北师大九下二次函数综合练习
二次函数的综合练习题3

【001】已知:抛物线y=ax2+bx+c 的对称轴为x=-1,与x轴交于A,B两 点,与y轴交于点C其中A(-3,0)、 C(0,-2) (1)求这条抛物线的函数表达 式. (2)已知在对称轴上存在一点P, 使得△PBC的周长最小.请求出点P 的坐标. (BC交x轴于点E,连接PD、 PE.设CD的长为m,△PDE的面积为 S.求S与m之间的函数关系式.试 说明S是否存在最大值,若存在, 请求出最大值;若不存在,请说明 理由.
【010】.如图,直线y=-½ x+2与x轴交于点B,与y轴交于点C, 已知二次函数的图象经过点B、C和点A(-1,0). (1)求B、C两点坐标; (2)求该二次函数的关系式; (3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称 轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存 在,直接写出P点的坐标;如果不存在,请说明理由; (4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线 相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大? 求出四边形CDBF的最大面积及此时E点的坐标.
【011】已知:m、n是方程x2﹣6x+5=0的两个实数根, 且m<n,抛物线 y=﹣x2+bx+c的图象经过点A(m,0)、B(0,n). (1)求这个抛物线的解析式; (2)抛物线与x轴的另一交点为C,抛物线的顶点为D, 求△BCD的面积; (3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物 线交于H点,若直线BC把△PCH分成面积之比为2:3的 两部分,请求出P点的坐标.
(4)点Q是抛物线上的动点,在x轴上是否存在点F,使以A,D, F,Q为顶点的四边形是平行四边形?若存在,直接写出点F的坐
北师大版九年级数学下册第二章 二次函数 压轴题综合复习练习题

(1)求抛物线L1的解析式;
(2)如图2,点P为x轴上一动点,连接AD,AC,CP,当∠PCA=∠ADB时,求点P的坐标;
(3)如图3,将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,点M( ,0),点N是L2上且位于第一象限内一动点,MN交L2于Q点,QR∥x轴分别交OF,ON于S,R,试说明:QS与SR存在一个确定的数量关系.
5.已知抛物线L:y=x2+bx+c经过点A(﹣1,0)和(1,﹣2)两点,抛物线L关于原点O的对称的为抛物线L′,点A的对应点为点A′.
(1)求抛物线L和L′的表达式;
(2)是否在抛物线L上存在一点P,抛物线L′上存在一点Q,使得以AA′为边,且以A、A′、P、Q为顶点的四边形是平行四边形?若存在,求出P点坐标;若不存在,请说明理由.
∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形,
则点C是RQ的中点,
在△BOC中,tan∠OBC= = =tan∠ROC= ,
则设RC=x=QB,则BC=2x,则RB= = x=BQ,
在△QRB中,S△RQB= ×QR•BC= BR•QK,即 2x•2x= KQ• x,解得:KQ= ,
11.如图,抛物线与x轴相交于点A(﹣3,0)、点B(1,0),与y轴交于点C(0,3),点D是第二象限内抛物线上一动点.F点坐标为(﹣4,0).
(1)求这条抛物线的解析式;并写出顶点坐标;
(2)当D为抛物线的顶点时,求△ACD的面积;
北师大版数学九年级下二次函数专题训练题

二次函数专题训练(一)1、已知:抛物线y=ax 2+6ax+c 与x 轴的一个交点为A (-2,0)①求抛物线与x 轴的另一个交点B 的坐标。
②点C 是抛物线与y 轴的交点,D 是抛物线上一点,且以AB 为一底的梯形ABCD 的面积为32,求此抛物线的解析式。
③ E 是第二象限内到x 轴、y 轴距离之比为3:1的点。
若E 在②中的抛物线上,且a >0, E 和A 在对称轴同侧。
问在抛物线的对称轴上是否存在P 点,使△APE 周长最小。
若存在,求出P 点的坐标,若不存在,请说明理由。
2、二次函数y=x 2-2(m -1)x -1-m 的图像与x 轴交于两点A (x 1,0)和B (x 2,0), x 1<0<x 2,与y 轴交于点C ,且满足COBO AO 211=- ①求这个二次函数的解析式②是否存在着直线y=kx+b 与抛物线交于点P 、Q ,使y 轴平分△CPQ 的面积。
若存在,求出k 、b 应满足的条件,若不存在,请说明理由。
3、如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,与y轴交于C点。
△ABC为直角三角形。
①求代数式ac的值②如果A O:BO=1:3,且2A O·CO=3,求此二次函数的解析式。
x新课标第一网4、已知抛物线y=x2-(2k-1)x+4k-6与x轴交于原点异侧两点A(x1,0)和B(x2,0), x1<x2,它的对称轴与x轴交于点N(x3,0),若A、B两点间的距离小于6。
①求k的取值范围②试判断:是否存在k的值,使过点A和点N能作圆与y轴切于点(0,1),或过点B和点N 能作圆与y轴切于点(0,1).若存在,找出所有满足条件的值,若不存在,请说明理由。
二次函数专题训练(二)1、如图:在直角坐标系中,以点A ( 3 ,0)为圆心,以2 3 为半径的圆与X 轴交于B 、C 两点,与y 轴交于点D.(1)、求D 点的坐标。
(2)、若B 、C 、D 三点在抛物线y=ax 2 +bx+c 上,求这条抛物线的解析式.(3)若⊙A 的切线交x 正半轴于点M,交y 轴的负半轴于点N,切点为P,且∠OMN=30° ,试判断直线MN 是否经过所求抛物线的顶点?并说明理由.2、已知:过点M (1,4)的抛物线y=ax 2+bx+c 与直线y =-a x +1相交于A 、P 两点,与y 轴相交于点Q ,点E 是线段PQ 的中点,点A 在x 轴的负半轴上,且OA 的长为2+a 1 ①、求直线和抛物线的解析式②、求△PQM 的外接圆的直径③、若点B (1+23,t )在△PQM 的外接圆上,直线QM 与直线EB 相交于T ,求∠QTB 的度数。
精品试题北师大版九年级数学下册第二章二次函数综合练习试题(含答案及详细解析)

北师大版九年级数学下册第二章二次函数综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、抛物线()20y ax bx c a =++<的图象过点3,0,对称轴为直线1x =,有下列四个结论:①0abc >;②0a b c -+=;③y 的最大值为3;④方程210ax bx c +++=有实数根.其中正确的为( )A .①②B .①③C .②③D .②④2、下列各式中,y 是x 的二次函数的是( )A .21y x =B .211y x x=++C .221y x =-D .y 3、若点A (1,y 1),B (2,y 2),C (m ,y 3)在抛物线y =()21a x c ++(a ≠0)上,且y 1<y 2<y 3,则m 的值不可能是( )A .5B .3C .-3D .-5 4、已知二次函数y =ax 2-2ax +1(a 为常数,且a >0)的图象上有三点A (-2,y 1),B (1,y 2),C (3,y 3),则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 2<y 1<y 3D .y 2<y 3<y 15、已知二次函数()20y ax bx c a =++≠的图象如图所示,则下列结论正确的是( )A .0abc <B .0a b c -+<C .420a b c -+>D .2b a >6、若抛物线27(4)1y x =-+-平移得到27y x =-,则必须( )A .先向左平移4个单位,再向下平移1个单位B .先向右平移4个单位,再向上平移1个单位C .先向左平移1个单位,再向下平移4个单位D .先向右平移1个单位,再向下平移4个单位7、在平面直角坐标系中,将抛物线y =x 2向上平移一个单位长度,再向右平移一个单位长度,得到的抛物线解析式是( )A .y =(x -1)2-1B .y =(x -1)2+1C .y =(x +1)2-1D .y =(x +1)2+18、下列关于二次函数()21622y x =-+的说法正确的是( ) A .当6x <时,y 随着x 的增大而增大B .当6x =时,y 有最小值为2C .该函数图象与x 轴有两个交点D .该函数图象可由抛物线212y x =向左平移6个单位,再向上平移2个单位得到 9、二次函数2(1)5y x =-++的最大值是( )A .5B .1-C .5-D .110、如图,抛物线y =ax 2+bx +c 交x 轴分别于点A (﹣3,0),B (1,0),交y 轴正半轴于点D ,抛物线顶点为C .下列结论:①2a ﹣b =0;②a +b +c =0;③当m ≠﹣1时,a ﹣b >am 2+bm ;④当△ABC 是等腰直角三角形时,a =﹣12;⑤若D (0,3),则抛物线的对称轴直线x =﹣1上的动点P 与B 、D 两点围成的△PBD 周长最小值为3. 其中,正确的个数为( )A .2个B .3个C .4个D .5个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线12y x =和抛物线224y x x =-+,当12y y <时,x 的取值范围是______.2、写出一个开口向上,并且与y 轴交于点(0,2)的抛物线的解析式________________.3、如图,“心”形是由抛物线26y x =-+和它绕着原点O ,顺时针旋转60°的图形经过取舍而成的,其中顶点C 的对应点为D ,点A ,B 是两条抛物线的两个交点,点E ,F ,G 是抛物线与坐标轴的交点,则AB =_______________.4、如果抛物线2y ax bx c =++(其中a 、b 、c 是常数,且a ≠0)在对称轴左侧的部分是下降的,那么a ______0.(填“<”或“>”)5、已知二次函数223y x x n =--+-(n 为常数),若该函数图像与x 轴只有一个公共点,则n =______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系xOy 中,一次函数y =﹣2x +m 与二次函数y =ax 2+bx +c 的图象相交于A ,B 两点,点A (1,4)为二次函数图象的顶点,点B 在x 轴上.(1)求二次函数的解析式;(2)根据图象,求二次函数的函数值大于0时,自变量x 的取值范围.2、如图,抛物线2y x bx c =-++经过()()1,0,3,0A B -两点,且与y 轴交于点C .(1)求该抛物线的函数表达式;(2)抛物线上是否存在点P ,使得BCP 是以BC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;(3)点M 为OC 的中点,若有一动点P 自点M 处出发,沿直线运动至x 轴上的某点(设为点E ),再沿直线运动至该抛物线对称轴上的某点(设为点F ),最后又沿直线运动至点C ,则点P 运动的总路程最短为______.(请直接写出答案)3、一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y (千克)与售价x (元/千克)满足一次函数关系,对应关系如下表:(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?4、小明对函数y=a|x2+bx|+c(a≠0)的图象和性质进行了探究.根据已知条件,列出了下表:(1)根据以上信息求出这个函数的表达式;(2)请将以上表格填全;(3)在给出的平面直角坐标系中,画出这个函数的图象;(4)在同一直角坐标系中画出函数y=-x+1的图象,结合函数图象,写出方程a|x2+bx|+c=-x+1的解:.5、已知二次函数y =x 2-2mx+2m 2-1(m 为常数).(1)若该函数图像与x 轴只有一个公共点,求m 的值;(2)将该函数图像沿过其顶点且平行于x 轴的直线翻折,得到新函数图像.①新函数的表达式为________________________,并证明新函数图像始终经过一个定点;②已知点A (-2,-1)、B (2,-1),若新函数图像与线段AB 只有一个公共点,请直接写出m 的取值范围.-参考答案-一、单选题1、D【分析】根据抛物线的对称性与过点3,0,可得抛物线与x 轴的另一个交点为()1,0,-可判断②,再依次判断,,a b c 可判断①,由对称轴为直线1x =,可判断③,由函数2y ax bx c =++与1y =-的图象有两个交点,可判断④,从而可得答案.【详解】解: 抛物线()20y ax bx c a =++<的图象过点3,0,对称轴为直线1x =,∴ 抛物线与x 轴的另一个交点为:()1,0,- 则0,a b c -+= 故②符合题意;∴ 抛物线与y 轴交于正半轴,则0,c >10,2b x a则0,b > 0,abc 故①不符合题意;对称轴为直线1x =,∴ 当1x =时,,y a b c 最大值 故③不符合题意;当210ax bx c +++=时,则21,ax bx c而函数2y ax bx c =++与1y =-的图象有两个交点,∴ 方程210ax bx c +++=有实数根.故④符合题意;综上:符合题意的是:②④故选D【点睛】本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断,,a b c 的符号以及代数式的符号,函数的最值,方程的根”是解本题的关键.2、C【分析】根据二次函数的定义依次判断.【详解】解:A 、21y x =不是二次函数,不符合题意;B 、211y x x=++,不是二次函数,不符合题意; C 、221y x =-,是二次函数,符合题意;D 、y =故选:C .【点睛】此题考查二次函数的定义:形如2(0)y ax bx c a =++≠的函数是二次函数,解题的关键是正确掌握二次函数的构成特点.3、C【分析】根据二次函数的解析式可得出二次函数的对称轴为x =-1,分两种情况讨论,根据图象上点的坐标特征,得到关于m 的不等式,解不等式即可得出结论.【详解】解:抛物线y =()21a x c ++的对称轴为x =-1,∵点A (1,y 1),B (2,y 2),C (m ,y 3)在抛物线y =()21a x c ++上,且y 1<y 2<y 3,∴当a <0,在对称轴的右侧y 随x 的增大而减小,点A 、B 都在对称轴右侧,而y 1<y 2,所以这种情况不存在;当a >0,则|m +1|>(2+1)=3,解得m <-4或m >2,m 的值不可能是-3.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是根据二次函数的性质找出关于m 的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据二次函数的性质结合二次函数的对称轴找出不等式是关键.4、D【分析】首先计算出抛物线的对称轴,然后结合开口方向,以及各点和对称轴的远近判断对应函数值大小即可.【详解】 解:由题意,抛物线对称轴为:直线12b x a=-=, ∵a >0,则该抛物线开口向上,∴离对称轴越近的点,对应的函数值越小,越远的点,对应函数值越大, ∵()113112-<-<--, ∴231y y y <<,故选:D .【点睛】本题考查比较二次函数值的大小,当抛物线开口向上时,离对称轴越近的点,对应的函数值越小,越远的点,对应的函数值越大;相反,当抛物线开口向下时,离对称轴越近的点,对应的函数值越大,越远的点,对应的函数值越小;掌握此方法是解题关键.5、D【分析】由抛物线开口向下,得到a 小于0,再由对称轴在y 轴左侧,得到a 与b 同号,可得出b <0,又抛物线与y 轴交于正半轴,得到c 大于0,可判断选项A ;由x =-1时,对应的函数值大于0,可判断选项B ;由x =-2时对应的函数值小于0,可判断选项C ;由对称轴大于-1,利用对称轴公式得到b >2a ,可判断选项D .【详解】解:由抛物线的开口向下,得到a <0,∵-2b a <0,由抛物线与y 轴交于正半轴,得到c >0,∴abc >0,故选项A 错误;∵x =-1时,对应的函数值大于0,∴a -b +c >0,故选项B 错误;∵x =-2时对应的函数值小于0,∴4a -2b +c <0,故选项C 错误;∵对称轴大于-1,且小于0,∴0>-2b a>-1,即0>b >2a ,故选项D 正确, 故选:D .【点睛】本题考查了二次函数图象与系数的关系,二次函数y =ax 2+bx +c (a ≠0),a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定;此外还要注意x =1,-1,2及-2对应函数值的正负来判断其式子的正确与否.6、B【分析】根据两抛物线的顶点坐标即可确定平移的方向与距离,从而完成解答.【详解】抛物线27(4)1y x =-+-的顶点为(-4,-1),而抛物线27y x =-的顶点为原点由题意,把抛物线27(4)1y x =-+-的顶点先向右平移4个单位,再向上平移1个单位,即可得到抛物线27y x =-的顶点,从而抛物线27(4)1y x =-+-先向右平移4个单位,再向上平移1个单位即可得到27y x =-.【点睛】本题考查了二次函数图象的平移,关键是抓住抛物线顶点的平移.7、B【分析】直接根据“左加右减,上加下减”的规律写出即可.【详解】解:∵向上平移两个单位长度,再向右平移一个单位长度后的顶点坐标,∴所得抛物线解析式是y =(x -1)2+1,故选:B .【点睛】本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.8、B【分析】根据二次函数的性质,增减性质可判断A ,函数最值可判断B ,函数图像的位置可判断C ,利用平移的方向可判断D .【详解】 解:∵二次函数()21622y x =-+ 102a =>抛物线开口向上, 当6x >时,抛物线y 随x 增大而增大,故选项A 不正确;当6x =时,y 有最小值为2,故选项B 正确;函数图像都在x 轴上方,与x 轴没有交点,故选项C 不正确; 该函数图象可由抛物线212y x =向右平移6个单位,再向上平移2个单位得到,故选项D 不正确. 故选B .【点睛】本题考查二次函数的性质,掌握二次函数的性质,以及平移法则上加下减,左加右减是解题关键.9、A【分析】根据二次函数的图象与性质求解即可.【详解】 解:该二次函数的顶点式为2(1)5y x =-++,且a =-1<0,∴该函数的图象开口向下,且顶点坐标为(1,5)-,∴该二次函数的最大值为5, 故选:A .【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的性质是解答的关键.10、C【分析】根据二次函数的性质,等腰直角三角形的性质,两点之间线段最短一一判断即可.【详解】解:∵抛物线y =ax 2+bx +c 交x 轴分别于点A (﹣3,0),B (1,0),∴a +b +c =0,故②正确;对称轴为直线x =312-+=﹣1, ∴﹣2b a =﹣1, ∴2a ﹣b =0,故①正确;由图象可知,当x =﹣1时,y 有最大值,最大值=a ﹣b +c ,∵m ≠﹣1,∴a ﹣b +c >am 2+bm +c ,∴a ﹣b >am 2+bm ,故③正确,∵A (﹣3,0),B (1,0),∴AB =4,∵△ABC 是等腰直角三角形时,∴C (﹣1,2),∴可设抛物线的解析式为y =a (x +1)2+2,把(1,0)代入得到a =﹣12,故④正确,如图,连接AD 交抛物线的对称轴于P ,连接PB ,此时△BDP 的周长最小,最小值=PD +PB +BD =PD +PA +BD =AD +BD ,∵AD BD ,∴△PBD 周长最小值为故选:C .【点睛】本题考查二次函数的性质,等腰直角三角形的性质,解题的关键是熟练掌握二次函数的性质、灵活运用数形结合思想,属于中考常考题型.二、填空题1、02x <<【分析】当1y <2y 时,一次函数的图像在二次函数的图像的下方,利用函数图像可以得到自变量的取值范围,即不等式的解集.【详解】解:联立方程组12224y x y x x =⎧⎨=-+⎩, 解得02,04x x y y ==⎧⎧⎨⎨==⎩⎩, 直线12y x =与抛物线224y x x =-+的交点为:()()0,0,2,4,当1y <2y 时,一次函数的图像在二次函数的图像的下方,所以此时:02x <<.故答案为:02x <<.【点睛】本题考查的是利用图像法求不等式的解集,掌握利用二次函数与一次函数的图像写不等式的解集是解题的关键.2、22y x =+(答案不唯一)【分析】根据题意,写出一个0,2a c >=的解析式即可【详解】解:根据题意,0,2a c >=故22y x =+符合题意故答案为:22y x =+(答案不唯一)【点睛】本题考查了二次函数各系数与函数图象之间的关系,掌握二次函数的图象的性质是解题的关键.3、【分析】连接OD ,做BP ⊥x 轴,垂足为M ,作AP ⊥y 轴,垂足为N ,AP 、BP 相交于点P .根据旋转作图和“心”形的对称性得到∠COB =30°,∠BOG =60°,设OM =m ,得到点B 坐标为()m ,把点B 代入26y x =-+,求出m ,即可得到点A 、B 坐标,根据勾股定理即可求出AB . 【详解】解:如图,连接OD ,做BP ⊥x 轴,垂足为M ,作AP ⊥y 轴,垂足为N ,AP 、BP 相交于点P . ∵点C 绕原点O 旋转60°得到点D ,∴∠COD =60°,由“心”形轴对称性得AB 为对称轴,∴OB 平分∠COD ,∴∠COB =30°,∴∠BOG =60°,设OM =m ,在Rt△OBM 中,BM =tan OM BOM ∠=,∴点B 坐标为()m , ∵点B 在抛物线26y x =-+上,∴26m -+=,解得12m m ==-∴点B 坐标为),点A 坐标为()6--,∴AP =BP =9,在Rt△ABP 中,AB ==故答案为:【点睛】本题考查了抛物线的性质,旋转、轴对称、勾股定理、三角函数等知识,综合性较强,理解题意,表示出点B 坐标是解题关键.4、>根据抛物线y=ax 2+bx+c 在对称轴左侧的部分是下降的,即可得到答案.【详解】解:∵y=ax 2+bx+c 在对称轴左侧的部分是下降的,∴函数图象的开口向上,∴a >0,故答案为:>.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.5、4【分析】根据抛物线与x 轴有一个交点,即Δ=0,即可求出n 的值.【详解】解:∵二次函数223y x x n =--+-图象与x 轴有且只有一个公共点,∴△=(−2)2−4×(-1)(3-n )=0,解得:n =4,故答案为:4.【点睛】本题主要考查二次函数与x 轴的交点个数,△=b 2−4ac 决定抛物线与x 轴的交点个数.△=b 2−4ac >0时,抛物线与x 轴有2个交点;△=b 2−4ac =0时,抛物线与x 轴有1个交点;△=b 2−4ac <0时,抛物线与x 轴没有交点.三、解答题1、(1)2y x 2x 3=-++;(2)13x(1)把点A 代入一次函数解析式,求出一次函数解析式和点B 的坐标,然后设出二次函数顶点式,把点B 代入即可求出二次函数解析式;(2)由图像可知,x 轴上面部分的二次函数值都大于0,根据二次函数与x 轴的交点特征求得二次函数与x 轴的交点即可得出答案.【详解】解:(1)∵点A (1,4)在一次函数y =﹣2x +m 上,∴把点A (1,4)代入y =﹣2x +m ,得,4=﹣2×1+m ,解得:m =6,∴一次函数解析式为:y =﹣2x +6,令y =0时,则﹣2x +6=0,解得:x =3,∴点B 的坐标为:(3,0),∵点A (1,4)为二次函数图象的顶点,点B 在x 轴上,∴设二次函数解析式为:()214y a x =-+, 把点B (3,0)代入()214y a x =-+,解得:a =﹣1,∴二次函数的解析式为:()221423y x x x =--+=-++; (2)由(1)求得二次函数解析式为2y x 2x 3=-++,令y =0,即2230x x -++=,解得:11x =-,23x =,由图像可知x 轴上面部分的二次函数值都大于0,且二次函数与x 轴交于点(﹣1,0)和(3,0), ∴自变量x 的取值范围:13x .【点睛】本题考查了一次函数的图像和性质,二次函数的图像和性质,根据顶点坐标设出二次函数顶点式是求出二次函数的关键.2、(1)2y x 2x 3=-++;(2)存在,点P 的坐标为(1,4)或(-2,-5);(3)32【分析】(1)利用待定系数法求解;(2)分两种情况:①当C 为直角顶点时,过点C 作CP ⊥BC ,交抛物线于点P ,过点P 作PH ⊥y 轴于H ,得到PH=CH ,设P (2,23a a a -++),则2233a a a =-++-,求出a 即可;②当B 为直角顶点时,过点B 作BP ⊥BC ,交抛物线于点P ,交y 轴于R ,过点P 作PG ⊥y 轴于G ,求出OB=OR =3,PG=RG ,设P (2,23a a a -++),则2233a a a -=---,求出a 即可;(3)当点E 与点O 重合时,点P 运动的路径最短,作点E 关于抛物线对称轴的对应点为T ,连接CT 交对称轴于点F ,则点P 运动的路径为ME+EF+CF ,由轴对称求出T (2,0),勾股定理求出CT ,即可求出点P 运动的路径ME+EF+CF =ME+CT 得到答案.【详解】解:(1)将()()1,0,3,0A B -代入2y x bx c =-++,得10930b c b c --+=⎧⎨-++=⎩,解得23b c =⎧⎨=⎩, ∴该抛物线的函数表达式是2y x 2x 3=-++;(2)存在.①当C 为直角顶点时,过点C 作CP ⊥BC ,交抛物线于点P ,过点P 作PH ⊥y 轴于H ,∵OB=OC ,∠BOC=90°,∴△BOC 为等腰直角三角形,∠BCO =45°,∴∠PCH =45°,∴△PHC 为等腰直角三角形,即PH=CH ,设P (2,23a a a -++),则2233a a a =-++-,解得121,0a a ==(舍去),此时2234a a -++=,∴P (1,4);②当B 为直角顶点时,过点B 作BP ⊥BC ,交抛物线于点P ,交y 轴于R ,过点P 作PG ⊥y 轴于G , ∵∠CBO =45°,∴∠GPR =∠OBR =45°,∴△PRG 为等腰直角三角形,∴OB=OR =3,PG=RG ,设P (2,23a a a -++),则2233a a a -=---,解得122,3a a =-=(舍去),此时2235a a -++=-,∴P (-2,-5);综上,点P 的坐标为(1,4)或(-2,-5);(3)当点E 与点O 重合时,点P 运动的路径最短,如图,作点E 关于抛物线对称轴的对应点为T ,连接CT 交对称轴于点F ,则点P 运动的路径为ME+EF+CF , ∵2223(1)4y x x x =-++=--+,∴抛物线的对称轴为直线x =1,∴T (2,0),∵C(0,3)∴CT =∴点P 运动的路径ME+EF+CF =ME+CT =32,故答案为:32【点睛】此题考查了二次函数的综合知识,待定系数法求函数解析式,抛物线的对称轴,直角三角形的性质,勾股定理,等腰直角三角形的性质,最短路径问题,综合掌握各知识点是解题的关键.3、(1)150y x =-+;(2)批发商若想获得4000元的利润,应将售价定为每千克70元;(3)产品每千克售价为85元时,批发商获得的利润w (元)最大.【分析】(1)设一次函数为,y kx b =+ 把50,100,60,90代入,再列方程组,解方程组即可;(2)由每千克商品的利润乘以销售的数量=4000,列方程,再解方程并检验即可得到答案;(3)由总利润等于每千克商品的利润乘以销售的数量,建立二次函数关系式为:2201501703000,w x x x x 再利用二次函数的性质可得答案.【详解】解:(1)由题意设:,y kx b =+把50,100,60,90代入可得:501006090k b k b +=⎧⎨+=⎩,解得:1,150k b 所以:y 与x 的函数关系式为:150,y x(2)由题意得:201504000,x x整理得:217070000,x x701000,x x解得:1270,100,x x该产品每千克售价不得超过90元,所以100x =不符合题意,取70,x即批发商若想获得4000元的利润,应将售价定为每千克70元.(3)由题意得:2201501703000,wx x x x 10,a w 有最大值, 当1708521x时, 85208515065654225,w 最大值所以产品每千克售价为85元时,批发商获得的利润w (元)最大.【点睛】本题考查的是利用待定系数法求解一次函数的解析式,一元二次方程的应用,列二次函数关系式,二次函数的性质,掌握“总利润等于每千克商品的利润乘以销售的数量”是解本题的关键.4、(1)y =|x 2﹣4x |﹣3;(2)见解析;(3)见解析;(4)1231,1,4x x x =-==【分析】(1)利用待定系数法求出解析式即可;(2)将x =-1,2,5分别代入解析式计算即可;(3)描点,用平滑的曲线连接即可;(4)结合图形写出交点横坐标即可;【详解】解:(1)将(0,-3)(1,0)(3,0)代入y =a |x 2+bx |+c 得301093c a b c a b c ⎧-=⎪=++⎨⎪=++⎩解得:143a b c =⎧⎪=-⎨⎪=-⎩ 所以表达式为y =|x 2﹣4x |﹣3(2)当x =-1时,y =2;当x =2时,y =1当x =5时,y =2(3)如图:(4)y =-x +1与y =|x 2﹣4x |﹣3图象的交点即为方程a |x 2+bx |+c =-x +1的解,由图可知交点为:(-1,2)(1,0)(4,-3)即答案为:1231,1,4x x x =-==【点睛】本题考查了待定系数法求解析式,二次函数的图像与性质以及二次函数与一元二次方程的关系解题的关键是掌握二次函数的图像与性质.5、(1)m 的值为±1;(2)①221y x mx =-+-,新函数过定点(0,1)-;②m 的取值范围为:1m 或1m <-或0m =.【分析】(1)△22(2)4(21)0m m =---=,即可求解;(2)①翻折后的抛物线的解析式的顶点不变,开口相反,可得新函数的表达式,当0x =时,1y =-,即可求解;②当0m >时,如上图实线部分,新函数图象与线段AB 只有一个公共点,则函数不过点B ,即1m ;当0m <时,同理可得:1m <-,即可求解.【详解】解:(1)△22(2)4(21)0m m =---=,1m ∴=±,即函数图象与x 轴只有一个公共点时,m 的值为±1;(2)①2222221()1y x mx m x m m =-+-=-+-,顶点坐标为2(,1)m m -,图像翻折后,顶点坐标不变,开口向下,1a =-,∴翻折后抛物线的表达式为:222()121y x m m x mx =--+-=-+-,故答案为:221y x mx =-+-;当0x =时,1y =-,故新函数过定点(0,1)-;②设定点为(0,1)C -,而点(2,1)A --、(2,1)B -,即点A 、B 、C 在同一直线上,新抛物线的对称轴为x m =,当0m >时,如上图实线部分,新函数图象与线段AB 只有一个公共点,则函数不过点B ,即1m , 当0m <时,同理可得:1m <-,从图象看,当0m =时,也符合题意,故m 的取值范围为:1m 或1m <-或0m =.【点睛】此题是抛物线的交点坐标题,主要考查抛物线与直线的交点,解本题的关键是画出图象,分析抛物线与线段AB 只有一个交点是解本题的难点.。
北师大版九年级下册数学第二章 二次函数含答案(高分练习)

北师大版九年级下册数学第二章二次函数含答案一、单选题(共15题,共计45分)1、已知点A(﹣3,7)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()A.(0,7)B.(﹣1,7)C.(﹣2,7)D.(﹣3,7)2、若将函数y=a(x+3)(x-5)+b(a≠0)的图象向右平行移动1个单位,则它与直线y=b的交点坐标是( )A.(-3,0)和(5,0)B.(-2,b)和(6,b)C.(-2,0)和(6,0)D.(-3,b)和(5,b)3、将抛物线向左平移3个单位得到的抛物线的解析式是( )A. B. C. D.4、若抛物线y=x2﹣2x﹣1与x轴的一个交点坐标为(m,0),则代数式m2﹣2m+2017的值为()A.2019B.2018C.2016D.20155、下列二次函数的图象中,其对称轴是x=1的为()A.y=x 2+2xB.y=x 2﹣2xC.y=x 2﹣2D.y=x 2﹣4x6、如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为()A.2B.4C.8D.167、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是()A.y=﹣(x﹣60)2+1825B.y=﹣2(x﹣60)2+1850C.y=﹣(x ﹣65)2+1900D.y=﹣2(x﹣65)2+20008、如图所示,桥拱是抛物线形,其函数的表达式为y=﹣x2,当水位线在AB位置时,水面宽 12m,这时水面离桥顶的高度为()A.3 mB. mC.4 mD.9 m9、函数y=2x2﹣8x+m的图象上有两点A(x1, y1),B(x2, y2),且|x1﹣2|>|x2﹣2|,则()A.y1<y2B.y1=y2C.y1>y2D.y1、y2的大小不确定10、在同一直角坐标系中,a≠0,函数y=ax与y=ax2的图象可能正确的有()A.0B.1C.2D.311、已知二次函数图象的对称轴为,其图象如图所示,现有下列结论:① ;② ;③ ;④;⑤ .正确的是()A.①③B.②⑤C.③④D.④⑤12、由二次函数,可知()A.其图象的开口向下B.其图象的对称轴为直线C.当x<3时,y随x的增大而增大D.其最小值为113、抛物线y=(x+2)2+1的对称轴是()A.直线x=-1B.直线x=1C.直线x=2D.直线x=-214、已知抛物线y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有两个同号的实数根D.没有实数根15、函数图像的大致位置如图所示,则ab,bc,2a+b,,,b2-a2 等代数式的值中,正数有()A.2个B.3个C.4个D.5个二、填空题(共10题,共计30分)16、如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为处达到最高,高度为,水柱落地处离池中心距离为,则水管的长度是________ .17、一个函数有下列性质:①它的图象不经过第四象限;②图象经过点(1,2);③当x>1时,函数值y随自变量x的增大而增大.满足上述三条性质的二次函数解析式可以是________(只要求写出一个).18、如图,菱形OABC的顶点O、A、C在抛物线上,其中点O为坐标原点,对角线OB在y轴上,且OB=2.则菱形OABC的面积是________.19、已知函数y=-3(x-2)2+4,当x=________时,函数取得最大值为________.20、已知函数的图象与两坐标轴共有两个交点,则的值为________.21、如果抛物线y=(2+k)x2﹣k的开口向下,那么k的取值范围是________ .22、抛物线y=x2﹣3x﹣15 与x 轴的一个交点是(m,0),则2m2﹣6m 的值为________.23、已知二次函数y=ax2(a≠0的常数),则y与x2成________ 比例.24、设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为________.25、若一个二次函数的二次项系数为﹣1,且图象的顶点坐标为(0,﹣3).则这个二次函数的表达式为________三、解答题(共5题,共计25分)26、已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴相交于A、B两点,且AB=2,求m的值.27、某宾馆有30个房间供游客住宿,当每个房间的房价为每天160元时,房间会全部住满。
北师大版数学九年级下第二章二次函数全章综合测评题含答案.doc

全章综合测评题一、选择题1. 二次函数y = -2(x-3)2+5图象的开口方向、对称轴和顶点坐标分別为()A. 开口向下,对称轴为x = -3,顶点坐标为(3, 5)B. 开口向下,对称轴x = 3,顶点坐标为(3, 5)C. 开口向上,对称轴x = -3,顶点坐标为(-3, 5)D. 开口向上,对称轴为x = 3,顶点坐标为(-3, 5)2. 二次函数y = ?+4x + 3的图彖可以由二次函数j = x 2的图象平移而得到,下列平移正确的是() A. 先向左平移2个单位, B. 先向左平移2个单位,C. 先向右平移2个单位,D. 先向右平移2个单位,3. 某种新型礼炮的升空高度处门)与飞行时间心)的关系式/? = -|r 2+20r + l,若这种礼炮在点火升空到 2最高点引爆,则从点火升空到引爆需要的时间为()A ・3$ B.4s C.5s D.6$ 4•二次函数y = ar 2+加+ c (心0)的图象如图所示,则下列说法不正确的是O则当兀=1时,y 的值为()A.5B.-3C.-13D. -27二、填空题 7. ____________________________________________ 已知二次函数y = -3兀$+6—1,请回答:①开口向 _________________________________________________________ ;②顶点坐标: _______ ;③对称轴: ______ ; ④当x ____ 时,y 随兀的增大而减小;⑤当兀= __________ 时,y 有 _____ 值 ____ ;⑥图象与丿轴的交点坐标为 ____ ;图彖与x 轴的交点坐标为 ______ 和 _______&将抛物线y = ^x 2沿x 轴方向向左平移2个单位,再沿y 轴方向向下平移5个单位,所得图象的函数 表达式是 9. 函数y =丄+ +2x + l 写成y = a^x-h)2 +k 的形式是 ____________10. 已知抛物线的对称轴为x = -l 与无轴、y 轴分别交于4(-3,0), c(l,-2),则抛物线的关系式是____ ,与兀轴的另一个交点的坐标是 ___________再向上平移1个单位 再向下平移1个单位 再向上平移1个单位 再向下平移1个单位C. c > 0D./?>0 X -7 -6 -5 -4 -3 -2y -27-13 -3 3 5 B. a > 05•若二次函数y = ax 2+bx + c 的x 玉y 的部分对应值如下表: 6 •在冋一直角坐标系中,函数y = mx + m 和y = -m 『+2x + 2 ( m M 常数,且〃 ?H0)的图象可能是() A.B. C ・ D ・11.如图,一桥拱呈抛物线形状,桥的最大高度CM是16米,跨度是40米,则距离CM 5米的桥高DE是_______ 米12. ____________________ 如图所示,把同样人小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第〃个图形 需要黑色棋子的个数是三、解答题 13•九年级数学兴趣小组经过市场调查,得到某种运动服每月的销售量与售价的相关信息如下表:售价(元/件) 100 110 120 130 • •• 月销售(件) 200 180 160 140• • • 己知该运动服的进价为每件60元,设售价为x 元(1) 请用含兀的式子表示① 销售该运动服每件的利润是 _______ 元(直接写出结果)② 月销售量是 ____ 件(直接写出结果)(2) 设销售该运动服的月利润为y 元,那么售价为多少时,当月的利润最大,最大利润是多少?14.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m 的围网在水库 中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为xm,矩形 区域ABCD 的面积为.yn?全章综合测评题答案一、LB 2. B3. B4. D5. D6. D二、7•①下 \ \\ 9 8. y = -(x + 20/-51 9 9. y = -(x + 2) -1L-1-I堤- , 习址大 ,M1 U 直>1 , ②③④⑤- 3 zf — 第2个图形 第3个图形 第4个图形 .DF tC10. y = |(x + l)2-|,(l, O)11. 1512. n 2 +2n三、13.解:(1)①兀一60;②-2x + 400(2)由题意得y = (x-60)(-2x + 400) = -2x 2 + 520x 一24000 = -2(x-l30)2 + 9800••・售价为130元时,当月的利润最大,最大利润是9800元14.解:(1) •・•三块矩形区域的面积相等,.••矩形AEFD 的面积是矩形BCEF 的面积的2倍 ・•・ AE = 2BE设 = 贝!| AE = 2a , /.+ 2x = 80 , :, a —x + 10 , 2a = ——x +20 y =——x + 20 x+ ——• I 2 丿 I 4(2) v y = -|x 2 + 30x = -|(x-20)2 + 300(0<x<40),且a =—扌<0 .•.当兀=20时,y 有最大值,最大值为300n? •"丁+ 10>0, g40 X = --X 2+30X4。
九年级数学下册 专项综合全练 二次函数试题 (新版)北师大版
二次函数一、选择题1.二次函数y=-x2+2x+4的最大值为( )A.3B.4C.5D.6答案 C y=-x2+2x+4=-(x-1)2+5,∵a=-1<0,∴当x=1时,y有最大值,最大值为5,故选C.2.将抛物线y=-2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )A.y=-2(x+1)2B.y=-2(x+1)2+2C.y=-2(x-1)2+2D.y=-2(x-1)2+1答案 C 将抛物线y=-2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为y=-2(x-1)2+2.故选C.3.已知二次函数y=ax2+bx+c(a<0)的自变量x与因变量y的部分图象如图2-7-1所示,当-5≤x≤0时,下列说法正确的是( )图2-7-1A.有最小值-5,最大值0B.有最小值-3,最大值6C.有最小值0,最大值6D.有最小值2,最大值6答案 B 根据题中图象知,当-5≤x≤0时,图象的最高点的坐标是(-2,6),最低点的坐标是(-5,-3),所以当x=-2时,y有最大值6;当x=-5时,y有最小值-3.二、填空题4.二次函数y=ax2+bx+c(a≠0)的x与y的部分对应值如下表:该函数图象的对称轴为直线x= ,x=2对应的函数值y= .答案1;-8解析根据题表知,点(-3,7)与点(5,7)关于对称轴对称,从而可确定抛物线的对称轴是直线x=1,根据抛物线上关于对称轴对称的一对对称点的纵坐标相等,得x=2对应的函数值y=-8.5.如图2-7-2,四边形ABCD是矩形,A、B两点在x轴的正半轴上,C、D两点在抛物线y=-x2+6x上,设OA=m(0<m<3),矩形ABCD的周长为l,则l与m之间的函数关系式为.图2-7-2答案l=-2m2+8m+12(0<m<3)解析由OA=m可知点D的横坐标为m,∵点D在抛物线y=-x2+6x上,∴点D的纵坐标为-m2+6m,即AD=-m2+6m.∵A(m,0),且抛物线的对称轴为直线x=3,根据抛物线的对称性可知B(6-m,0),∴AB=6-2m,∴矩形ABCD的周长l=2(AD+AB)=2(-m2+6m+6-2m)=-2m2+8m+12(0<m<3).5.如图2-7-3,在平面直角坐标系中,点A在抛物线y=x2-2x+2上运动,过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连接BD.则对角线BD的最小值为.图2-7-3答案 1解析∵四边形ABCD是矩形,∴AC=BD.当A在抛物线的顶点处时,AC最短,此时A(1,1),AC=1,∴BD=1,即对角线BD的最小值为1.三、解答题6.二次函数y=x2+bx+c的图象经过点(4,3),(3,0).(1)求b、c的值;(2)求该二次函数图象的顶点坐标和对称轴;(3)在所给的坐标系(图2-7-4)中画出二次函数y=x2+bx+c的图象.图2-7-4解析(1)由题意可得解得(2)由(1)可知二次函数的表达式是y=x2-4x+3=(x-2)2-1,∴其图象的顶点坐标是(2,-1),对称轴是直线x=2.(3)画出二次函数的图象如图所示.7.如图2-7-5,抛物线与直线y=x+3分别交于x轴和y轴上同一点,交点分别是点A和点C,且抛物线的对称轴为直线x=-2.(1)求抛物线与x轴的两个交点A、B的坐标;(2)试确定抛物线的表达式;(3)观察图象,请直接写出使二次函数的值小于一次函数的值的自变量x的取值范围.图2-7-5解析(1)∵点A在直线y=x+3上,当y=0时,x=-3,∴点A的坐标为(-3,0).∵抛物线的对称轴为直线x=-2,∴点A与点B关于直线x=-2对称,∴点B的坐标为(-1,0).(2)设抛物线的表达式为y=ax2+bx+c(a≠0).当x=0时,y=x+3=3,∴点C的坐标为(0,3).∵抛物线经过点C(0,3)和点A(-3,0),且抛物线的对称轴是直线x=-2,∴解得∴抛物线的表达式为y=x2+4x+3.(也可将点A、点B、点C的坐标依次代入表达式中求出a、b、c的值)(3)观察图象可知,当-3<x<0时,二次函数的值小于一次函数的值.8.某商家计划从厂家采购空调和冰箱两种产品共20台.空调的采购单价y1(元)与采购量x1(台)满足y1=-20x1+1 500(0<x1≤20,x1为整数);冰箱的采购单价y2(元)与采购量x2(台)满足y2=-10x2+1 300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1 200元,问该商家共有几种进货方案;(2)该商家分别以1 760元和1 700元的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大,并求最大利润.解析设空调的采购数量为x台,则冰箱的采购数量为(20-x)台.(1)根据题意可得解得11≤x≤15,因为x为整数,所以x可取的值为11,12,13,14,15,所以该商家共有5种进货方案.(2)设总利润为W(元),则W=(1 760-y1)x1+(1 700-y2)x2=1 760x-(-20x+1 500)x+1 700(20-x)-[-10(20-x)+1 300](20-x)=1 760x-(-20x+1 500)x+1 700(20-x)-(10x+1 100)(20-x)=30x2-540x+12 000=30(x-9)2+9 570,当x>9时,W随着x的增大而增大,因为11≤x≤15,所以当x=15时,W最大值=30×(15-9)2+9 570=10 650.所以采购空调15台时,获得的总利润最大,最大利润为10 650 元.9.如图2-7-6,在平面直角坐标系内,A(0,0),B(12,0),C(12,6),D(0,6).点Q沿DA边从点D 开始,向点A以1单位/秒的速度移动,点P沿AB边从点A开始,向点B以2单位/秒的速度移动,假设P、Q同时出发,t(单位:秒)表示移动的时间(0≤t≤6).图2-7-6(1)写出△PQA的面积S与t的函数表达式;(2)当t为何值时,△PQC的面积最小?最小值是多少?解析(1)AQ=6-t,AP=2t,∴S=(6-t)×2t=-t2+6t(0≤t≤6).(2)S△PQC=S梯形ABCQ-S△PBC-S△APQ=(6-t+6)×12-(12-2t)×6-(6-t)×2t=t2-6t+36=(t-3)2+27.∵0≤t≤6,∴当t=3时,S△PQC有最小值,最小值为27.10.一座拱桥的轮廓是抛物线型,如图2-7-7,拱高6 m,跨度为20 m,相邻两支柱间的距离均为5 m.(1)建立适当的直角坐标系,求抛物线的表达式;(2)求支柱EF的长度;(3)拱桥下面是双向行车道(正中间是一条宽为2 m的隔离带),其中的一条行车道能否并排通过宽2 m、高3 m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.图2-7-7解析(1)以AB所在直线为横轴,AB的垂直平分线为纵轴建立如图的平面直角坐标系,则A,B,C的坐标分别是(-10,0),(10,0),(0,6).由此设抛物线的表达式为y=ax2+6(a≠0),将点B的坐标代入,得100a+6=0,解得a=-.所以抛物线的表达式是y=-x2+6(-10≤x≤10).(2)易知点F的横坐标为5,于是y F=-×52+6=4.5.所以支柱EF的长度是10-4.5=5.5(m).(3)如图,设DN为隔离带的宽,NG是三辆汽车的宽度和,则点G的坐标是(7,0). 过点G作GH⊥AB交抛物线于点H,则y H=-×72+6=3.06>3.所以一条行车道能并排通过这样的三辆汽车.。
2022-2023学年北师大版九年级数学下册《第2章二次函数》单元综合达标测试题(附答案)
2022-2023学年北师大版九年级数学下册《第2章二次函数》单元综合达标测试题(附答案)一.选择题(共10小题,满分30分)1.在下列关于x的函数中,一定是二次函数的是()A.y=﹣3x B.xy=2C.y=ax2+bx+c D.y=2x2+52.下列各点中,在抛物线y=x2﹣4上的是()A.(1,3)B.(﹣1,﹣3)C.(1,﹣5)D.(﹣1,﹣5)3.抛物线y=﹣(x﹣5)2+3的顶点坐标是()A.(﹣5,3)B.(5,3)C.(3,5)D.(5,﹣3)4.将抛物线y=x2﹣3向左平移2个单位后得到的抛物线表达式是()A.y=x2﹣1B.y=x2﹣5C.y=(x+2)2﹣3D.y=(x﹣2)2﹣3 5.已知b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示:根据图象分析,a的值等于()A.﹣2B.﹣1C.1D.26.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加()A.1m B.2m C.(2﹣4)m D.(﹣2)m 7.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y28.如图,抛物线y1=a(x+1)2﹣5与抛物线y2=﹣a(x﹣1)2+5(a≠0)交于点A(2,4),B(m,﹣4),若无论x取任何值,y总取y1,y2中的最小值,则y的最大值是()A.4B.5C.2D.19.已知函数y=,若使y=k成立的x值恰好有两个,则k的值为()A.﹣1B.1C.0D.±110.抛物线y=ax2+bx+c的顶点坐标(﹣2,3),抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,有下列说法:①4a﹣b=0;②a﹣b+c=0;③若(﹣4,y1),(1,y2)是抛物线上的两点,则y1>y2;④b2+3b=4ac.其中正确的个数有()A.4B.3C.2D.1二.填空题(共7小题,满分21分)11.已知抛物线y=(a+3)x2开口向下,那么a的取值范围是.12.请写出一个开口向下,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.13.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是.14.抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是直线x=2,且它的最高点在直线y=x+2上,则m=,n=.15.二次函数y=ax2+bx+c的部分对应值如下表:x…﹣3﹣20135…y…70﹣8﹣9﹣57…则当x=2时对应的函数值y=.16.如图在平面直角坐标系中,二次函数y=x2+mx+2的图象与x轴交于A、B两点,与y 轴交于C点,其顶点为D,若△ABC与△ABD的面积比为3:5,则m值为.17.如图,在平面直角坐标系中,直线y=x+3交x轴于点A,交y轴于点B,抛物线y=﹣x2+2x+1与y轴交于C点,若点E在抛物线的对称轴上移动,点F在直线AB上移动,则CE+EF的最小值为.三.解答题(共9小题,满分69分)18.用配方法把二次函数y=x2﹣4x+5化为y=a(x﹣m)2+k的形式,并写出该函数图象的顶点坐标.19.已知抛物线y=ax2+bx+1经过点(1,﹣2),(﹣2,13).(1)求a,b的值;(2)若(5,n),(m,n)是抛物线上不同的两点,求m的值.20.已知二次函数的图象经过点A(﹣1,0)和点B(3,0),且有最小值为﹣2.(1)求这个函数的解析式;(2)函数的开口方向、对称轴;(3)当y>0时,x的取值范围.21.已知函数y=(n+1)x m+mx+1﹣n(m,n为实数)(1)当m,n取何值时,此函数是我们学过的哪一类函数?它一定与x轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n>﹣1,那么:①当x<0时,y随x的增大而减小,请判断这个命题的真假并说明理由;②它一定经过哪个点?请说明理由.22.如图所示,抛物线y=x2+bx+c与x轴交于点A和点B(5,0),与y轴交于点C(0,5).(1)求抛物线的表达式;(2)若点M是抛物线在x轴下方的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值.23.如图1,地面OB上两根等长立柱AO,CB之间悬挂一根近似成抛物线y=x2﹣x+3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AO为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;(3)保持(2)中点N的位置不变,将立柱MN的长度提升为3米,发现抛物线F1和F2的形状和大小都一样,测得抛物线F1和F2的最低点到地面的高度相差0.5米,求抛物线F1对应函数的二次项系数.24.已知二次函数y=x2+px+q图象的顶点M为直线y=x与y=﹣x+m的交点.(1)用含m的代数式表示顶点M的坐标;(2)若二次函数y=x2+px+q的图象经过点A(0,3),求二次函数的表达式;(3)当m=6且x满足t﹣1≤x≤t+3时,二次函数y=x2+px+q的最小值为2,求t的取值范围.25.某商品的进价为每件20元,售价为每件30元,每月可卖出180件.如果该商品的售价每上涨1元,就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x 元(x为整数)时,月销售利润为y元.(1)求y与x之间的函数解析式,并直接写出自变量x的取值范围.(2)当每件商品的售价定为多少元时,可获得的月利润最大?最大月利润是多少?26.在平面直角坐标系中,点A(0,4),点B(2m,4)(m为常数,且m>0),将点A绕线段AB中点顺时针旋转90°得到点C.经过A、B、C三点的抛物线记为G.(1)当m=2时,求抛物线G所对应的函数表达式.(2)用含m的式子分别表示点C的坐标和抛物线G所对应的函数表达式.(直接写出即可)(3)当抛物线G在直线x=﹣2和x=2之间的部分(包括边界点)的最高点与最低点的纵坐标之差为8时,直接写出m的取值范围.(4)连结AC,点R在线段AC上,过点R作x轴的平行线与抛物线G交于P、Q两点,连结AP、AQ.当点R将线段PQ分成1:3两部分,且△APQ的面积为时,求m的值.参考答案一.选择题(共10小题,满分30分)1.解:A、y=﹣3x是一次函数,不是二次函数,故此选项不符合题意;B、xy=2不是二次函数,故此选项不符合题意;C、a=0时不是二次函数,故此选项不符合题意;D、y=2x2+5是二次函数,故此选项符合题意;故选:D.2.解:当x=1时,y=x2﹣4=﹣3;当x=﹣1时,y=x2﹣5=﹣3;∴点(﹣1,﹣3)在抛物线上,点(1,3)、(1,﹣5)、(﹣1,﹣5)都不在抛物线上.故选:B.3.解:抛物线y=﹣(x﹣5)2+3的顶点坐标是(5,3).故选:B.4.解:将抛物线y=x2﹣3向左平移2个单位后得到的抛物线表达式是y=(x+2)2﹣3.故选:C.5.解:因为前两个图象的对称轴是y轴,所以﹣=0,又因为a≠0,所以b=0,与b>0矛盾;第三个图的对称轴﹣>0,a>0,则b<0,与b>0矛盾;故第四个图正确.由于第四个图过原点,所以将(0,0)代入解析式,得:a2﹣1=0,解得a=±1,由于开口向下,a=﹣1.故选:B.6.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,可求出OA和OB为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,比原先的宽度当然是增加了2﹣4.故选:C.7.解:∵函数的解析式是y=﹣(x+1)2+a,如右图,∴对称轴是直线x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选:A.8.解:由题意可知:y的函数图象如图所示:观察函数图象可知:点A为函数y的图象的最高点,∴y的最大值为4.故选:A.9.解:函数y=的图象如图:根据图象知道当y=﹣1或y=1时,对应成立的x有恰好有2个,则k的值为±1.故选:D.10.解:∵抛物线y=ax2+bx+c的对称轴是直线x=﹣2,∴﹣=﹣2,∴4a﹣b=0,因此①正确;∵抛物线的对称轴为x=﹣2,图象与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,∴抛物线与x轴的另一个交点在点(﹣1,0)和点(0,0)之间,∴当x=﹣1时,y=a﹣b+c>0,因此②不正确;∵|﹣4﹣(﹣2)|<|1﹣(﹣2)|,∴(﹣4,y1)到对称轴的水平距离小于(1,y2)到对称轴的水平距离,且抛物线开口向下,∴y1>y2,故③正确;∵抛物线的顶点坐标为(﹣2,3),∴=3,∴b2+12a=4ac,∵4a﹣b=0,∴b=4a,∴b2+3b=4ac,故④正确;∴正确的有:①③④,故选:B.二.填空题(共7小题,满分21分)11.解:∵抛物线y=(a+3)x2开口向下,∴a+3<0,∴a<﹣3.故答案为:a<﹣3.12.解:∵抛物线开口向下,∴a<0,令a=﹣1,设抛物线的关系式为y=﹣(x﹣h)2+k,∵对称轴为直线x=2,∴h=2,把(0,3)代入得,3=﹣(0﹣2)2+k,解得,k=7,∴抛物线的关系式为:y=﹣(x﹣2)2+7,故答案为:y=﹣(x﹣2)2+7(答案不唯一).13.解:抛物线的对称轴为直线x=﹣=﹣m,∵a=1>0,∴抛物线开口向上,∵当x>2时,y的值随x值的增大而增大,∴﹣m≤2,解得m≥﹣2.故答案为:m≥﹣2.14.解:∵抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是直线x=2,且它的最高点在直线y =x+2上,∴,当x=2时,y=×2+2=3,∴m=﹣1,该抛物线的顶点坐标为(2,3),∴3=[(﹣1)2﹣2]×22﹣4×(﹣1)×2+n,解得,n=﹣1,故答案为:﹣1,﹣1.15.解:观察表格可知,当x=﹣3或5时,y=7,根据二次函数图象的对称性,(﹣3,7),(5,7)是抛物线上两对称点,对称轴为直线x==1,顶点(1,﹣9),根据对称性,x=2与x=0时,函数值相等,都是﹣8.16.解:∵y=x2+mx+2=(x+)2+2﹣,∴顶点D(﹣,2﹣),C(0,2),∴OC=2,∵S△ABC=AB•OC=AB×2=AB,S△ABD=AB•|2﹣|,△ABC与△ABD的面积比为3:5,∴AB:AB•|2﹣|=3:5,解得:m=﹣.故答案是:﹣.17.解:如图,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,∴CE+EF=C′E+EF,∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,直线AB的解析式为y=x+3,∵C(0,1),∴C′(2,1),∴直线C′F的解析式为y=﹣x+,联立直线C′F和直线AB得:x+3=﹣x+,解得x=,代入解得y=,∴F(,),∴C′F==,即CE+EF的最小值为.故答案为.三.解答题(共9小题,满分69分)18.解:y=x2﹣4x+5=(x2﹣8x)+5=(x2﹣8x+16)+5﹣8=(x﹣4)2﹣3,∴顶点(4,﹣3).19.解:(1)把点(1,﹣2),(﹣2,13)代入y=ax2+bx+1得,,解得:;(2)由(1)得函数解析式为y=x2﹣4x+1,∴对称轴是直线x=﹣=2,∵(5,n),(m,n)是抛物线上不同的两点,纵坐标相同,∴(5,n),(m,n)是对称点,∴=2,解得m=﹣1.20.解:(1)由题意得:函数的对称轴为x=1,此时y=﹣2,则函数的表达式为:y=a(x﹣1)2﹣2,把点A坐标代入上式,解得:a=,则函数的表达式为:y=x2﹣x﹣(2)a=>0,函数开口向上,对称轴为:x=1;(3)当y>0时,x的取值范围为:x>3或x<﹣1.21.解:(1)①当m=1,n≠﹣2时,函数y=(n+1)x m+mx+1﹣n(m,n为实数)是一次函数,它一定与x轴有一个交点,∵当y=0时,(n+1)x m+mx+1﹣n=0,∴x=,∴函数y=(n+1)x m+mx+1﹣n(m,n为实数)与x轴有交点;②当m=2,n≠﹣1时,函数y=(n+1)x m+mx+1﹣n(m,n为实数)是二次函数,当y=0时,y=(n+1)x m+mx+1﹣n=0,即:(n+1)x2+2x+1﹣n=0,△=22﹣4(1+n)(1﹣n)=4n2≥0;∴函数y=(n+1)x m+mx+1﹣n(m,n为实数)与x轴有交点;③当n=﹣1,m≠0时,函数y=(n+1)x m+mx+1﹣n是一次函数,当y=0时,x=,∴函数y=(n+1)x m+mx+1﹣n(m,n为实数)与x轴有交点;(2)①假命题,若它是一个二次函数,则m=2,函数y=(n+1)x2+2x+1﹣n,∵n>﹣1,∴n+1>0,抛物线开口向上,对称轴:﹣==﹣<0,∴对称轴在y轴左侧,当x<0时,y有可能随x的增大而增大,也可能随x的增大而减小,②当x=1时,y=n+1+2+1﹣n=4.当x=﹣1时,y=0.∴它一定经过点(1,4)和(﹣1,0).22.解:(1)将(5,0),(0,5)代入y=x2+bx+c得,解得,∴y=x2﹣6x+5.(2)设直线BC解析式为y=kx+n,将(5,0),(0,5)代入y=kx+n得,解得,∴y=﹣x+5,设点M坐标为(m,m2﹣6m+5),则点N坐标为(m,﹣m+5),∴MN=﹣m+5﹣(m2﹣6m+5)=﹣m2+5m=﹣(m﹣)2+,∴MN最大值为.23.解:(1)∵>0,∴抛物线开口向上,抛物线的顶点为最低点,∵y=x2﹣x+3=(x﹣4)2+,∴绳子最低点离地面的距离为m;(2)由(1)可知,对称轴为x=4,则BO=8,令x=0得y=3,∴A(0,3),C(8,3),由题意可得:抛物线F1的顶点坐标为:(2,1.8),设F1的解析式为:y=a(x﹣2)2+1.8,将(0,3)代入得:4a+1.8=3,解得:a=0.3,∴抛物线F1为:y=0.3(x﹣2)2+1.8,当x=3时,y=0.3×1+1.8=2.1,∴MN的长度为2.1米;(3)∵MN=3,点M(3,3),∵抛物线F1和F2的形状和大小都一样,∴设抛物线F1的解析式为y=a(x﹣)2+k1,F2的解析式为y=a(x﹣)2+k2,抛物线F1和F2的最低点到地面的高度分别为k1和k2,由题意,得k1﹣k2=0.5,把点M(3,3)分别代入y=a(x﹣)2+k1和y=a(x﹣)2+k2,得k1=3﹣a,k2=3﹣a,∴3﹣a﹣(3﹣a)=0.5,解得:a=.∴抛物线F1对应函数的二次项系数为.24.解:(1)由,得,即顶点M坐标为(m,m);(2)∵此时二次函数为y=(x﹣m)2+m过点A(0,3),∴3=(0﹣m)2+m得m1=﹣3,m2=,∴y=(x+2)2﹣1或y=(x﹣)2+;(3)当m=6时,顶点为M(4,2),∴抛物线为y=(x﹣4)2+2,函数的最小值为2,∵x满足t﹣1≤x≤t+3时,二次函数的最小值为2,∴,解得1≤t≤5.25.解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x==4时,y最大=1960元;∴每件商品的售价为34元.答:每件商品的售价为34元时,商品的利润最大,为1960元;26.解:(1)由题意可知,点C为抛物线G的顶点,当m=2时,C(2,6),设G所对应的函数的表达式为y=a(x﹣2)2+6(a≠0),将点A(0,4)代入y=a(x﹣2)2+6得4=4a+6,解得a=﹣.∴y=﹣(x﹣2)2+6.(2)∵抛物线对称轴为直线x==m,∴点C坐标为(m,m+4),设抛物线解析式为y=a(x﹣m)2+m+4,把(0,4)代入y=a(x﹣m)2+m+4得4=am2+m+4,解得a=﹣,∴y=﹣(x﹣m)2+m+4.(3)①0<m≤2时,在直线x=﹣2和x=2之间的部分的抛物线最高点为顶点(m,m+4),最低点为直线x=﹣2与抛物线交点(﹣2,﹣),m+4﹣(﹣)=8时,解得m=2.②当m>2时,图象最高点为直线x=2与抛物线交点(2,﹣+8),最低点为直线x=﹣2与抛物线交点(﹣2,﹣),﹣+8﹣(﹣)=8,∴m>2符合题意,∴m≥2.(4)作CD⊥PQ于点D,∵点R将线段PQ分成1:3两部分,∴PQ=4PR=2PD,∴PR=RD,∴CD=RD,∴PQ=4CD,设CD=t,则PQ=4t,∴点Q的坐标为(m+2t,m+4﹣t),∴=﹣(m+2t﹣m)2+m+4=m+4﹣t.解得t=m.∴点Q坐标为(m,m+4),PQ=m,∵△APQ的面积为,∴m(m+4﹣4)=,解得m=或m=﹣(舍).∴m=.。
北师大版初3数学9年级下册 第2章(二次函数)综合训练(含答案)
九年级数学综合训练(二)(二次函数)班级 座号 姓名 成绩一、选择题(本大题10小题,每小题4分,共40分)在每小题列出的四个选项中,只有一个是正确的.1. 抛物线2(2)5y x =-+的顶点坐标是()A. (-2,5)B. (2,5)C. (-2,-5)D. (2,-5)2. 二次函数222y x x =-++化为2()y a x h k =-+的形式,下列正确的是()A.2(1)2y x =-+ B.2(1)3y x =--+C. 2(2)2y x =-+ D.2(2)4y x =-+3. 抛物线y =x 2―3x +2不经过 ( )A .第一象限B .第二象限C.第三象限D .第四象限4. 若抛物线经过(0,1)、(-1,0)、(1,0)三点,则此抛物线的解析式为( )A .21y x =+B .21y x =-C .21y x =-+D .21y x =--5. 二次函数22y x x =--的图象如图,则函数值y <0时x 的取值范围是( )A .x <-1 B .x >2 C .-1<x <2 D .x <-1或x >26.函数在同一直角坐标系内的图象大致是( )2y ax b y ax bx c =+=++和第5题图7. 将抛物线2(1)3y x =-+向左平移1个单位,得到的抛物线与y 轴的交点坐标是( )A .(0,2)B .(0,3)C .(0,4)D .(0,7)8. 一件工艺品的进价为100元,标价135元出售,每天可售出100件,根据销售统计,一件工艺品每降价1元,则每天可多售出4件,要使每天获得的利润最大,则每件需降价( )A .3.6 元B .5 元C .10元D .12元9. 若二次函数2y x mx =-的对称轴是x =2,则关于x 的方程25x mx -=的解为( )A .121,5x x ==B .121,3x x ==C .121,5x x ==-D .121,5x x =-=10. 已知抛物线224(0)y x mx m =-->的顶点M 关于坐标原点O 的对称点为M ',若点M '在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填在该题的横线上.11. 函数21(1)21m y m xmx +=--+的图象是抛物线,则m =. 12. 若抛物线2y ax bx c =++的开口向下,则a 的值可能是 .(写一个即可)三、解答题(本大题4小题,每小题9分,共36分)17. 已知抛物线2y ax bx =+经过(2,0),(-1,6).(1)求这条抛物线的表达式;(2)写出抛物线的开口方向、对称轴和顶点坐标.18. 如图,已知抛物线23y x mx =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0).(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA +PC 的值最小时,求点P 的坐标.19. 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x ≤90)天的售价与销量的相关信息如右表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元.时间x (天)1≤x <5050≤x ≤90售价(元/件)x +4090每天销量(件)200﹣2x(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?20.如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是抛物线上的一个动点.(1)求此抛物线的解析式;(2)求C、D两点坐标及△BCD的面积;(3)若点P在x轴上方的抛物线上,满足S△PCD=12S△BCD,求点P的坐标.(二次函数)一、选择题1. B2. B3. C4. C5. C 6.C 7. B 8. B9. D 10. C 二、填空题11. -1 12. -1 13. 12m ≤14. 2114y x x =---15. 2016. (2,0)三、解答题(本大题4小题,每小题9分,共36分)17. (1)224y x x =-; (2)开口向上,对称轴为直线x =1,顶点坐标(1,-2).18. (1)把点B 的坐标为(3,0)代入抛物线23y x mx =-++得:m =2,∴2223(1)4y x x x =-++=--+, ∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA +PC 的值最小,设直线BC 的解析式为:y kx b =+ ,∵点C (0,3),点B (3,0), ∴033k bb =+⎧⎨=⎩,解得:13k b =-⎧⎨=⎩,∴直线BC 的解析式为:3y x =-+, 当x =1时,y = -1+3=2, ∴当PA +PC 的值最小时,点P 的坐标为:(1,2).19. (1)当1≤x <50时,y =(200﹣2x )(x +40﹣30)=﹣2x 2+180x +2000, 当50≤x ≤90时,y =(200﹣2x )(90﹣30)=﹣120x +12000,综上所述:y =221802000(150)12012000(5090)x x x x x ⎧-++≤<⎨-+≤≤⎩;(2)当1≤x <50时,二次函数开口向下,二次函数对称轴为x =45, 当x =45时,y 最大=﹣2×452+180×45+2000=6050,当50≤x ≤90时,y 随x 的增大而减小, 当x =50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;20. (1)∵抛物线的顶点为A (1,4), ∴设抛物线的解析式2(1)4y a x =-+,把点B (0,3)代入得,a +4=3,解得a =﹣1,∴抛物线的解析式为2(1)4y x =--+;(2)由(1)知,抛物线的解析式为2(1)4y x =--+; 令y =0,则20(1)4x =--+,∴x =﹣1或x =3, ∴C (﹣1,0),D (3,0);∴CD =4,∴162BCD B S CD y ∆=⨯=;(3)由(2)知,162BCD B S CD y ∆=⨯=;CD =4,∵12PCD BCD S S ∆∆=,∴132PCD P S CD y ∆=⨯=, ∴32P y =, ∵点P 在x 轴上方的抛物线上,∴0p y >,∴32P y =, ∵抛物线的解析式为2(1)4y x =--+;∴23(1)42x =--+,∴1x =±∴P (1+ ,32 ),或P (1- ,32).。
北师大版九年级数学下册第2章 二次函数 章末综合题复习(含答案)
北师大版九年级数学下册第二章二次函数章末综合题复习1、已知抛物线的顶点为(-1,-3),与y轴的交点为(0,-5).(1)求抛物线的表达式;(2)将(1)中所求的抛物线向右平移2个单位长度、向上平移3个单位长度会得到怎样的抛物线?(3)若(2)中所求抛物线的顶点不动将抛物线的开口方向相反,求符合此条件的抛物线的表达式.2、如果将抛物线y=2x2+bx+c沿直角坐标平面先向左平移3个单位长度,再向下平移2个单位长度,得到了抛物线y=2x2-4x+3.(1)试确定b,c的值;(2)求出抛物线y=2x2+bx+c的对称轴和顶点坐标.3、成都市某公司自主设计了一款可控温杯,每个生产成本为16元,投放市场进行了试销.经过调查得到每月销售量y(万个)与销售单价x(元)之间关系是一次函数的关系,部分数据如下:(1)求y与x之间的函数关系式;(2)该公司既要获得一定利润,又要符合相关部门规定(一件产品的利润率不得高于50%),请你帮助分析,公司销售单价定为多少时可获利最大?并求出最大利润.4、如图所示,用一根长度为18米的原材料制作一个矩形窗户边框(即矩形ABFE和矩形DCFE),原材料刚好全部用完.设窗户边框AB长度为x米,窗户总面积为S平方米(注:窗户边框粗细忽略不计).(1)求S与x之间的函数关系式;(2)若窗户边框AB的长度不少于2米,且边框AB的长度小于BC的长度,求此时窗户总面积S的最大值和最小值.5、已知二次函数y=ax2的图象与直线y=x+2交于点(2,m).(1)判断y=ax2的图象的开口方向,并说出此抛物线的对称轴、顶点坐标以及当x>0时,y的值随x值的增大而变化的情况;(2)设直线y=x+2与抛物线y=ax2的交点分别为A,B,如图所示.试确定A,B两点的坐标;(3)连接OA,OB,求△AOB的面积.6、如图,已知二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.(1)求此二次函数的关系式和点B的坐标;(2)在x轴的正半轴上是否存在点P,使得△P AB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.7、如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4).(1)求出图象与x轴的交点A,B的坐标;(2)在二次函数的图象上是否存在点P,使S△P AB=54S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.8、如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与y轴的交点为A(0,3),与x轴的交点分别为B(2,0),C(6,0).直线AD∥x轴,在x轴上位于点B右侧有一动点E,过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P,Q.(1)抛物线的表达式为________;(2)当点E在线段BC上时,求△APC面积的最大值;(3)是否存在点P,使以A,P,Q为顶点的三角形与△AOB相似?若存在,求出此时点E的坐标;若不存在,请说明理由.9.已知直线l:y=kx+1与抛物线y=x2-4x.(1)求证:直线l与该抛物线总有两个交点;(2)如图,设直线l与该抛物线两个交点分别为A,B,O为原点,当k=-2时,求△OAB的面积.10、如图,抛物线y=-x2+2x+3与x轴交于点A,B,与y轴交于点C,在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小?若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由.11、如图,已知二次函数y=x2-4x+3的图象与x轴交于点A,B,与y轴交于点C,若点P为抛物线上的一点,点F为对称轴上的一点,且以点A,B,P,F为顶点的四边形为平行四边形,求点P的坐标.12、如图,顶点为M的抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴交于点C,在y轴上是否存在一点P,使得△P AM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.13、如图所示,抛物线y =ax 2+bx +4的顶点坐标为(3,254),与y 轴交于点A .过点A 作AB ∥x 轴,交抛物线于点B ,点C 是第四象限的抛物线上的一个动点,过点C 作y 轴的平行线,交直线AB 于点D .(1)求抛物线的函数表达式;(2)若点E 在y 轴的负半轴上,且AE =AD ,直线CE 交抛物线y =ax 2+bx +4于点F . ①求点F 的坐标;②过点D 作DG ⊥CE 于点G ,连接OD ,ED ,当∠ODE =∠CDG 时,求直线DG 的函数表达式.14、如图,抛物线y =ax 2+bx +3(a ≠0)与x 轴、y 轴分别交于A (-1,0),B (3,0),C 三点. (1)求抛物线的表达式;(2)x 轴上是否存在点P ,使PC +12PB 最小?若存在,请求出点P 的坐标及PC +12PB 的最小值;若不存在,请说明理由;(3)连接BC ,设E 为线段BC 的中点.若M 是抛物线上一动点,将点M 绕点E 旋转180°得到点N ,当以B ,C ,M ,N 为顶点的四边形是矩形时,直接写出点N 的坐标.15、如图,已知抛物线y =ax 2+bx +c 与直线y =12x +12相交于A (-1,0),B (4,m )两点,抛物线y =ax 2+bx +c交y 轴于点C (0,-32),交x 轴正半轴于点D ,抛物线的顶点为M .(1)求抛物线的表达式及点M的坐标;(2)设P为直线AB下方的抛物线上一动点,当△P AB的面积最大时,求此时△P AB的面积及点P的坐标;(3)Q为x轴上一动点,N是抛物线上一点,当△QMN∽△MAD(点Q与点M对应)时,求点Q的坐标.16、如图1,在平面直角坐标系中,已知抛物线y=ax2+bx-5,与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;(3)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;(4)若点K为x轴上一点,连接CK,请你直接写出2CK+KB的最小值.参考答案1、已知抛物线的顶点为(-1,-3),与y轴的交点为(0,-5).(1)求抛物线的表达式;(2)将(1)中所求的抛物线向右平移2个单位长度、向上平移3个单位长度会得到怎样的抛物线?(3)若(2)中所求抛物线的顶点不动将抛物线的开口方向相反,求符合此条件的抛物线的表达式.解:(1)根据题意设抛物线的表达式为y=a(x+1)2-3,将(0,-5)代入,得a-3=-5.解得a=-2.∴抛物线的表达式为y=-2(x+1)2-3=-2x2-4x-5.(2)y=-2(x-1)2.(3)所求抛物线的表达式为y=2(x-1)2.2、如果将抛物线y=2x2+bx+c沿直角坐标平面先向左平移3个单位长度,再向下平移2个单位长度,得到了抛物线y=2x2-4x+3.(1)试确定b,c的值;(2)求出抛物线y=2x2+bx+c的对称轴和顶点坐标.解:(1)∵y=2x2-4x+3=2(x-1)2+1,∴现将其向上平移2个单位长度,向右平移3个单位长度可得原函数,即y=2(x-4)2+3.∴y=2x2-16x+35.∴b=-16,c=35.(2)由y=2(x-4)2+3,得顶点坐标为(4,3),对称轴为直线x=4.3、成都市某公司自主设计了一款可控温杯,每个生产成本为16元,投放市场进行了试销.经过调查得到每月销售量y (万个)与销售单价x (元)之间关系是一次函数的关系,部分数据如下:(1)求y 与x 之间的函数关系式;(2)该公司既要获得一定利润,又要符合相关部门规定(一件产品的利润率不得高于50%),请你帮助分析,公司销售单价定为多少时可获利最大?并求出最大利润.解:(1)设y 与x 之间的函数关系式为y =kx +b . 把(20,60),(30,40)代入,得⎩⎪⎨⎪⎧20k +b =60,30k +b =40,解得⎩⎪⎨⎪⎧k =-2,b =100. ∴y 与x 之间的函数关系式为y =-2x +100.(2)∵每个生产成本为16元,一件产品的利润率不得高于50%, ∴x ≤(1+50%)×16=24.设该公司每月获得的利润为w 万元,则 w =y (x -16) =(-2x +100)(x -16) =-2x 2+132x -1 600 =-2(x -33)2+578.∵图象开口向下,对称轴左侧w 随x 的增大而增大, ∴当x =24时,w 最大,最大值为416.答:公司销售单价定为24元时可获利最大,最大利润为每月416万元.4、如图所示,用一根长度为18米的原材料制作一个矩形窗户边框(即矩形ABFE 和矩形DCFE ),原材料刚好全部用完.设窗户边框AB 长度为x 米,窗户总面积为S 平方米(注:窗户边框粗细忽略不计).(1)求S 与x 之间的函数关系式;(2)若窗户边框AB 的长度不少于2米,且边框AB 的长度小于BC 的长度,求此时窗户总面积S 的最大值和最小值.解:(1)由题意可得,S =x ·18-3x 2=-32x 2+9x .(2)由题意可得,2≤x <18-3x2,解得2≤x <3.6,∵S =-32x 2+9x ,2≤x <3.6,∴当x =3时,S 取得最大值,此时S =272;当x =2时,S 取得最小值,此时S =12.答:窗户总面积S 的最大值是272平方米,最小值是12平方米.5、已知二次函数y =ax 2的图象与直线y =x +2交于点(2,m ).(1)判断y =ax 2的图象的开口方向,并说出此抛物线的对称轴、顶点坐标以及当x >0时,y 的值随x 值的增大而变化的情况;(2)设直线y =x +2与抛物线y =ax 2的交点分别为A ,B ,如图所示.试确定A ,B 两点的坐标; (3)连接OA ,OB ,求△AOB 的面积.解:(1)把点(2,m )代入y =x +2,解得m =4, ∴交点坐标为(2,4). 把点(2,4)代入y =ax 2,得 a =1.∴二次函数的表达式为y =x 2.∴抛物线的对称轴为y 轴,顶点坐标为(0,0), 当x >0时,y 随x 的增大而增大. (2)由题意,得x 2=x +2,解得x 1=2,x 2=-1,则y 1=4,y 2=1. ∴A (2,4),B (-1,1).(3)设直线y =x +2与y 轴的交点为D ,则点D 坐标为(0,2), ∴S △AOB =S △DOB +S △DOA =12×2×1+12×2×2 =3.6、如图,已知二次函数y =-x 2+bx +3的图象与x 轴的一个交点为A (4,0),与y 轴交于点B . (1)求此二次函数的关系式和点B 的坐标;(2)在x 轴的正半轴上是否存在点P ,使得△P AB 是以AB 为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)把点A (4,0)代入二次函数,得 0=-16+4b +3, 解得b =134.∴二次函数的关系式为y =-x 2+134x +3.当x =0时,y =3, ∴点B 的坐标为(0,3).(2)作AB 的垂直平分线交x 轴于点P ,连接BP ,则BP =AP ,此时点P 即为所求. 设BP =AP =x ,则OP =4-x , 在Rt △OBP 中,BP 2=OB 2+OP 2, 即x 2=32+(4-x )2, 解得x =258.∴OP =4-258=78,即P (78,0).∴在x 轴的正半轴上存在点P ,使得△P AB 是以AB 为底边的等腰三角形,且点P 的坐标为(78,0).7、如图是二次函数y =(x +m )2+k 的图象,其顶点坐标为M (1,-4). (1)求出图象与x 轴的交点A ,B 的坐标;(2)在二次函数的图象上是否存在点P ,使S △P AB =54S △MAB ?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)∵抛物线y =(x +m )2+k 的顶点坐标为M (1,-4), ∴y =(x -1)2-4.令y =0,即(x -1)2-4=0. 解得x 1=3,x 2=-1. ∴A (-1,0),B (3,0).(2)∵△P AB 与△MAB 同底,且S △P AB =54S △MAB ,∴|y P |=54|y M |=54×4=5,即y P =±5.又∵点P 在二次函数y =(x -1)2-4的图象上, ∴y P ≥-4.∴y P =5.令(x -1)2-4=5,解得x 1=4,x 2=-2, ∴存在这样的点P ,其坐标为(4,5)或(-2,5).8、如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与y 轴的交点为A (0,3),与x 轴的交点分别为B (2,0),C (6,0).直线AD ∥x 轴,在x 轴上位于点B 右侧有一动点E ,过点E 作平行于y 轴的直线l 与抛物线、直线AD 的交点分别为P ,Q .(1)抛物线的表达式为y =14x 2-2x +3;(2)当点E 在线段BC 上时,求△APC 面积的最大值;(3)是否存在点P ,使以A ,P ,Q 为顶点的三角形与△AOB 相似?若存在,求出此时点E 的坐标;若不存在,请说明理由.解:(2)设直线AC 的表达式为y =kx +m ,∴⎩⎪⎨⎪⎧6k +m =0,m =3.解得⎩⎪⎨⎪⎧k =-12,m =3.∴直线AC 的表达式为y =-12x +3.设△APC 的面积为S ,直线l 与AC 的交点为F . 设P (t ,14t 2-2t +3)(2≤t ≤6),则F (t ,-12t +3).∴PF =-14t 2+32t .∴S =S △PF A +S △PFC =12PF ·t +12PF ·(6-t ) =12(-14t 2+32t )×6=-34(t -3)2+274. ∴当t =3时,S 最大=274,即△APC 面积的最大值为274.(3)存在点P ,使以A ,P ,Q 为顶点的三角形与△AOB 相似. 理由:连接AB ,则在△AOB 中,∠AOB =90°,AO =3,BO =2, 设E (n ,0)(n >2),则Q (n ,3),P (n ,14n 2-2n +3),当14n 2-2n +3=3时,此时,点P ,Q 重合, 即n =0(舍)或n =8,不能构成△APQ ,∴n ≠8. ①当2<n <8时,AQ =n ,PQ =-14n 2+2n ,若△AOB ∽△AQP ,则AO AQ =OBQP ,即3n =2-14n 2+2n . ∴n =0(舍)或n =163.∴E (163,0).若△AOB ∽△PQA ,则AO PQ =OBQA,即2n =3-14n 2+2n . ∴n =0(舍)或n =2(舍);②当n >8时,AQ =n ,PQ =14n 2-2n ,若△AOB ∽△AQP ,则AO AQ =OBQP ,即3n =214n 2-2n . ∴n =0(舍)或n =323.∴E (323,0).若△AOB ∽△PQA ,则AO PQ =OBQA ,即2n =314n 2-2n . ∴n =0(舍)或n =14.∴E (14,0).综上所述,存在点P ,使以A ,P ,Q 为顶点的三角形与△AOB 相似,此时点E 的坐标为(163,0),(323,0)或(14,0).9、已知直线l :y =kx +1与抛物线y =x 2-4x . (1)求证:直线l 与该抛物线总有两个交点;(2)如图,设直线l 与该抛物线两个交点分别为A ,B ,O 为原点,当k =-2时,求△OAB 的面积.解:(1)证明:联立⎩⎪⎨⎪⎧y =kx +1,y =x 2-4x ,化简,得x 2-(4+k )x -1=0, ∴Δ=(4+k )2+4>0.∴直线l 与该抛物线总有两个交点. (2)当k =-2时,y =-2x +1. 设直线AB 交x 轴于点C .令y =0,则-2x +1=0, ∴x =12.∴C (12,0).∴OC =12.过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E ,联立⎩⎪⎨⎪⎧y =x 2-4x ,y =-2x +1,解得⎩⎨⎧x =1+2,y =-1-22或⎩⎨⎧x =1-2,y =22-1.∴A (1-2,22-1),B (1+2,-1-22). ∴AF =22-1,BE =1+2 2. ∴S △AOB =S △AOC +S △BOC =12OC ·AF +12OC ·BE =12OC ·(AF +BE ) =12×12×(22-1+1+22) = 2.10、如图,抛物线y =-x 2+2x +3与x 轴交于点A ,B ,与y 轴交于点C ,在抛物线的对称轴上是否存在一点P ,使得△P AC 的周长最小?若存在,请求出点P 的坐标及△P AC 的周长;若不存在,请说明理由.解:在y =-x 2+2x +3中,令y =0,则-x 2+2x +3=0.解得x 1=-1,x 2=3. ∴A (-1,0),B (3,0).在y =-x 2+2x +3中,令x =0,则y =3.∴C (0,3).连接BC 交抛物线的对称轴于点P ,连接AP ,则点P 即为所求.此时△P AC 的周长最小,等于AC +BC . ∵A (-1,0),B (3,0),C (0,3),∴AC =12+32=10,BC =32+32=3 2. ∴AC +CB =10+3 2.∴△P AC 的周长最小为10+3 2. 设直线BC 的表达式为y =kx +t .把点B (3,0),C (0,3)代入,得⎩⎪⎨⎪⎧3k +t =0,t =3.解得⎩⎪⎨⎪⎧k =-1,t =3. ∴直线BC 的表达式为y =-x +3. ∴y P =-1+3=2.∴存在点P (1,2)使△P AC 的周长最小,最小值为10+3 2.11、如图,已知二次函数y =x 2-4x +3的图象与x 轴交于点A ,B ,与y 轴交于点C ,若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A ,B ,P ,F 为顶点的四边形为平行四边形,求点P 的坐标.解:在y =x 2-4x +3中,令y =0,则x 2-4x +3=0,解得x 1=1,x 2=3. ∴A (1,0),B (3,0).①当AB 为平行四边形一条边时,如图1, 则AB =PF =2.∵抛物线的对称轴为直线x =2, ∴点P 的坐标为(4,3);当点P 在对称轴左侧时,点P 的坐标为(0,3); ②当AB 是平行四边形的对角线时,如图2, AB 的中点坐标为(2,0).设点P 的横坐标为m ,则PF 的中点坐标为(m +22,0),∴m +22=2,解得m =2.∴点P 的坐标为(2,-1).综上所述,点P 的坐标为(4,3)或(0,3)或(2,-1).图1 图212、如图,顶点为M 的抛物线y =-x 2+2x +3与x 轴交于A ,B 两点,与y 轴交于点C ,在y 轴上是否存在一点P ,使得△P AM 为直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.解:在y =-x 2+2x +3中,令y =0,则-x 2+2x +3=0. 解得x 1=3,x 2=-1. ∴A (3,0),B (-1,0).∵y =-x 2+2x +3=-(x -1)2+4, ∴M (1,4).∴AM 2=(3-1)2+42=20. 设点P 坐标为(0,p ), 则AP 2=32+p 2=9+p 2, MP 2=12+(4-p )2=17-8p +p 2. ①若∠P AM =90°,则AM 2+AP 2=MP 2. ∴20+9+p 2=17-8p +p 2,解得p =-32.∴P (0,-32).②若∠APM =90°,则AP 2+MP 2=AM 2. ∴9+p 2+17-8p +p 2=20,解得p 1=1,p 2=3. ∴P (0,1)或(0,3).③若∠AMP =90°,则AM 2+MP 2=AP 2. ∴20+17-8p +p 2=9+p 2,解得p =72.∴P (0,72).综上所述,当点P 的坐标为(0,-32)或(0,1)或(0,3)或(0,72)时,△P AM 为直角三角形.13、如图所示,抛物线y =ax 2+bx +4的顶点坐标为(3,254),与y 轴交于点A .过点A 作AB ∥x 轴,交抛物线于点B ,点C 是第四象限的抛物线上的一个动点,过点C 作y 轴的平行线,交直线AB 于点D .(1)求抛物线的函数表达式;(2)若点E 在y 轴的负半轴上,且AE =AD ,直线CE 交抛物线y =ax 2+bx +4于点F . ①求点F 的坐标;②过点D 作DG ⊥CE 于点G ,连接OD ,ED ,当∠ODE =∠CDG 时,求直线DG 的函数表达式.解:(1)∵抛物线y =ax 2+bx +4的顶点坐标为(3,254),∴y =a (x -3)2+254=ax 2-6ax +9a +254.∴9a +254=4.∴a =-14.∴抛物线的表达式为y =-14x 2+32x +4.(2)①设C (m ,-14m 2+32m +4).∵AD =AE ,AD ∥x 轴,CD ∥y 轴,∴AD =AE =m . ∵OA =4,∴OE =m -4.∵点E 在y 轴的负半轴上,∴E (0,4-m ). 设直线CE 的表达式为y =kx +b . 则⎩⎪⎨⎪⎧b =4-m ,mk +b =-14m 2+32m +4. 解得⎩⎪⎨⎪⎧k =-14m +52,b =4-m.∴直线CE 的表达式为y =(-14m +52)x +4-m .联立两个函数表达式,得-14x 2+32x +4=(-14m +52)x +4-m .∴-14x 2+(14m -1)x +m =0,x 2+(4-m )x -4m =0,(x +4)(x -m )=0,解得x 1=-4,x 2=m .∴定点F (-4,-6).②如图,过点E 作EH ⊥CD 于点H ,交DG 于点Q ,连接OQ ,由①知OE =m -4. ∵∠DAE =∠ADH =∠EHD =90°,AD =AE ,∴四边形AEHD 是正方形. ∴∠EDH =45°,AD =AE =DH =EH . ∵∠ODE =∠CDG ,∴∠ODE +∠EDQ =∠EDQ +∠CDG =45°,即∠ODQ =45°. ∴∠ADO +∠CDG =45°.在OA 的延长线上取AP =QH ,连接PD , 又∵∠P AD =∠QHD =90°,AD =DH , ∴△P AD ≌△QHD (SAS ). ∴PD =DQ ,∠ADP =∠CDG . ∴∠ADP +∠ADO =45°=∠ODQ . 又∵OD =OD ,∴△PDO ≌△QDO (SAS ).∴OP =OQ .∵EH =DH ,∠EHC =∠DHQ ,∠GEH =∠CDG , ∴△EHC ≌△DHQ (ASA ).∴CH =QH =14m 2-32m -4-(m -4)=14m 2-52m =AP .∴OQ =OP =OA +AP =4+14m 2-52m .∵OE =m -4,EQ =EH -QH =m -(14m 2-52m )=-14m 2+72m ,在Rt △OEQ 中,由勾股定理,得OE 2+EQ 2=OQ 2, ∴(m -4)2+(-14m 2+72m )2=(4+14m 2-52m )2,m 3-10m 2-24m =0,解得m 1=0(舍),m 2=12,m 3=-2(舍). ∴D (12,4),Q (6,-8).设直线DG 的表达式为y =k ′x +b ′,则⎩⎪⎨⎪⎧12k′+b′=4,6k′+b′=-8,解得⎩⎪⎨⎪⎧k′=2,b′=-20. ∴直线DG 的函数表达式为y =2x -20.14、如图,抛物线y =ax 2+bx +3(a ≠0)与x 轴、y 轴分别交于A (-1,0),B (3,0),C 三点. (1)求抛物线的表达式;(2)x 轴上是否存在点P ,使PC +12PB 最小?若存在,请求出点P 的坐标及PC +12PB 的最小值;若不存在,请说明理由;(3)连接BC ,设E 为线段BC 的中点.若M 是抛物线上一动点,将点M 绕点E 旋转180°得到点N ,当以B ,C ,M ,N 为顶点的四边形是矩形时,直接写出点N 的坐标.解:(1)∵抛物线y =ax 2+bx +3(a ≠0)与x 轴交于点A (-1,0),B (3,0), ∴设抛物线的表达式为y =a (x +1)(x -3)=ax 2-2ax -3a . ∴-3a =3.∴a =-1.∴抛物线的表达式为y =-x 2+2x +3.(2)在x 轴下方作∠ABD =30°,交y 轴负半轴于点D ,则BD =2OD . ∵B (3,0),∴OB =3.根据勾股定理,得BD 2-OD 2=32, ∴4OD 2-OD 2=9. ∴OD =3,BD =2 3.∵抛物线的表达式为y =-x 2+2x +3, ∴C (0,3).∴OC =3.∴CD =3+ 3. 过点P 作PB ′⊥BD 于点B ′, 在Rt △PB ′B 中,PB ′=12PB ,∴PC +12PB =PC +PB ′.当点C ,P ,B 在同一条直线上时,PC +12PB 最小,最小值为CB ′,∵S △BCD =12CD ·OB =12BD ·CB ′,∴CB ′=CD·OB BD =(3+3)×323=3(3+1)2, 即PC +12PB 的最小值为3(3+1)2.∵OB =OC =3,∴∠OBC =∠OCB =45°. ∴∠DBC =45°+30°=75°.∴∠BCP =90°-75°=15°.∴∠OCP =30°. ∵OC =3,∴OP = 3.∴P (3,0).(3)如备用图,设M (m ,-m 2+2m +3), ∵以B ,C ,M ,N 为顶点的四边形是矩形, ∴∠BMC =90°.∵点A 在x 轴负半轴上,且∠BOC =90°, ∴点M 在x 轴上方的抛物线上.过点M 作ME ⊥x 轴于点E ,MF ⊥y 轴于点F , ∴∠MEO =∠MFO =90°=∠EOF . ∴四边形OEMF 是矩形. ∴∠EMF =90°.∴∠BME =∠CMF . 又∵∠BEM =∠CFM =90°, ∴△BEM ∽△CFM . ∴BE CF =MEMF, 即3-m -m 2+2m +3-3=-m 2+2m +3m .∴m =1±52或3(舍去).∴M (1+52,5+52)或(1-52,5-52).∵点N 是点M 关于点E (32,32)的对称点,∴点N 的坐标为(5-52,1-52)或(5+52,1+52).15、如图,已知抛物线y =ax 2+bx +c 与直线y =12x +12相交于A (-1,0),B (4,m )两点,抛物线y =ax 2+bx +c交y 轴于点C (0,-32),交x 轴正半轴于点D ,抛物线的顶点为M .(1)求抛物线的表达式及点M 的坐标;(2)设P 为直线AB 下方的抛物线上一动点,当△P AB 的面积最大时,求此时△P AB 的面积及点P 的坐标; (3)Q 为x 轴上一动点,N 是抛物线上一点,当△QMN ∽△MAD (点Q 与点M 对应)时,求点Q 的坐标.解:(1)把点B (4,m )代入y =12x +12中,得m =52,∴B (4,52).把点A (-1,0),B (4,52),C (0,-32)代入y =ax 2+bx +c 中,得⎩⎪⎨⎪⎧a -b +c =0,16a +4b +c =52,c =-32.解得⎩⎪⎨⎪⎧a =12,b =-1,c =-32.∴抛物线的表达式为y =12x 2-x -32. ∵y =12x 2-x -32=12(x -1)2-2, ∴点M 的坐标为(1,-2).(2)如图1所示,过点P 作y 轴的平行线交AB 于点H ,设点P 的坐标为(m ,12m 2-m -32), 则H (m ,12m +12), ∴PH =12m +12-(12m 2-m -32)=-12m 2+32m +2. ∵点P 为直线AB 下方的抛物线上一动点,∴-1<m <4.∴S △P AB =12×HP ·(x B -x A )=12×(-12m 2+32m +2)×5=-54(m -32)2+12516. ∵-54<0,∴当m =32时,S △P AB 最大,最大为12516, 此时点P (32,-158). (3)如图2所示,在y =12x 2-x -32中,令y =0,解得x 1=-1,x 2=3,∴D (3,0). ∵M (1,-2),A (-1,0),∴△AMD 为等腰直角三角形.∵△QMN ∽△MAD ,∴△QNM 为等腰直角三角形,且∠MQN =90°,MQ =NQ .设点N 的坐标为(n ,12n 2-n -32), 易证:△QEN ≌△MFQ ,∴FQ =EN =2,MF =EQ =12n 2-n -32. ∴12n 2-n -32+1=n +2.解得n =5或-1(舍). ∴点Q 的坐标为(7,0).根据对称性可知,点Q 的坐标为(-5,0)时也满足条件,∵△ADM 是等腰直角三角形,∴当点Q 是AD 的中点,N 与A 或D 重合时,△QMN ∽△MAD ,此时Q (1,0).综上所述,点Q 的坐标为(7,0)或(-5,0)或(1,0).16、如图1,在平面直角坐标系中,已知抛物线y =ax 2+bx -5,与x 轴交于A (-1,0),B (5,0)两点,与y 轴交于点C .(1)求抛物线的函数表达式;(2)若点D 是y 轴上的一点,且以B ,C ,D 为顶点的三角形与△ABC 相似,求点D 的坐标;(3)如图2,CE ∥x 轴与抛物线相交于点E ,点H 是直线CE 下方抛物线上的动点,过点H 且与y 轴平行的直线与BC ,CE 分别相交于点F ,G ,试探究当点H 运动到何处时,四边形CHEF 的面积最大,求点H 的坐标及最大面积;(4)若点K 为x 轴上一点,连接CK ,请你直接写出2CK +KB 的最小值.解:(1)∵点A (-1,0),B (5,0)在抛物线y =ax 2+bx -5上,∴⎩⎪⎨⎪⎧a -b -5=0,25a +5b -5=0,解得⎩⎪⎨⎪⎧a =1,b =-4. ∴抛物线的表达式为y =x 2-4x -5.(2)令x =0,则y =-5,∴C (0,-5).∴OC =OB =5.∴∠OBC =∠OCB =45°.∴AB =6,BC =52,AC =26.要使以B ,C ,D 为顶点的三角形与△ABC 相似,则有AB CD =BC BC 或AB BC =BC CD. ①当AB CD =BC BC时,CD =AB =6, ∴D (0,1).②当AB BC =BC CD 时,652=52CD, ∴CD =253.∴D (0,103). ∴点D 的坐标为(0,1)或(0,103). (3)设H (t ,t 2-4t -5),∵CE ∥x 轴,∴点E 的纵坐标为-5.∵点E 在抛物线上,∴x 2-4x -5=-5.∴x =0(舍)或x =4.∴E (4,-5).∴CE =4.∵B (5,0),C (0,-5),∴直线BC 的表达式为y =x -5.∴F (t ,t -5).∴HF =t -5-(t 2-4t -5)=-(t -52)2+254. ∵CE ∥x 轴,HF ∥y 轴,∴CE ⊥HF .∴S 四边形CHEF =12CE ·HF =-2(t -52)2+252. ∴当t =52时,四边形CHEF 的面积最大为252. 当t =52时,t 2-4t -5=254-10-5=-354, ∴H (52,-354). (4)如图3,作点C 关于x 轴的对称点E (0,5),将△BKC 绕点B 逆时针旋转60°,得到△BHF ,连接HK ,EF ,EK ,过点F 作FM ⊥x 轴于点M ,∵B (5,0),C (0,-5),∴BO =CO =5.∴BC =52,∠CBO =45°.∵点C ,点E 关于x 轴对称,∴EK =CK .∵将△BKC 绕点B 逆时针旋转60°得到△BHF ,∴BK =BH ,CK =HF ,BF =BC =52,∠KBH =60°=∠CBF .∴△KBH 是等边三角形.∴KB =KH .∴2CK +KB =HF +EK +KH .∴当E ,K ,H ,F 四点共线时,2CK +KB 的值最小,最小值为EF 的长.∵∠FBM =180°-45°-60°=75°,BF =52,∴BM =53-52,MF =53+52.∴EF=(53-52+5)2+(53+52+5)2=53+5,即2CK+KB的最小值为53+5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数练测试题一、选择题:1、二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x的增大而减小,则k 的值应取( ) (A )12 (B )11 (C )10 (D )9 2、下列四个函数中,y 的值随着x 值的增大而减小的是( ) (A )x y 2=(B )()01>=x x y (C )1+=x y (D )()02>=x x y 3、抛物线y=ax 2+bx+c 的图象如图,OA=OC ,则 ( )(A ) ac+1=b (B ) ab+1=c (C )bc+1=a (D )以上都不是4、若二次函数y=ax 2+bx+c 的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c的变化范围是 ( )(A) 0<S<2 (B) S>1 (C) 1<S<2 (D)-1<S<15、如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( )(A )8 (B )14 (C )8或14 (D )-8或-146、把二次函数23x y =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( ) (A )()1232+-=x y (B ) ()1232-+=x y (C ) ()1232--=x y (D )()1232++=x y 7、(3)已知抛物线y=ax 2+bx,当a>0,b<0时,它的图象经过( ) A.一、二、三象限 B.一、二、四象限C .一、三、四象限 D.一、二、三、四象限8、若0<b ,则二次函数12-+=bx x y 的图象的顶点在 ( )(A )第一象限(B )第二象限(C )第三象限(D )第四象限 9、已知二次函数222)(22b a x b a x y +++-= ,b a , 为常数,当y 达到最小值时,x 的值为 ( ) (A )b a + (B )2b a + (C )ab 2- (D )2ba - 10、当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax 2+bx+c 的是( )二、填空题:(28分)11、已知二次函数y =ax 2(a ≥1)的图像上两点A 、B 的横坐标分别是-1、2,点O 是坐标原点,如果△AOB 是直角三角形,则△OAB 的周长为 。
12、已知二次函数y =-4x 2-2m x +m 2与反比例函数y =x m 42+的图像在第二象限内的一个交点的横坐标是-2,则m 的值是 。
13、有一个抛物线形拱桥,其最大高度为16m ,跨度为40m ,现把它的示意图放在平面直角坐标系中如 图(4),求抛物线的解析式是_______________。
14、如图(5)A. B. C.是二次函数y=ax 2+bx +c (a ≠0)的图像上三点,根据图中给出的三点的位置,可得a-.——0,c ——0, 15、老师给出一个函数,甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。
乙:函数的图像经过第一象限。
丙:当x <2时,y 随x 的增大而减小。
丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数___________________。
16、已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是————————————(只要写出一个可能的解析式) 17、炮弹从炮口射出后,飞行的高度h (m )与飞行的时间t (s )之间的函数关系是h=v 0tsin α—5t 2,其中v 0是炮弹发射的初速度, α是炮弹的发射角,当v 0=300(s m ), sin α=21时,炮弹飞行的最大高度是___________。
18.已知点P (a ,m )和Q( b ,m )是抛物线y=2x 2+4x -3上的两个不同点,则a+b=_______. 19.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x 1,0)且1<x 1<2,与y·轴正半轴的交点在点(0,2)的下方,下列结论:①a <b <0;②2a+c >0;③4a+c< 0,④2a -b+l >0.其中的有正确的结论是(填写序号)__________. 三、解答题: 20.将进货单价为40元的商品按50元售出时,就能卖出500个,已知这个商品每个涨价1元,其销售量就减少10个。
(1)问:为了赚得8000元的利润,售价应定为多少?这时进货多少个? (2)当定价为多少元时,可获得最大利润?21.已知y 是x 的二次函数,且其图象在x 轴上截得的线段A B 长4个单位,当x =3时,y 取得最小值-2。
(1)求这个二次函数的解析式 (2)若此函数图象上有一点P ,使ΔP A B 的面积等于12个平方单位,求P 点坐标。
22.已知直线()02≠+-=b b x y 与x 轴交于点A ,与y 轴交于点B ;一抛物线的解析式为()c x b x y ++-=102.(1)若该抛物线过点B ,且它的顶点P 在直线b x y +-=2上,试确定这条抛物线的解析式;(2)过点B 作直线BC ⊥AB 交x 轴交于点C ,若抛物线的对称轴恰好过C 点,试确定直线b x y +-=2的解析式.23.已知抛物线4)334(2+++=x a ax y 与x 轴交于A 、 B 两点,与y 轴交于点C .是否存在实数a ,使得△ABC 为直角三角形.若存在,请求出a 的值;若不存在,请说明理由.24.如图,已知抛物线234y x bx c =-++与坐标轴交于A B C ,,三点,点A 的横坐标为1-,过点(03)C ,的直线334y x t=-+与x 轴交于点Q ,点P 是线段BC 上的一个动点,PH OB ⊥于点H .若5PB t =,且01t <<. (1)确定b c ,的值:(2)写出点B Q P ,,的坐标(其中Q P ,用含t 的式子表示):(3)依点P 的变化,是否存在t 的值,使PQB △为等腰三角形?若存在,求出所有t 的值;若不存在,说明理由.25.已知P (m ,a )是抛物线2y ax =上的点,且点P 在第一象限. (1)求m 的值(2)直线y kx b =+过点P ,交x 轴的正半轴于点A ,交抛物线于另一点M. ①当2b a =时,∠OPA=90°是否成立?如果成立,请证明;如果不成立,举出一个反例说明;②当4b =时,记△MOA 的面积为S ,求s1的最大值y xO PAM.参考答案一、CBAAC ,DBDBA二、11.3262+ 12。
-7 13。
x x y 25402512+-= 14.0,0<<c a 15。
2)2(-=x y 不唯一16.442+-=x x y 17。
1125米 18。
-2 19。
①②③④ 20.(1)60元,400个或80元200个 (2)7021.解:(1)∵当x=3时 y 取得最小值-2.即抛物线顶点为(3,-2).∴设二次函数解析式为 y =a (x -3)2-2又∵图象在x 轴上截得线段A B 的长是4,∴图象与x 轴交于(1,0)和(5,0)两点∴a (1-3)2-2=0 ∴a=∴所求二次函数解析式为y=x 2-3x+(2)∵ΔP A B 的面积为12个平方单位,|A B |=4∴×4×|P y |=12 ∴|P y |=6 ∴P g=±6但抛物线开口向上,函数值最小为-2,∴P y =-6应舍去,∴P g =6 又点P 在抛物线上,∴6=x 2-3x+x 1=-1,x 2=7即点P 的坐标为(-1,6)或(7,6) 22.解:(1)102-=x y 或642--=x x y将0)b (,代入,得c b =.顶点坐标为21016100(,)24b b b +++-,由题意得21016100224b b b b +++-⨯+=-,解得1210,6b b =-=-.(2)22--=x y23. 由04)334(2=+++x a ax ,解得 31-=x ,ax 342-=.∴ 点A 、B 的坐标分别为(-3,0),(a34-,0).∴ |334|+-=aAB ,522=+=OC AO AC ,=+=22OC BO BC 224|34|+-a.∴9891693432916|334|2222+-=+⨯⨯-=+-=aa a a a AB , 252=AC ,1691622+=aBC .〈ⅰ〉当222BC AC AB +=时,∠ACB =90°. 由222BC AC AB +=, 得)16916(259891622++=+-aa a .解得 41-=a .∴ 当41-=a 时,点B 的坐标为(316,0),96252=AB ,252=AC ,94002=BC .于是222BC AC AB +=.∴ 当41-=a 时,△ABC 为直角三角形.〈ⅱ〉当222BC AB AC +=时,∠ABC =90°.24.[解] (1)94b =3c = (2)(40)B ,(40)Q t , (443)P t t -, (3)存在t 的值,有以下三种情况①当PQ PB =时 PH OB ⊥ ,则GH HB =4444t t t ∴--=13t ∴=②当PB QB =得445t t -= 49t ∴=③当PQ QB =时,如图解法一:过Q 作QD BP ⊥,又PQ QB =则522BP BD t ==又BDQ BOC △∽△BD BQBO BC ∴= 544245t t-∴= 3257t ∴=解法二:作Rt OBC △斜边中线OE 则522BC OE BE BE ===,, 此时OEB PQB △∽△BE OB BQ PB∴= 542445t t∴=-3257t ∴=解法三:在Rt PHQ △中有222QH PH PQ +=222(84)(3)(44)t t t ∴-+=-257320t t ∴-=32057t t ∴==,(舍去) 又01t <<∴当13t =或49或3257时,PQB △为等腰三角形.25.[解] (1)2(0)m a a =>21(0)1m m m =>⇒= (2)①b=2a ,2y kx a =+P 在直线上,则 2a k a a k =+⇒=-(0)k < 22202a k kx a x k k-+=⇒=-=-= A (2,0) 22220(2)(1)0,21kx kx k x x x x x x -=-⇒--=⇒-+===-或M (-1,a ) ∠OPA=90° 即21a =,1a =1k =-,22,y x y x =--= P (1,1) 故存在这样的点P②440kx x k+=⇒=- 又44k a k a +=⇒=-22(4)4(4)40(4)(1)0a x ax ax a x ax x -+=⇒---=⇒+-=∴S=2416132424a a a a =-- 2211111(2)832328a a a S =-=--+∴当2a =时,m a x 118S =C OCO。