠ACN'=45°;所以∠CAM=∠ACN', 所以AN'=CN'(4)最后, 通过边之间的关系可以得到:AN'=CN'=CN, 所以AM=MN+CN方法2: 延长MN与AB相交于点G, 连接CG(1)首先∠AMB=∠GMB, MB⊥AG, 由“三线合一”知: MA=MG;(2)结合分析和第一步证明可知: ∠1=∠2=∠3(3)同理: ∠BGC=∠BGM+∠CGM=45°, ∠BCG=∠BCN+∠GCN=45°;所以∠NCG=∠NGC, 所以NG=NC; (4)最后, 通过边之间的关系可以得到:AM=MN+CN;方法3: 连接BD交AH于点E, 连接EC;(1)首先证明△ABE≌△CBE, 得到AE=CE;(2)再次证明△ECM≌△NCM, 得到EM=MN;(3)最后, 通过边之间的关系可以得到:AM=MN+CN;方法4: 在AB上截取BG=BM, 连接CG交AM于点P(1)首先证明△ABM≌△CBG, 得到∠BAM=∠BCG=∠BCN, AG=CM;(2)再次证明△APG≌△CPM, 得到AP=CP;(3)然后证明△PCM≌△NCM, 得到CN=CP=AP;(4)最后, 通过边之间的关系可以得到:AM=MN+CN;方法5: 延长AB与MN相交与点G, 延长CN与BG交于点Q(1)首先∠AMB=∠GMB, MB⊥AG, 由“三线合一”知: MA=MG;(2)△GBM≌△CBQ, 所以边之间的关系可以得到QG=CM;(3)△GNQ≌△CNM, 所以NG=NC, NQ=NM;(4)最后, 通过边之间的关系可以得到:AM=MN+CN;方法6: 延长AB与CN交于点G, 连接MG;(1)首先证明△ABM≌△CBG, 所以∠AMB=∠NMB=∠CGB;(2)同时△BGM为等腰RT△;(3)所以∠NGM=∠CGB-45°;∠NMG=∠BMN-45°;所以∠NGM=∠NMG;所以NG=NM;(4)最后, 通过边之间的关系可以得到:AM=MN+CN;。
几何证明的好方法——截长补短

几何证明的好方法——截长补短有一类几何题其命题主要是证明三条线段长度的“和”或“差”及其比例关系。
这一类题目一般可以采取“截长"或“补短”的方法来进行求解.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已知线段相等,然后证明其中的另一段与已知的另一段的大小关系.所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等。
然后求出延长后的线段与最长的已知线段的关系。
有的是采取截长补短后,使之构成某种特定的三角形进行求解.截长法:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
……补短法(1)延长短边.(2)通过旋转等方式使两短边拼合到一起。
……几种截长补短解题法类型我们大致可把截长补短分为下面几种类型;类型①a±b=c类型②a±b=kc类型③±a b c类型④c²=a·b对于类型①,可采取直接截长或补短,绕后进行证明。
或者化为类型②证明.对于②,可以将a±b与c构建在一个三角形中,然后证明这个三角形为特殊三角形,如等边三角形,等腰直角三角形,或一个角为30°的直角三角形等。
对于类型③,一般将截长或补短后的a±b与c构建在一个三角形中,与类型②相同。
实际上是求类型②中的k值。
对于类型④,将c²=a·b化为ca=bc的形式,然后通过相似三角形的比例关系进行证明。
在证明相似三角形的过程中,可能会用到截长或补短的方法。
例:B A在正方形ABCD中,DE=DF,DG⊥CE,交CA于G,GH⊥AF,交AD于P,交CE延长线于H,请问三条粗线DG,GH,CH的数量关系方法一(好想不好证)B A方法二(好证不好想)B AM例题不详解.(第2页题目答案见第3、4页)E(1)正方形ABCD中,点E在CD上,点F在BC上,∠EAF=45o.求证:EF=DE+BF(1)变形a正方形ABCD中,点E在CD延长线上,点F在BC延长线上,∠EAF=45o。
专题10:截长补短

专题10:截长补短专题10.1 截长补短--角平分线一.【知识要点】1.截长补短(截长法,补短法)是证明线段和差问题的基本方法:有一类几何题其命题主要是证明三条线段长度的“和”或“差”及其比例关系。
这一类题目一般可以采取“截长”或“补短”的方法来进行求解。
所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已知线段相等,然后证明其中的另一段与已知的另一段的大小关系。
所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等。
然后求出延长后的线段与最长的已知线段的关系。
有的是采取截长补短后,使之构成某种特定的三角形进行求解。
二.【经典例题】1、如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.2、如图,△ABC中,AB>AC,AD是∠BAC的平分线,点P是线段AD上异于A,D的任意一点,则AB+PC与AC+PB的大小关系是( )A. AB+PC>AC+PBB. AB+PC<AC+PBC.AB+PC=AC+PBD.不确定三.【练习】1.如图,过线段AB的两个端点作射线AM、BN,使AM∥BN,按下列要求画图并回答:画∠MAB、∠NBA的平分线交于E。
(12分)(1)∠AEB是什么角?(2)过点E作一直线交AM于D,交BN于C,观察线段DE、CE,你有何发现?(3)无论DC的两端点在AM、BN如何移动,只要DC经过点E,①AD+BC=AB;②AD+BC=CD 谁成立?并说明理由。
2.如图,P为△ABC内的点,连CP、BP、AP,∠PBA=30°,PC平分∠BCA,∠BPC =150°,求证:BC=AC+PA.一.【知识要点】1.截长补短(截长法,补短法)是证明线段和差问题的基本方法。
二.【经典例题】 1.已知:如图,△ABC 中,∠C=2∠B ,∠1=∠2,求证:AB=AC+CD .三、【练习】1.如图,△ABC 中,AD 是∠CAB 的平分线,且AB=AC+CD ,求证:∠C=2∠B2.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且∠BAE =2∠DAM .求证:AE =BC +CE .M ED CBA一.【知识要点】半角模型:若一个角等于整个角的一半,往往通过旋转将两个角搬到一起从而产生全等转化问题.有公共顶点,锐角等于较大角的一半,且组成这个较大角的两边相等,通过翻折或旋转,将角的倍分关系转化为角的相等关系,并进一步构造全等或相似三角形,弱化条件,变更载体,而构建模型,可把握问题的本质。
几何证明的好方法——截长补短

几何证明的好方法——截长补短几何证明是数学中一种非常重要的方法,常用于证明几何定理和推导几何性质。
在证明过程中,使用截长补短的方法可以帮助我们更加简化和明确证明的步骤。
截长补短是一种证明方法,即通过添加或截取一些辅助线或辅助点,从而改变原有图形的形状和性质,并且使得证明更加直观和明了。
下面以几何证明中常见的一些问题为例,介绍截长补短的应用方法。
一、证明两线段相等当我们需要证明两条线段相等时,可以考虑添加一条辅助线段,从而将问题转化为两个三角形的相等性质。
具体步骤如下:1.观察题目中给出的线段,设需要证明的线段为AB和CD。
2.根据题目的条件,找到一个与我们需要证明的线段相关的线段,设为EF。
3.添加辅助线段,连接AE和CF,构建出两个三角形,如△AEB和△CFD。
4.利用已知的几何定理或条件,证明两个三角形的相等性质,如SSS (边-边-边)相等性质或SAS(边-角-边)相等性质。
5.根据三角形的相等性质,得出AB=CD的结论。
通过添加辅助线段,将原来需要证明的问题转化为证明两个三角形的相等性质,更加直观和易于操作。
二、证明两角相等当我们需要证明两个角相等时,可以考虑添加一条辅助线段或辅助点,从而改变原有角的性质,并且使得证明更加明确和简洁。
具体步骤如下:1.观察题目中给出的角度,设需要证明的两个角为∠ABC和∠DEF。
2.根据题目的条件,找到一个与我们需要证明的两个角相关的角,设为∠GHI。
3.添加辅助线段或辅助点,改变原有角的性质。
如我们可以添加辅助线段IJ,使得∠GHI=∠ABC。
4.利用已知的几何定理或条件,证明新构建的几何形状的一些性质。
如垂直角、平行线、共线等。
5.根据已知的性质和构建的几何形状,得出∠ABC=∠DEF的结论。
通过添加辅助线段或辅助点,改变原有角的性质,并利用已知的几何定理和条件,可以更加明确和简洁地证明两个角的相等性质。
三、证明两图形全等当我们需要证明两个图形相等时,可以考虑添加一些辅助线段或辅助点,从而改变原有图形的形状和性质,并且将问题转化为相似三角形或平行四边形的性质。
截长补短法全等三角形

截长补短法全等三角形全等三角形是指两个三角形的对应边长和对应角度都相等的情况下,它们是完全相等的。
而截长补短法是一种通过截取和补充边长的方法来构造全等三角形的技巧。
在几何学中,截长补短法是一种常用的构造方法,可以用来证明两个三角形全等。
它的基本思想是通过截取和补充边长,使得两个三角形的对应边长和对应角度完全相等,从而达到全等的目的。
为了更好地理解截长补短法,我们可以通过一个具体的例子来说明。
假设我们需要证明两个三角形ABC和DEF全等,其中已知∠A=∠D,AB=DE,BC=EF。
根据截长补短法,我们可以进行如下的构造:1. 在BC的延长线上截取一段长度等于EF的线段,记为BC'。
2. 在AC'上截取一段长度等于DE的线段,记为AC。
通过以上的构造,我们可以得到以下的结论:1. 由于BC'=EF,且BC=EF,所以BC=BC',即三角形ABC和DEF的两条边相等。
2. 由于AC=DE,且∠A=∠D,所以三角形ABC和DEF的两个角相等。
3. 由于AB=DE,所以三角形ABC和DEF的第三条边相等。
根据截长补短法,我们可以得到三角形ABC和DEF全等的结论。
除了上述的例子,截长补短法还可以应用于更复杂的情况。
例如,当我们需要证明两个三角形全等时,已知两个角度相等并且其中一条边长相等,我们可以通过截长补短法来构造第二条边,从而得到全等的结果。
截长补短法在几何学中有着广泛的应用。
它不仅可以用来证明三角形的全等,还可以用来解决各种与全等三角形相关的问题。
通过灵活运用截长补短法,我们可以简化证明过程,提高证明的效率。
截长补短法是一种通过截取和补充边长的方法来构造全等三角形的技巧。
通过灵活运用截长补短法,我们可以简化证明过程,提高证明的效率。
在解决几何问题时,我们可以尝试使用截长补短法,从而更好地理解和应用全等三角形的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面几何中截长补短法的应用
授课内容:湘教版九年级上册《证明》授课教师:张羽茂授课时间:
讲评内容:证明中的“截长补短法”。
讲评目标:1、通过讲评,查漏补缺,解决几何证明中截长补短法的应用。
2、规范学生证明过程的书写格式。
3、通过讲评提高审题能力,总结解题方法和规律。
讲评重点:规范学生证明过程的书写格式
讲评难点:通过讲评,查漏补缺,解决图形中截长补短法的应用。
教具准备:黑板、学生作业本
讲评过程:
一、谈话导入
1、公布全班的整体成绩。
2、表扬进步的学生。
二、讲评
如图,在△ABC中,AD平分∠BAC,∠
B=2∠C,求证:AB+BD=AC.
方法一:(截长法)
方法二:(补短法)
三、课堂练习
1.已知:如图,在正方形ABCD 中,AB=4,
AE 平分∠BAC.求AB+BE 的长。
四、课后拓展
1.正方形ABCD 中,点E 在CD
上,点F 在BC 上,∠EAF=45。
求证:EF=DE+BF 。
五、板书设计
如图,在△ABC 中,AD 平分∠BAC,∠B=2∠C,求证:AB+BD=AC. 已知:如图,在正方形ABCD 中,AB=4,AE 平分∠BAC.求AB+BE 的长。
正方形ABCD 中,点E 在CD 上,点在BC 上,∠EAF=45。
求证:EF=DE+BF
六、教学反思与总结
截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想。
截长:1.过某一点作长边的垂线
2.在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
补短:1.延长短边
2.通过旋转等方式使两短边拼合到一起。
教师工作:
采集信息-----归类点评、指导纠借-----适时检测、落实纠错
学生操作:
作业分析---个体纠借---集体纠错---针对补偿---(依据答案)主动纠错---思考领悟---针对纠错---主动补偿---消除薄弱
教学流程:
作业分析——个体纠错——集体纠错——针对补偿——课堂小结。