2011年中考数学试题考点分类16 二次函数的应用题(含答案)

合集下载

二次函数考试题目及答案

二次函数考试题目及答案

二次函数考试题目及答案1. 已知二次函数y=ax^2+bx+c的图象开口向上,且经过点(1,0)和(3,0),求二次函数的解析式。

答案:由于二次函数的图象开口向上,所以a>0。

又因为函数图象经过点(1,0)和(3,0),可以设二次函数的解析式为y=a(x-1)(x-3)。

将点(2,-4)代入,得到-4=a(2-1)(2-3),解得a=4。

因此,二次函数的解析式为y=4(x-1)(x-3)。

2. 抛物线y=ax^2+bx+c与x轴交于点A(-1,0)和点B(3,0),且抛物线的顶点在直线y=-2x上,求抛物线的解析式。

答案:设抛物线的解析式为y=a(x+1)(x-3)。

由于顶点在直线y=-2x上,设顶点坐标为(m,n),则有n=-2m。

根据抛物线的对称性,顶点的横坐标m=(3-1)/2=1,所以n=-2。

将顶点坐标(1,-2)代入抛物线解析式,得到-2=a(1+1)(1-3),解得a=1。

因此,抛物线的解析式为y=(x+1)(x-3)。

3. 已知二次函数y=ax^2+bx+c的图象经过点(0,2)和(2,0),且对称轴为直线x=1,求二次函数的解析式。

答案:由于二次函数的对称轴为直线x=1,可以设二次函数的解析式为y=a(x-1)^2+k。

将点(0,2)代入,得到2=a(0-1)^2+k,即2=a+k。

又因为函数图象经过点(2,0),代入得到0=a(2-1)^2+k,即0=a+k。

解得a=-2,k=2。

因此,二次函数的解析式为y=-2(x-1)^2+2。

4. 抛物线y=ax^2+bx+c与x轴的交点为A(-2,0)和B(4,0),且抛物线经过点(1,3),求抛物线的解析式。

答案:设抛物线的解析式为y=a(x+2)(x-4)。

将点(1,3)代入,得到3=a(1+2)(1-4),解得a=-1/3。

因此,抛物线的解析式为y=-1/3(x+2)(x-4)。

5. 二次函数y=ax^2+bx+c的图象开口向下,且经过点(-1,0)和(3,0),求二次函数的解析式。

2011年中考分类13 二次函数(含答案)

2011年中考分类13 二次函数(含答案)

第13章 二次函数一、选择题3. (2011湖北鄂州,15,3分)已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( ) A .0B .1C .2D .34. (2011山东德州6,3分)已知函数))((b x a x y --=(其中a b >)的图象如下面右图所示,则函数b ax y +=的图象可能正确的是【答案】D5. (2011山东菏泽,8,3分)如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是A .a +b =-1B . a -b =-1C . b <2aD . ac <0【答案】B6. (2011山东泰安,20 ,3分)若二次函数y=ax 2+bx+c 的x 与y 的部分对应值如下表:X -7 -6 -5 -4 -3 -2 y-27-13-3353则当x =1时,y 的值为y x1 1O(A ) yx1-1 O (B ) yx-1 -1O(C ) 1-1xyO(D )第6题图A.5B.-3C.-13D.-27【答案】D9. (2011浙江温州,9,4分)已知二次函数的图象(0≤x≤3)如图所示.关于该函数在所给自变量取值范围内,下列说法正确的是( )A.有最小值0,有最大值3 B.有最小值-1,有最大值0C.有最小值-1,有最大值3 D.有最小值-1,无最大值【答案】D13. (2011台湾全区,28)图(十二)为坐标平面上二次函数c+y+=2的图形,且此axbx图形通(-1 , 1)、(2 ,-1)两点.下列关于此二次函数的叙述,何者正确?A .y的最大值小于0 B.当x=0时,y的值大于1C.当x=1时,y的值大于1 D.当x=3时,y的值小于0【答案】D15. (2011甘肃兰州,9,4分)如图所示的二次函数2y ax bx c=++的图象中,刘星同学观察得出了下面四条信息:(1)240->;(2)c>1;(3)2a-b<0;(4)a+b+c<0。

二次函数综合应用题(有答案)中考23题必练经典

二次函数综合应用题(有答案)中考23题必练经典

函数综合应用题题目分析及题目对学生的要求1.求解析式:要求学生能够根据题意建立相应坐标系,将实际问题转化成数学问题。

需要注意的是:(1) 不能忘记写自变量的取值范围(2) 在考虑自变量的取值范围时要结合它所代表的实际意义。

2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求学生能够熟练地对二次三项式进行配方,利用解析式探讨实际问题中的最值问题。

最值的求法:(1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。

(2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。

3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起来。

推荐思路:画出不等式左右两边的图象,结合函数图象求出x的取值范围。

备选思路一:先将不等号看做等号,求出x的取值,再结合图象考虑将等号还原为不等号后x的取值范围;备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。

这一问里需要注意的是在注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。

1/ 182 / 18一、求利润的最值(2010·武汉)23. (本题满分10分) 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。

当每个房间每天的房价每增加10元时,就会有一个房间空闲。

宾馆需对游客居住的每个房间每天支出20元的各种费用。

根据规定,每个房间每天的房价不得高于340元。

设每个房间的房价每天增加x 元(x 为10的正整数倍)。

(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。

(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000; (3) W= -101x 2+34x +8000= -101(x -170)2+10890,当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。

二次函数实际应用例题与解答,中考数学二次函数解决实际应用问题经典题型及答案解析

二次函数实际应用例题与解答,中考数学二次函数解决实际应用问题经典题型及答案解析

二次函数实际应用示例1.在排球家中,_队员站在边线发球,发球方向与边线垂直,球开始飞行时距地面1.9米,当球飞行距离为9米时达最大高度5.5米,已知球场长18米,问这样发球是否会直接把球打出边线?思路解析*先建立坐标系,如图,根据已知条件求出抛物线的解析式,再 求抛物线与x轴的交点坐标(横坐标为正),若这点的横坐标大于18,就可判断球出线.解:以发球员站立位置为原点,球运动的水平方向为x轴,建立直角坐标系伽图).由于其图象的顶点为(95执设二^函教关系式为y=a(x-9)、S.5(3丰0),由已知,这个函数的图象过(0,1.9),可以得到1.9=0(0-9)2+552解得a----7,45所以,所求二}欠函数的关系式是y=-M(x-9)2十5.5.45排球落在x轴上,则y=O,因此,-:(x・9)2+5.5=0.解方程,得*=9十半点0.1,X2=9-峪(负值,不合题意,舍去).所以,排球约在20」米远处落下,因为20.1>18,所以,这样发球会直接把球打出边线,2.某工厂大门是一抛物线型水泥建筑物,如图26.3-9所示,大门地面亮AB二4m,解:以队员甲投球站立位置为原点,球运动的水平方向为X轴,建立直角坐标系.由于球在空中的路径为抛物线,其图象的顶点为(4,4),设二}欠函数关系式为y=a(x-4)2-4(g0),由已知,这个函数的图象过(024),可以得到24=3(0-4)2+4.解得a=-0.1.所以所求二次函数的关系式是y=-0.1(x-4)2+4当x二7时,y=-0.1(x-4)2+4=3.1.因为3.1=3+0.1,0.1在篮球偏离球圈中心10cm以内.答:这个球能投中.综合•应用4.(2010安徽模拟)如图26.3-10,在平面直角坐标系中,二}欠函数y=ax2十c(a ")的图象过正方形ABO(:的三个顶点A、B、C,则ac的值是.思路解析:图中,正方形和抛物线都关于y轴对称,欲求ac的值,需求抛物线的解析式,点A、B、C都在抛物线上,它们的坐标跟正方形的边长有关,可设正方形的边长为2m「则A(0r2整m)、B(-皿阳7^所)、C(72w r把A、B的坐标值代入y=a*十c中,得a=四,c=2&,所以Imac=—X =2.2ni5.有一种螃蟹,从海上捕获后不放乔,最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种;SB〔000千克放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10千克螯死去,假定死蟹均于当天全部售出,售价是每千克20元⑴设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售点颔Q元,写出Q关于x的函数关系式;⑶该经销商将这批蟹放弄多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?思路解析:⑴市场价每天上升1元,则P=30+X;(2)销售总额为活蟹销售和死蟹销售两部分的和,活蟹数量每天减少10千克,死蟹数量跟放养天数成正比;(3)根据利润计算式表达,可没利润为w元,用函数瞄解决.答案:⑴P=30+x.(2)Q=(30+x)(1000-10x)+20-10x=-10x2+900x+30000.⑶设利润为w元,则w=(-10x2+900x+30000)-30-1000-400x=-10(x-Z5)2-»-6250.」.当x=25时,w有最大值,最大值为6250.答;经销商将这批蟹放养25天后出售,可获得最大?IJ润,6.将一条长为20cm的铁丝雪成两段,并以每一段铁丝的长度为周长做成f正方形.⑴要使这两个正方形的面积之和等于17cm2,那么这段铁丝磐成两段后的长:度分别是多少?(2)两个正方形的面积之和可能等于12cm?吗?若能,求出两段铁丝的长度;若不能,请说明理由.思路解析;用方程或函数考虑.设其中一段长为x cm,列出面积和的表达式,构成方程或函数,用它们的性质解决问题.方法一:⑴解:设剪成两段后其中一段为x cm,则另一段为(20-x)cm.由题意得(三沪+(竺1沪=17.4 4解得冶=16,x2=4.当为=16时,20-x=4;当x2=4时,20-x=16.答:这段铁丝雪成两段后的长度分别是16cm和4cm.(2)不能.理由是:(料牛)5.整理,得x<20x+104=0.•,A=b2-4ac=-16<0,.,此方程无配即不能雪成两段使得面积和为12新.方法二:剪成两段后其中一段为x cm,两个正方形面积的和为yen?.则y=弓尸+=;(x.10)2+12.5(0<x<20)・当y=17时,有上(乂-10)112.5=17.S解方程,得Xi=16,x2=4.当xi=16时,20*4;当X2二4时,20*16.答:这段铁丝剪成两段后的长度分别是16cm和4cm.(2)不能.理由是:函数y=|(x-10)2+1Z5中,a二;>0,当x=10时,函数有最小值,最小值88为12.5.•.・12v125,所以不能勇成两段使得面积和为12cm2.7.我市英山县某茶厂种植,春蕊牌“绿茶,由历任来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y(jt)与上市时间t庆)的关系可以近似地用如图①中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z齿)与上市时间t庆)的关系可以近似地用如图②的抛物肆图263-11①图26.3-11-②⑴写出图①中表示的市场销售单价y团)与上市时间t庆)(t>0)的函数关系式;(2)求出图②中表示的种梢成本单价z员)与上市时间t庆)(t>0)的函敬关系式;⑶认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价缺?(说明:市场铠售单价和种植成本单价的单位:元/500克.)思路解析:从图形中得出相关数据,用分段函薮表示市场销售单价,种植成本是一E碰物线,再分别计算各时段的纯收益单价,匕咸得出结论.解:(1)①当0冬X三120时,y=-|x-b160;②当120<xE50时,y=80;2③当150UX式180时,y=±x-+20.5(2)设z=a(x・110)」20,N OC1把X=6O,y=W代入,^=a(60-110)120解得。

二次函数的解析式(含答案)

二次函数的解析式(含答案)

二次函数的解析式一、选择题2.(2011泰安,20,3分)若二次函数y=ax2+bx+c的x与y的部分对应值如下表:则当x=1时,y的值为()A.5 B.-3 C.-13 D.-27解答:解:设二次函数的解析式为y=a(x-h)2+k,∵h=-3,k=5,∴y=a(x+3)2+5,把(-2,3)代入得,a=-2,∴二次函数的解析式为y=-2(x+3)2+5,当x=1时,y=-27.故选D.3.(2011福建莆田,5,4分)抛物母y=-6x2可以看作是由抛物线y=-6x2+5按下列何种变换得到()A.向上平移5个单位 B.向下平移5个单位C.向左平移5个单位 D.向右平移5个单位故选B.4.(2011天水,7,4)将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A、y=(x+1)2+4B、y=(x﹣1)2+4C、y=(x+1)2+2D、y=(x﹣1)2+2故选D.点评:二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).5.(2011•包头,12,3分)已知二次函数y=ax2+bx+c同时满足下列条件:对称轴是x=1;最值是15;二次函数的图象与x轴有两个交点,其横坐标的平方和为15﹣a,则b的值是()A、4或﹣30B、﹣30C、4D、6或﹣20分析:由在x=1时取得最大值15,可设解析式为:y=a (x ﹣1)2+15,只需求出a 即可,又与x 轴交点横坐标的平方和为15﹣a ,可求出a ,所以可求出解析式得到b 的值. 解答:解:由题可设抛物线与x 轴的交点为( 1﹣t ,0),( 1+t ,0),其中t >0, ∵两个交点的横坐标的平方和等于15﹣a 即:(1﹣t )2+(1+t )2=15﹣a , 可得t=213a -,由顶点为(1,15),可设解析式为:y=a (x ﹣1)2+15, 将(1﹣213a-,0)代入可得a=﹣2或15(不合题意,舍去) ∴y=﹣2(x ﹣1)2+15=﹣2x 2+4x+13,∴b=4.故选C . 三、解答题1. (2010广东佛山,21,8分)如图,已知二次函数y =ax 2+bx +c 的图象经过A (﹣1,﹣1)、B (0,2)、C (1,3); (1)求二次函数的解析式; (2)画出二次函数的图象.解答解:(1)根据题意,得123a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得,122a c c =-⎧⎪=⎨⎪=⎩,∴所求的解析式是y =﹣x 2+2x +2;(2)二次函数的图象如图所示:。

二次函数综合应用题(有答案)中考题必练经典(学有余力的看)

二次函数综合应用题(有答案)中考题必练经典(学有余力的看)

函数综合应用题题目分析及题目对学生的要求1. 求解析式:要求能够根据题意建立相应坐标系,将实际问题转化成数学问题。

需要注意的是:(1) 不能忘记写自变量的取值范围(需要用的前提下)(2) 在考虑自变量的取值范围时要结合它所代表的实际意义。

2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求能够熟练地对二次三项式进行配方,利用解析式探讨实际问题中的最值问题。

(一般式化为定点式)最值的求法:(1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。

(2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。

3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起来。

推荐思路:画出不等式左右两边的图象,结合函数图象求出x 的取值范围。

备选思路一:先将不等号看做等号,求出x 的取值,再结合图象考虑将等号还原为不等号后x 的取值范围;备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。

这一问里需要注意的是在注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。

一、求利润的最值1. (本题满分10分) 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。

当每个房间每天的房价每增加10元时,就会有一个房间空闲。

宾馆需对游客居住的每个房间每天支出20元的各种费用。

根据规定,每个房间每天的房价不得高于340元。

设每个房间的房价每天增加x 元(x 为10的正整数倍)。

(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。

(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000; (3) W= -101x 2+34x +8000= -101(x -170)2+10890, 当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。

2011全国中考数学真题解析120考点汇编二次函数的几何应用

(2012年1月最新最细)2011全国中考真题解析120考点汇编☆二次函数的几何应用一、选择题1.(2011•安顺)正方形ABCD边长为1,E、F、G、H分别为边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设小正方形EFGH的面积为y,AE=x.则y关于x的函数图象大致是()A、B、C、D、考点:二次函数综合题。

分析:由已知得BE=CF=DG=AH=1﹣x,根据y=S正方形ABCD﹣S△AEH﹣S△BEF﹣S△CFG﹣S△DGH,求函数关系式,判断函数图象.解答:解:依题意,得y=S正方形ABCD﹣S△AEH﹣S△BEF﹣S△CFG﹣S△DGH=1﹣4×(1﹣x)x=2x2﹣2x+1,即y=2x2﹣2x+1(0≤x≤1),抛物线开口向上,对称轴为x=,故选C.点评:本题考查了二次函数的综合运用.关键是根据题意,列出函数关系式,判断图形的自变量取值范围,开口方向及对称轴.二、填空题1.(2011山东日照,16,4分)正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM= 2 时,四边形ABCN的面积最大.考点:二次函数的最值;正方形的性质;相似三角形的判定与性质。

专题:应用题。

分析:设BM=x ,则MC=﹣4x ,当AM⊥MN 时,利用互余关系可证△ABM∽△MCN,利用相似比求CN ,根据梯形的面积公式表示四边形ABCN 的面积,用二次函数的性质求面积的最大值. 解答:解:设BM=x ,则MC=﹣4x , ∵∠AMN=90°,∴∠AMB=90°﹣∠NMC=∠MNC, ∴△ABM∽△MCN,则CN BM MC AB =,即CNxx =-44, 解得CN=4)4(x x -, ∴S 四边形ABCN =21×4×[4+4)4(x x -]=﹣21x 2+2x+8,∵﹣21<0,∴当x=)21(22-⨯-=2时,S 四边形ABCN 最大.故答案为:2.点评:本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.三、解答题1. (2011江苏淮安,26,10分)如图,已知二次函数y= -x 2+bx +3的图象与x 轴的一个交点为A (4,0),与y 轴交于点B .(1)求此二次函数关系式和点B 的坐标; (2)在x 轴的正半轴上是否存在点P ,使得△PAB 是以AB 为底的等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.考点:二次函数综合题。

2011中考数学真题试卷 二次函数精选

2011中考真题二次函数精选1.(2011.某某)抛物线y =-(x +2)2-3的顶点坐标是( ).(A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) . 2. (2011.)抛物线265y x x =-+的顶点坐标为( ) A. (3,4-)B. (3,4)C. (3-,4-)D. (3-,4)3.(2011.某某)下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是 ( ▲ )A .y=(x -2)2+1 B .y=(x+2)2+1 C .y=(x -2)2-3 D .y=(x+2)2-34.(2011.某某)已知抛物线2(0)y ax bx c a =++≠在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( ) A 、a>0 B b<0 C c<0 D a+b+c>05.(2011.株洲)某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线24y x x =-+(单位:米)的一部分,则水喷出的最大高度是 ( A ) A .4米B .3米C .2米D .1米6.(2011.某某荷泽)如图为抛物线2y ax bx c =++的图像,A B C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是 A. 1a b +=- B. 1a b -=-(第6题图)O xy1 2 3-1-1 1(第7题图)C. b<2aD. ac<07.(2011.某某威海)二次函数y =x 2-2x -3的图象如图所示。

当y <0时,自变量x 的取值X 围是A .-1<x <3B .x <-1C .x >3D .x <-3或x >38.(2011.某某)若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表:x—7 —6 —5 —4 —3 —2 y—27—13—3353则当1=x 时,y 的值为(A )5 (B )—3 (C )—13 (D )—279.(2011.某某)如图所示的二次函数2y ax bx c =++的图像中,X 星同学观察得出了下面四条信息: (1)24b ac -10.(2011.某某)一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面的函数关系式:h =-5(t -1)2+6,则小球距离地面的最大高度是A .1米B .5米C .6米D .7米11.(2011.某某)将抛物线2x y =的图象向上平移1个单位,则平移后的抛物线的解析式为第10题图x (米)y (米)▲.12.(2011.某某日照)如图,是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分, 给出下列命题 :①a+b+c=0;②b >2a ;③ax 2+bx +c =0的两根分别为-3和1; ④a -2b +c >0. 其中正确的命题是 .(只要求填写正确命题的序号)13.(2011.义乌)如图,一次函数y =-2x 的图象与二次函数y =-x 2+3x 图象的对称轴交于点B .(1)写出点B 的坐标▲;(2)已知点P 是二次函数y =-x 2+3x 图象在y 轴右侧..部分上的一 个动点,将直线y =-2x 沿y 轴向上平移,分别交x 轴、y 轴于C 、D 两点. 若以CD 为直角边的△PCD 与△OCD 相似,则点 P 的坐标为▲.14.(2011某某)如图所示,二次函数m x x y ++-=22的图象与x 轴的一个交点为A )0,3(,另一个交点为B ,且与y 轴交于点C . (1)求m 的值;(3分) (2)求点B 的坐标;(3分)(3)该二次函数图象上有一点),(y x D (其中0>x ,0<y ),OBC D使ABC ABD S S ∆∆=,求点D 坐标.(4分)15.(2011.某某)某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD 。

中考二次函数应用题含答案解析

中考二次函数应用题含答案解析二次函数应用题1.某书店以每本30元的价格购进一批图书进行销售,物价局根据市场行情规定这种图书的销售单价不低于42元且不高于62元.在销售中发现,该种图书每天的销售数量y (本)与销售单价x(元)之间存在某种函数关系,对应如表:销售单价x(元)43454749…销售数量y(本)54504642…(1)用你所学过的函数知识,求出y与x之间的函数关系式;(2)请问该种图书每天的销售利润w(元)的最大值是多少?(3)如果该种图书每天的销售利润必须不少于600元,试确定该种图书销售单价x的范围.2.冰墩墩是2022年北京冬季奥运会的吉祥物.冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50个.市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元.①直接写出w关于x的函数解析式,并求每周总利润的最大值;②当每周总利润大于1870元时,直接写出每个冰墩墩玩偶的售价.3.为响应江阴市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=x cm,面积为y m2如图所示).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲乙丙单价(元/棵)141628合理用地(m2/0.410.4棵)4.跳台滑雪是北京冬奥会的项目之一.某跳台滑雪训练场的横截面示意图如图并建立平面直角坐标系.抛物线2117:1126C y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出(即A 点坐标为(0,4)),滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到距A 处的水平距离为4米时,距图中水平线的高度为8米(即经过点(4,8)),求抛物线C 2的函数解析式(不要求写出自变量的取值范围);(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?5.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A ,B 两种型号的低排量汽车,其中A 型汽车的进货单价比B 型汽车的进货单价多2万元;花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同.(1)求A ,B 两种型号汽车的进货单价;(2)销售过程中发现:A 型汽车的每周销售量yA (台)与售价xA (万元台)满足函数关系yA =﹣xA +18;B 型汽车的每周销售量yB (台)与售价xB (万元/台)满足函数关系yB =﹣xB +14.若A 型汽车的售价比B 型汽车的售价高1万元/台,设每周销售这两种车的总利润为w 万元.①当A 型汽车的利润不低于B 型汽车的利润,求B 型汽车的最低售价?②求当B 型号的汽车售价为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?6.某商场出售A 商品,该商品按进价提高50%后出售,售出10件可获利100元.(1)求A 商品每件的进价和售价分别是多少元?(2)已知A 商品每星期卖出200件,为提高A 商品的利润,商场市场部进行了调查,获得以下反馈信息:信息一:每涨价1元,每星期会少卖出10件. 信息二:每降价1元,每星期可多卖出25件.①结合上述两条信息,A 商品售价为多少元时,利润最大?②某顾客带320元到商场购买A 、B 两种商品至少各1件(A 商品为第①小题中利润最大时的售价),B 商品售价为25元/个,现要求A 商品的数量不少于B 商品的数量.在不超额的前提下,如何购买这两种商品,使在总数量最多的情况下,总费用最少.7.为了助农增收,推动乡村振兴,某网店出售“碱水”面条.面条进价为每袋40元,当售价为每袋60元时,每月可销售300袋.为了吸引更多顾客,该网店采取降价措施.据市场调研反映,销售单价每降1元,则每月可多销售30袋.该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.设当每袋面条的售价降了x 元时,每月的销售量为y 袋.(1)求出y 与x 的函数关系式;(2)设该网店捐款后每月利润为w 元,则当每袋面条降价多少元时,每月获得的利润最大,最大利润是多少?8.用总长为24m 的篱笆围成如图的花圃(四边形ABEF 和四边形CDFE 均为矩形),现一面利用墙(墙的最大可用长度为10m ),设花圃的宽AB 为x m ,面积为S m 2.(1)求S 与x 的函数关系式及x 的取值范围;(2)要围成面积为45m 2的花圃,AB 的长是多少米?(3)AB 的长为多少米时,围成的花圃面积最大,请直接写出AB 的长度.9.某商店购进一批成本为每件30元的商品,销售单价为40元时,每天销售量为80件,经调查发现,销售单价每上涨1元,每天销售量减少2件.设该商品每天的销售量y (件)与销售单价x (元).(1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)求当销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?(3)若商店按单价不低于成本价且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润最大?最大利润是多少?(4)若商店要使销售该商品每天获得的利润不低于800元,试利用函数图象确定销售单价最多为多少元?10.我国铅球运动员巩立姣在2021年8月1日东京奥运会铅球比赛中以20.53米的成绩力压群雄夺得冠军.如图是在她的一次赛前训练中,铅球行进高度y (米)与水平距离x (米)之间存在的函数关系式是2119512123y x x =-++.求:(1)这次训练中,巩立姣推铅球的成绩是多少米;(2)这次训练中,铅球距离地面的最大高度为多少米.【参考答案】二次函数应用题1.(1)2140y x =-+(2)800元(3)4260x ≤≤【解析】【分析】(1)由表格可知y 与x 之间存在一次函数的关系,再用待定系数法求解即可;(2)先根据利润=(销售单价-进价)×销售数量得出w 和x 之间的关系式,再利用二次函数求最值得方法求解即可;(3)先根据(2)中函数关系式,求得当w =600时的x 值,再根据二次函数和一次函数的性质求解即可.(1)解:由表格可知:当销售单价每提高2元,则销售数量减少4件,故y 与x 之间存在一次函数的关系,设其解析式为:y kx b =+ ,将x =43,y =54;x =45,y =50代入解析式得:43544550k b k b +=⎧⎨+=⎩ , 解得:2140k b =-⎧⎨=⎩, 2140y x ∴=-+ ,由题意得:4260x ≤≤,2140y x ∴=-+(4260x ≤≤);(2)根据题意得∶(30)(2140)w x x =--+ ,整理得:22220042002(50)800w x x x =-+-=--+ ,20a < ,∴当x =50时,w 有最大值为800元,∴该种图书每天的销售利润的最大值是800元;(3)当w =600时,可得:26002(50)+800x , 解得:1260,40x x (舍) ,由二次函数的图象可得:当4260x ≤≤ 时,该种图书每天的销售利润不少于600元.【点睛】本题考查了待定系数法求一次函数解析式,一次函数与二次函数在实际问题中的应用,熟练掌握一次函数和二次函数的相关性质和应用是解题的关键.2.(1)每个冰墩墩玩偶的进价为12元(2)①w 关于x 的函数解析式为y =﹣10x 2+520x ﹣4800,每周总利润的最大值为1960元;②售价为24元或25元或26元或27元或28元【解析】【分析】(1)设每个冰墩墩玩偶的进价为x 元,根据题意列分式方程解答即可;(2)①根据w=销售量×每件的利润列出关系式,再通过配方得到最大值;②根据二次函数的性质解答即可.(1)解:设每个冰墩墩玩偶的进价为x 元, 由题意得,2400x+50()2400120%x =-, 解得x =12,经检验,x =12是原方程的解,答:每个冰墩墩玩偶的进价为12元;(2)解:①w =(x ﹣12)[200﹣10(x ﹣20)]=﹣10x 2+520x ﹣4800=﹣10(x ﹣26)2+1960, 答:w 关于x 的函数解析式为y =﹣10x 2+520x ﹣4800,每周总利润的最大值为1960元; ②由题意得,﹣10x 2+520x ﹣4800=1870,解得x =23或29,∵抛物线开口向下,∴当23<x <29时,每周总利润大于1870元,∴售价为24元或25元或26元或27元或28元.【点睛】本题考查了分式方程的应用,二次函数在实际生活中的应用以及一元二次方程的应用,最大销售利润的问题常利函数的增减性来解答,解题的关键是吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.3.(1)y =﹣2x 2+36x (9≤x <18)(2)丙种植物最多可以购买214棵,此时这批植物可以全部栽种到这块空地上.理由见解析【解析】【分析】(1)根据矩形的面积公式计算即可;(2)利用二次函数的性质求出y 的最大值,设购买了乙种绿色植物a 棵,购买了丙种绿色植物b 棵,由题意得1440016288600a b a b --++=(),可得71500a b +=,推出b 的最大值为214,此时2a =,再求出实际植物面积即可判断.(1)解:∵AB =x ,∴BC =36﹣2x ,∴y =x (36﹣2x )=﹣2x 2+36x ,∵0<36﹣2x ≤18,∴9≤x <18.∴y 与x 之间的函数关系式为y =﹣2x 2+36x (9≤x <18);(2)解:∵y =﹣2x 2+36x =﹣2(x ﹣9)2+162,∴x =9时,y 有最大值162(m 2),设购买了乙种绿色植物a 棵,购买了丙种绿色植物b 棵,由题意:14(400﹣a ﹣b )+16a +28b =8600,∴a +7b =1500,∴b 的最大值为214,此时a =2.需要种植的面积=0.4×(400﹣214﹣2)+1×2+0.4×214=161.2(m 2)<162m 2,∴丙种植物最多可以购买214棵,此时这批植物可以全部栽种到这块空地上.【点睛】本题考查二次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题.4.(1)213482y x x =-++ (2)运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米.【解析】【分析】(1)根据题意将点(0,4)和(4,8)代入C 2:y =-18x 2+bx +c 求出b 、c 的值即可写出C 2的函数解析式;(2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得:﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1,解出m 即可. (1)由题意可知抛物线C 2:y =﹣18x 2+bx +c 过点(0,4)和(4,8),将其代入得:2414488c b c =⎧⎪⎨-⨯++=⎪⎩, 解得:324b c ⎧=⎪⎨⎪=⎩, ∴抛物线C 2的函数解析式为:213482y x x =-++; (2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得: ﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1, 整理得:(m ﹣12)(m +4)=0,解得:m 1=12,m 2=﹣4(舍去),故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米.【点睛】本题考查了二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.5.(1)A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元(2)①B 型汽车的最低售价为414万元/台,②A 、B 两种型号的汽车售价各为13万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是23万元【解析】【分析】(1)设未知数,用未知数分别表示A 型汽车、B 型汽车的进价,然后根据花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同列分式方程求解即可.(2)①用利润公式:利润=(售价-进价)×数量,分别表示出A 、B 型汽车利润,然后列不等式求解即可;②B 型号的汽车售价为t 万元/台,然后将两车的总利润相加得出一个二次函数,求二次函数的最值即可.(1)解:设B 型汽车的进货单价为x 万元,根据题意,得:502x +=40x, 解得x =8,经检验x =8是原分式方程的根,8+2=10(万元),答:A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元;(2)设B 型号的汽车售价为t 万元/台,则A 型汽车的售价为(t +1)万元/台,①根据题意,得:(t +1﹣10)[﹣(t +1)+18]≥(t ﹣8)(﹣t +14),解得:t ≥414, ∴t 的最小值为414,即B 型汽车的最低售价为414万元/台, 答:B 型汽车的最低售价为414万元/台; ②根据题意,得: w =(t +1﹣10)[﹣(t +1)+18]+(t ﹣8)(﹣t +14)=﹣2t 2+48t ﹣265=﹣2(t ﹣12)2+23,∵﹣2<0,当t =12时,w 有最大值为23.答:A 、B 两种型号的汽车售价各为13万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是23万元.【点睛】本题考查了分式方程的应用,不等式的应用,二次函数的应用,理清数量关系,明确等量关系是解题关键.6.(1)A 商品每件的进价和售价分别是20,30元;(2)①A 商品售价为35元时,利润最大;②在总数量最多的情况下,购买A 、B 商品的数量都为5个时,总费用最少.【解析】【分析】(1)设进价为x 元,则售价为(150%)x +元,根据题意列方程求解即可;(2)①分商品涨价和降价两种情况,分别列出函数关系式,利用二次函数的性质求解即可;②设购买A 商品数量为m 个,B 商品数量为n 个,根据题意列出不等式组,求解即可.(1)解:设A 的进价为x 元,则售价为(150%)x +元,由题意可得:[(150%)]10100x x +-⨯=,解得20x(150%)30x +=, 答:A 商品每件的进价和售价分别是20,30元;(2)①设售价为x 元,获得利润为w 元当商品涨价时,则30x ≥,此时销售量为20010(30)50010x x -⨯-=-件,22(20)(50010)107001000010(35)2250w x x x x x =--=-+-=--+则当x =35时,w 最大,为2250,当商品降价时,则30x <,此时销售量为20025(30)95025x x +⨯-=-件22(20)(95025)2514501900025(29)2025w x x x x x =--=-+-=--+∴当x =29时,w 最大,为2025,∵2025<2250∴当x =35时,w 最大,为2250,答:A 商品售价为35元时,利润最大;②设购买A 商品数量为m 个,B 商品数量为n 个,由题意可得:003525320m n m n m n ≥⎧⎪>⎪⎨>⎪⎪+≤⎩且m ,n 为正整数, 当1m =,n =1时,352560m n +=,符合题意;当m =2,n =2时,3525120m n +=,符合题意;当m =3,n =3时,3525180m n +=,符合题意;当m =4,n =4时,3525240m n +=,符合题意;当m =5,n =5时,3525300m n +=,符合题意;当m =6,n =5时,3525335320m n +=>,不符合题意;综上,在总数量最多的情况下,购买A 、B 商品的数量都为5个时,总费用最少.【点睛】此题考查了一元一次方程的应用,二次函数的应用以及二元一次不等式组的应用,解题的关键是理解题意,找到题中的等量关系或不等式关系,正确列出方程、函数以及不等式. 7.(1)30030y x =+(2)当降价5元时,每月获得的利润最大,最大利润是6550元【解析】【分析】(1)由销售单价每降1元,则每月可多销售30袋,可知降了x 元时,销量增加30x 袋,由此可解;(2)根据每月利润=每袋利润×月销量-捐款,得到w 关于x 的函数表达式,改成顶点式求出函数的最大值即可.(1)解:由题意得,y 与x 之间的函数关系式为y =300+30x ;(2)解:由题意得,22(6040)(30030)200303005800=305)6550w x x x x x =--+-=-++--+(,∵300-<,∴当x =5时,w 有最大值,最大值为6550.答:当降价5元时,每月获得的利润最大,最大利润是6550元.【点睛】本题考查二次函数的实际应用,根据题意列出w 关于x 的函数表达式是解题的关键. 8.(1)S 与x 的函数关系式为S =﹣3x 2+24x ,x 值的取值范围是143≤x <8; (2)AB 的长为5m ;(3)当AB 的长是143m 时,围成的花圃的面积最大,最大面积是2140m 3【解析】【分析】(1)根据矩形的面积即可写出函数关系式;(2)根据(1)中所得函数关系式当S为45时,列出一元二次方程即可求出AB的长;(3)根据(1)中所得函数关系式化为顶点式,再根据自变量的取值范围即可求出最大面积.(1)解:根据题意,得:S=x(24﹣3x)=﹣3x2+24x,∵0<24﹣3x≤10,∴143≤x<8.答:S与x的函数关系式为S=﹣3x2+24x,x值的取值范围是143≤x<8;(2)解:根据题意,得:当S=45时,﹣3x2+24x=45,整理,得x2﹣8x+15=0,解得x1=3,x2=5,当x=3时,BC=24﹣9=15>10不成立,当x=5时,BC=24﹣15=9<10成立.答:AB的长为5m;(3)解:S=﹣3x2+24x=﹣3(x﹣4)2+48,∵143≤x<8,且抛物线的对称轴x=4,开口向下,∴当x=143时,S最大,最大值=﹣3(143﹣4)2+481403.答:当AB的长是143m时,围成的花圃的面积最大,最大面积是2140m3【点睛】本题考查了二次函数的应用、一元二次方程的应用,解决本题的关键是综合掌握二次函数的性质和一元二次方程的解法.9.(1)y=-2x+160(2)定价为55元时,每天的销售利润有最大值为1250(3)销售单价定为50元时,该超市每天的利润最大,最大利润1200元(4)70元【解析】【分析】(1)根据题意可得y与x的关系式;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)根据二次函数的关系式和单价的取值范围可得最大利润;(4)由题意可得:(x -30)(-2x +160)=800,再根据函数的图象可得答案.(1)依题意得,y =80-2(x -40)=-2x +160;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+,20-<,∴当55x =时,w 有最大值,此时,1250w =,(3)20-<,故当55x <时,w 随x 的增大而增大,而3050x ≤≤,∴当50x =时,w 有最大值,此时,1200w =,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(4)由题意得:(30)(2160)800x x --+≥,解得:4070x ≤≤,∴销售单价最多为70元.【点睛】此题主要考查了二次函数的应用,正确利用销量×每件的利润=w 得出函数关系式是解题关键.10.(1)20米 (2)14716米 【解析】【分析】(1)令y =0,得到关于x 的方程,解方程即可;(2)将二次函数关系式化为顶点式,再求铅球距离地面的最大高度.(1)解:令y =0,则21195012123x x =-++, 解得x 1=20,x 2=-1(舍去),∴巩立姣推铅球的成绩是20米;(2)2211951191471212312216y x x x ⎛⎫=-++=--+ ⎪⎝⎭, ∴当192x =时,y 有最大值,为14716, ∴铅球距离地面的最大高度为14716米. 【点睛】本题考查了二次函数的应用中函数式中变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.。

二次函数应用题有答案

二次函数应用题一、引言数学源于实际,数学的发展主要依赖于生产实践。

从数学应用的角度来处理数学、阐释数学、呈现数学,可以提高理论知识的可利用水平,增强理论知识可辨别性程度。

数学概念多是由实际问题抽象而来的,大多数都有实际背景。

尽管应用的广泛性是数学的一大特征,但常常被数学教材的严谨性和抽象性所掩盖,导致学生应用数学的意识薄弱,应用能力不强。

数学的“语言”供世界各民族所共有,是迄今为止惟一的世界通用的语言,是一种科学的语言。

科学数学化,社会数学化的过程,乃是数学语言的运用过程;科学成果也是用数学语言表述的,正如伽利略所说“自然界的伟大的书是用数学语言写成的”。

从而端正并加深对数学的认识,激发我们应用数学的自觉性、主动性。

二、例题例1、一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈。

已知篮圈中心到地面的距离为3.05米。

(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?简解:(1)由于抛物线的顶点是 (0,3.5),故可设其解析式为y=ax2+3.5。

又由于抛物线过(1.5,3.05),于是求得a=-0.2。

∴抛物线的解析式为y=-0.2x2+3.5。

(2)当x=-2.5时,y=2.25。

∴球出手时,他距地面高度是2.25-1.8-0.25=0.20(米)。

评析:运用投球时球的运动轨迹、弹道轨迹、跳水时人体的运动轨迹,抛物线形桥孔等设计的二次函数应用问题屡见不鲜。

解这类问题一般分为以下四个步骤:(1)建立适当的直角坐标系(若题目中给出,不用重建);(2)根据给定的条件,找出抛物线上已知的点,并写出坐标;(3)利用已知点的坐标,求出抛物线的解析式。

①当已知三个点的坐标时,可用一般式y=ax2+bx+c求其解析式;②当已知顶点坐标为(k,h)和另外一点的坐标时,可用顶点式y=a(x-k)2+h求其解析式;③当已知抛物线与x轴的两个交点坐标分别为(x1,0)、(x2,0)时,可用双根式y=a(x-x1)(x-x2)求其解析式;(4)利用抛物线解析式求出与问题相关的点的坐标,从而使问题获解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数2(二次函数的应用题)考点1:二次函数的数学应用题1. (2011湖北黄石,16,3分)初三年级某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m-i,n-j],并称a+b为该生的位置数。

若某生的位置数为10,则当m+n取最小值时,m·n的最大值为。

【答案】362.(2011浙江金华,23,10分)在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.(1)当n=1时,如果a=-1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O,①试求出当n=3时a的值;②直接写出a关于n的关系式.∴1421112 1.42a b a b =++⎧⎪⎨=++⎪⎩, 解得4,38.3a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线解析式为248133y x x =-++;……4分(3)①当n =3时,OC=1,BC =3, 设所求抛物线解析式为2y ax bx =+,过C 作CD ⊥OB 于点D ,则Rt △OCD ∽Rt △CBD , ∴13O DO C C DB C==,设OD =t ,则CD =3t , ∵222OD CD OC +=, ∴222(3)1t t +=,∴10t ==,∴C(10,, 又 B0),∴把B 、C 坐标代入抛物线解析式,得0101.1010a a ⎧=+⎪=+, 解得:a =3-; ……2分②a n=-. ……2分3. (2011山东日照,24,10分)如图,抛物线y=ax 2+bx (a 0)与双曲线y =xk 相交于点A ,B . 已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan ∠AOx =4. 过点A 作直线AC ∥x 轴,交抛物线于另一点C .(1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积;(3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.【答案】(1)把点B (-2,-2)的坐标,代入y =xk ,得:-2=2-k ,∴k =4.即双曲线的解析式为:y =x4 .设A 点的坐标为(m ,n )。

∵A 点在双曲线上,∴mn =4.…① 又∵tan ∠AOx =4,∴nm =4, 即m =4n .…②又①,②,得:n 2=1,∴n =±1.∵A 点在第一象限,∴n =1,m =4 , ∴A 点的坐标为(1,4)把A 、B 点的坐标代入y=ax 2+b x ,得:⎩⎨⎧-=-+=b a b a 242,4解得a =1,b =3;∴抛物线的解析式为:y=x 2+3x ;(2)∵AC ∥x 轴,∴点C 的纵坐标y =4, 代入y=x 2+3x ,得方程x 2+3x -4=0,解得x 1=-4,x 2=1(舍去). ∴C 点的坐标为(-4,4),且AC =5, 又△ABC 的高为6,∴△ABC 的面积=21×5×6=15 ;(3)存在D 点使△ABD 的面积等于△ABC 的面积. 过点C 作CD ∥AB 交抛物线于另一点D .因为直线AB 相应的一次函数是:y =2x +2,且C 点的坐标为(-4,4),CD ∥AB , 所以直线CD 相应的一次函数是:y =2x +12.解方程组⎩⎨⎧+=+=,122,32x y x x y 得⎩⎨⎧==,18,3y x 所以点D 的坐标是(3,18)4. (2011浙江温州,22,10分)如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标是(-2,4),过点A 作AB ⊥y 轴,垂足为B ,连结OA .(1)求△OAB 的面积;(2)若抛物线22y x x c =--+经过点A . ①求c 的值;②将抛物线向下平移m 个单位,使平移后得到的抛物线顶点落在△OAB 的内部(不包括△OA B 的边界),求m 的取值范围(直接写出答案即可).【答案】 解:(1) ∵点A 的坐标是(-2,4),AB ⊥y 轴, ∴AB =2,OB =4, ∴1124422O AB S AB O B ∆=⨯⨯=⨯⨯=(2)①把点A 的坐标(-2,4)代入22y x x c =--+, 得2(2)2(2)4c ---⨯-+=,∴c =4 ②∵2224(1)4y x x x =--+=-++,∴抛物线顶点D 的坐标是(-1,5),AB 的中点E 的坐标是(-1,4),OA 的中点F 的坐标是(-1,2), ∴m 的取值范围为l<m <3.5.(2011湖南益阳,20,10分)如图9,已知抛物线经过定点..A (1,0),它的顶点P 是y 轴正半轴上的一个动点..,P 点关于x 轴的对称点为P′,过P′ 作x 轴的平行线交抛物线于B 、D 两点(B 点在y 轴右侧),直线BA 交y 轴于C 点.按从特殊到一般的规律探究线段CA 与CB 的比值:(1)当P 点坐标为(0,1)时,写出抛物线的解析式并求线段CA 与CB 的比值;(2)若P 点坐标为(0,m )时(m 为任意正实数),线段CA 与CB 的比值是否与⑴所求的比值相同?请说明理由.【答案】解:⑴ 设抛物线的解析式为21(0)y ax a =+≠ ,抛物线经过()1,0A ,01,1a a ∴=+=- , 21y x ∴=-+.(),0,1P P x P ' 、关于轴对称且,()01P '∴点的坐标为,-P B ' ∥x 轴,1B ∴-点的纵坐标为,由21x x -=-=+1 解得)1B∴-,P B '∴=OA P B '// ,C P B '∴∆∽C O A ∆,2C A O A C BP B∴==='.⑵ 设抛物线的解析式为2(0)y ax m a =+≠()01A 抛物线经过,,0,a m a m ∴+=-=2y mx m ∴=-+.P B' ∥x 轴B m ∴-点的纵坐标为, 2y m mx m m =--+=-当时,()220m x ∴-=,0m > ,220x ∴-=,x ∴=,)Bm∴-,P B '∴=同⑴得2C A O A C BP B==='2C A m C B ∴=为任意正实数时,.6. (2011江苏连云港,25,10分)如图,抛物线212y x x a =-+与x 轴交于A ,B 两点,与y 轴交于点C ,其顶点在直线y =-2x 上.(1)求a 的值; (2)求A ,B 两点的坐标;(3)以AC ,CB 为一组邻边作□ABCD ,则点D 关于x 轴的对称点D´是否在该抛物线上?请说明理由.【答案】解:(1)∵二抛物线212y x x a =-+的顶点坐标为24(,)24b ac b aa--,∴x=1,∵顶点在直线y=-2x 上,所以y=-2,即顶点坐标为(1,-2),∴-2=12-1+a,即a =-324;(2)二次函数的关系式为21322y x x =--,当y=0时,213022x x --=,解之得:121,3x x =-=,即A (-1,0),B (3,0);(3)如图所示:直线BD//AC,AD//BC,因为A(-1.0),C(0,32-),所以直线AB 的解析式为3322y x =--,所以设BD 的解析式为32y x b =-+,因为B(3,0),所以b=92,直线BD 的解析式为:3922y x =-+,同理可得:直线AD 的解析式为:1122y x =+,因此直线BD 与CD 的交点坐标为:(2,32),则点D 关于x 轴的对称点D´是(2,-32),当x=2时代入21322y x x =--得,y=32-,所以D´在二次函数21322y x x =--的图象上.7.(2011湖南永州,24,10分)如图,已知二次函数c bx x y ++-=2的图象经过A (2-,1-),B (0,7)两点.⑴求该抛物线的解析式及对称轴; ⑵当x 为何值时,0>y ?⑶在x 轴上方作平行于x 轴的直线l ,与抛物线交于C ,D 两点(点C 在对称轴的左侧),过点C ,D 作x 轴的垂线,垂足分别为F ,E .当矩形CDEF 为正方形时,求C 点的坐标.【答案】解:⑴把A (2-,1-),B (0,7)两点的坐标代入c bx x y ++-=2,得⎩⎨⎧=-=+--7124c c b 解得⎩⎨⎧==72c b 所以,该抛物线的解析式为722++-=x x y ,又因为8)1(7222+--=++-=x x x y ,所以对称轴为直线1=x .⑵当函数值0=y 时,0722=++-x x 的解为221±=x ,结合图象,容易知道221221+<<-x 时,0>y . ⑶当矩形CDEF 为正方形时,设C 点的坐标为(m ,n ),则722++-=m m n ,即722++-=m m CF(第24题)因为C ,D 两点的纵坐标相等,所以C ,D 两点关于对称轴1=x 对称,设点D 的横坐标为p ,则11-=-p m ,所以m p -=2,所以CD=m m m 22)2(-=--因为CD=CF ,所以72222++-=-m m m ,整理,得0542=--m m ,解得1-=m 或5. 因为点C 在对称轴的左侧,所以m 只能取1-. 当1-=m 时,722++-=m m n =7)1(2)1(2+-⨯+--=4 于是,得点C 的坐标为(1-,4).8. (2011山东东营,23,10分)(本题满分10分)在平面直角坐标系中,现将一块等腰直角三角形ABC 放在第一象限,斜靠在两坐标轴上,且点A (0,2),点C (1,0),如图所示;抛物线22y ax ax =--经过点B 。

(1) 求点B 的坐标; (2) 求抛物线的解析式;(3)在抛物线上是否还存在点P (点B 除外),使ΔACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所以点P 的坐标;若不存在,请说明理由。

【答案】解:(1)过点B 作BD ⊥x 轴,垂足为D ,∵∠BCD+∠ACO=90° ,∠ACO+∠OAC =90°; ∴∠BCD=∠CAO ; 又∵∠BDC=∠COA=90°;CB=AC ,∴ △BDC ≌△CAO=90°,∴BD=OC=1,CD=OA=2;∴点B 的坐标为(3,1)(2)抛物线22y ax ax =--经过点B(3,1),则得1932a a =-- 解得12a =,所以抛物线的解析式为211222y x x =--(3)假设存在点P ,似的△ACP 是直角三角形:①若以AC 为直角边,点C 为直角顶点;则延长BC 至点P 1 使得P 1C=BC,得到等腰直角三角形ACP 1,过点P 1作P 1M ⊥x 轴,如图(1)。

相关文档
最新文档