考研数学所有知识点合集(概率论+高数+线代)
考研数学知识点汇总

考研数学知识点汇总1. 高等数学部分- 函数、极限与连续- 函数的概念与性质- 极限的定义与性质- 连续函数的性质与应用- 导数与微分- 导数的定义与计算- 微分的概念与应用- 高阶导数- 一元函数积分学- 不定积分与定积分- 积分技巧(换元法、分部积分法等)- 积分在几何与物理中的应用- 空间解析几何- 平面与直线的方程- 空间曲面的方程- 空间向量及其运算- 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 梯度、方向导数与切平面- 多元函数积分学- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 无穷级数- 级数的基本概念与性质- 正项级数与收敛性- 幂级数与泰勒级数- 常微分方程- 一阶微分方程- 二阶微分方程- 线性微分方程的解法2. 线性代数部分- 行列式- 行列式的定义与性质- 行列式的计算方法- 行列式的应用- 矩阵- 矩阵的概念与运算- 矩阵的逆- 矩阵的秩- 向量空间- 向量空间的定义与性质 - 基与维数- 向量的内积与正交性- 线性方程组- 线性方程组的解的结构 - 高斯消元法- 线性方程组的应用- 特征值与特征向量- 特征值与特征向量的定义 - 矩阵的对角化- 实对称矩阵的性质- 二次型- 二次型的定义与性质- 二次型的标准化- 二次型的分类与应用3. 概率论与数理统计部分- 随机事件与概率- 随机事件的概念与运算- 概率的定义与性质- 条件概率与独立性- 随机变量及其分布- 随机变量的定义- 离散型与连续型分布- 常见分布的性质与应用- 多维随机变量及其分布- 联合分布与边缘分布- 条件分布与独立性- 随机向量的期望与方差- 随机变量的数字特征- 数字特征的定义与性质- 数字特征的计算- 大数定律与中心极限定理- 大数定律的概念与应用- 中心极限定理的条件与结论 - 数理统计的基本概念- 总体与样本- 统计量与抽样分布- 参数估计- 点估计与估计量的性质- 区间估计的原理与方法- 假设检验- 假设检验的基本步骤- 显著性水平与P值- 常见检验方法的应用请注意,这个列表是基于一般性的考研数学考试大纲制作的,具体的考试内容可能会根据不同的学校和专业有所差异。
2020年考研数学(高数、线代、概率论)最全公式手册

且 lim (x) lim (x) A, 则 lim f (x) A
xx0
x x0
x x0
2 单调有界定理:单调有界的数列必有极限 3 两个重要极限:
极限存在 的两个准 则:单调 有界准则 和夹逼准 则,两个 重要极 限:
sin x (1) lim 1
x0 x
1
(2) lim(1 x) x e x0
d(ln x) 1 dx x
d(sin x) cos xdx d(cos x) sin xdx
(7) y tan x
y
1 cos2
x
sec2
x
d(tan x) sec2 xdx
(8) y cot x
(9) y sec x (10) y csc x
y
1 sin2
x
csc2
x
d(cot x) csc2 xdx
y sec x tan x
d(sec x) sec x tan xdx
y csc x cot x
d(csc x) csc x cot xdx
(11) y arcsin x (12) y arccos x
y 1 1 x2
重要公式: lim a0 xn a1xn1 an1x an x b0 xm b1xm1 bm1x bm
0ab,00n,
n
m m
, n m
4 几个常用极限特例
lim n n 1,
n
lim arctan x
连续,反之则不成立.即函数连续不一定可导.
Th3: f (x0 ) 存在 f(x0 ) f(x0 )
考研数学所有知识点合集(概率论,高数,线代)

P ( X = k ) = q k −1 p, k = 1,2,3, Λ ,其中 p≥0,q=1-p。
随机变量 X 服从参数为 p 的几何分布。 ⑥均匀分布 b]内, 其密度函数 f ( x ) 在 设随机变量 X 的值只落在[a, [a,b]上为常数 k,即
2、常见分布
①0-1 分布 P(X=1)=p, P(X=0)=q ②二项分布 在 n 重贝努里试验中, 设事件 A 发生的概率为 p 。 事件 A 发 生的次数是随机变量,设为 X ,则 X 可能取值为
F (−∞) = lim F ( x) = 0
x → −∞ x → +∞
,
F (+∞) = lim F ( x) = 1 ;
4° 5°
F ( x + 0) = F ( x) ,即 F ( x) 是右连续的; P ( X = x) = F ( x) − F ( x − 0) 。
X x1, x 2,Λ , xk , Λ | P ( X = xk ) p1, p 2,Λ , pk ,Λ 。
A ⊂ Υ Bi
i =1
n
, P ( A) > 0 ,
P ( Bi / A) =
P( Bi ) P( A / Bi )
∑ P( B
j =1
n
,i=1,2,…n。
j
) P( A / B j )
m A所包含的基本事件数 = = n 基本事件总数
此公式即为贝叶斯公式。
2、五大公式(加法、减法、乘法、全概、 贝叶斯)
,k = 0.1 , 这就是 (0-1)
分布,所以(0-1)分布是二项分布的特例。 ③泊松分布 设随机变量 X 的分布律为
P ( x < X ≤ x + dx) ≈ f ( x)dx
考研数学概率论重要考点总结

考研数学概率论重要考点总结概率论是考研数学中的重要考点之一。
下面是概率论中的一些重要考点总结。
一、概率基本概念1. 随机试验与样本空间2. 事件与事件的关系3. 概率的定义、性质和运算法则4. 条件概率及其性质二、随机变量与概率分布1. 随机变量的概念及其分类2. 离散型随机变量与连续型随机变量3. 随机变量的分布函数和密度函数4. 两个随机变量的独立性5. 随机变量的函数及其分布三、数学期望与方差1. 数学期望的概念及其性质2. 数学期望的计算3. 方差的概念及其性质4. 方差的计算5. 协方差和相关系数四、大数定律与中心极限定理1. 大数定律的概念及其性质2. 切比雪夫不等式3. 中心极限定理的概念及其性质4. 泊松定理5. 极限定理的应用五、随机变量的常见分布1. 二项分布、泊松分布2. 均匀分布、指数分布3. 正态分布4. 伽马分布、贝塔分布5. t分布、F分布、卡方分布六、矩母函数与特征函数1. 矩母函数的概念及性质2. 矩母函数的计算3. 特征函数的概念及性质4. 特征函数的计算5. 中心极限定理的特征函数证明七、样本与抽样分布1. 随机样本的概念及其性质2. 样本统计量的概念及其性质3. 样本均值和样本方差4. 正态总体抽样分布5. t分布,x^2分布,F分布的定义及其应用八、参数估计与假设检验1. 点估计的概念及性质2. 极大似然估计3. 置信区间的概念及计算4. 参数假设检验的概念及流程5. 正态总体均值的假设检验九、回归与方差分析1. 回归分析的概念及方法2. 多元回归模型、回归模型的检验3. 方差分析的概念及方法4. 单因素方差分析、双因素方差分析以上是概率论中的一些重要考点总结。
在备考过程中,需要对这些知识点有一定的掌握,并进行大量的练习和习题训练,只有充分理解和掌握这些知识,并能运用到实际问题中,才能在考试中取得好成绩。
考研大学的数学知识点总结

考研大学的数学知识点总结
一、数学分析
1. 函数的极限与连续
2. 函数的导数与微分
3. 不定积分与定积分
4. 微分方程
5. 级数
6. 多元函数微分学
二、线性代数
1. 行列式与矩阵
2. 线性方程组
3. 矩阵的特征值与特征向量
4. 空间解析几何
5. 线性空间
三、概率统计
1. 随机变量与概率分布
2. 多个随机变量的概率分布
3. 统计推断
4. 假设检验
5. 相关与回归分析
四、离散数学
1. 集合与逻辑
2. 图论
3. 树与树的应用
4. 排列组合
5. 代数系统
五、常微分方程
1. 一阶常微分方程的基础理论
2. 高阶常微分方程与常系数齐次线性微分方程
3. 变系数线性微分方程
4. 高阶线性常系数齐次线性微分方程
5. 常微分方程的应用
六、数学建模
1. 数学建模的基本概念
2. 数学建模的基本方法
3. 实际问题的数学建模
4. 建立模型的思路与方法
5. 数学建模的应用
七、复变函数
1. 复数的基本概念
2. 复变函数的基本概念
3. 复变函数的解析性
4. 几何意义与应用
5. 复变函数的应用
以上是考研大学数学知识点的总结。
希望能对大家的学习有所帮助。
数学考研常用知识点归纳

数学考研常用知识点归纳数学是考研中非常重要的科目之一,涵盖了高等数学、线性代数、概率论与数理统计等多个领域。
以下是一些数学考研中常用的知识点归纳:1. 高等数学:- 极限:数列极限、函数极限、无穷小量阶的比较。
- 导数与微分:基本导数公式、高阶导数、隐函数与参数方程的导数。
- 微分中值定理:罗尔定理、拉格朗日中值定理、柯西中值定理。
- 积分:不定积分、定积分、换元积分法、分部积分法、反常积分。
- 级数:正项级数的收敛性、幂级数、泰勒级数展开。
- 多元函数微分:偏导数、全微分、多元函数的极值问题。
- 重积分与曲线积分、曲面积分:二重积分、三重积分、第一类曲线积分、第二类曲线积分、第一类曲面积分、第二类曲面积分。
2. 线性代数:- 矩阵:矩阵的运算、矩阵的秩、矩阵的特征值与特征向量。
- 线性空间:向量空间的概念、基与维数、线性相关与线性无关。
- 线性变换:线性变换的定义、矩阵表示、核与像。
- 特征值问题:特征多项式、特征值与特征向量的求解。
- 正交性:正交矩阵、正交变换、正交投影。
- 二次型:二次型的矩阵表示、标准形、惯性指数。
3. 概率论与数理统计:- 随机事件与概率:事件的概率、条件概率、全概率公式、贝叶斯公式。
- 随机变量及其分布:离散型随机变量、连续型随机变量、分布函数、概率密度函数。
- 多维随机变量:联合分布、边缘分布、条件分布、独立性。
- 数理统计:样本与总体、样本均值、样本方差、大数定律、中心极限定理。
- 参数估计:点估计、区间估计、最小二乘估计。
- 假设检验:假设检验的基本原理、常见检验方法、p值。
4. 常考题型与解题技巧:- 选择题:注意选项之间的逻辑关系,利用排除法。
- 填空题:注意题目要求的格式,合理猜测可能的数值。
- 计算题:注意计算过程的准确性,避免粗心大意。
- 证明题:理解定理的证明过程,掌握证明题的常见思路。
结束语:数学考研的知识点繁多,但只要系统地复习,掌握基本概念、基本原理和基本方法,通过大量的练习来提高解题能力,就能够在考试中取得好成绩。
考研数学知识点定理汇总
考研数学知识点定理汇总
以下是一些考研数学常见的知识点和定理的汇总:
1. 集合论知识点:
- 集合的定义和运算
- 集合的包含关系和等价关系
- 幂集和集合的基数
- 基本集合运算律和德摩根定律
2. 矩阵与行列式知识点:
- 矩阵的定义和运算
- 矩阵的特征值和特征向量
- 行列式的定义和性质
- 克莱姆法则和矩阵的逆
3. 数理统计知识点:
- 随机变量的概念和性质
- 概率分布函数和密度函数
- 期望、方差和协方差
- 大数定律和中心极限定理
4. 导数与微积分知识点:
- 一元函数的导数和微分
- 高阶导数和泰勒展开
- 一元函数的极值和最值
- 二重、三重积分和曲线积分
5. 线性代数知识点:
- 矩阵的秩和线性无关性
- 线性方程组的解的个数和解的结构
- 线性变换和线性空间
- 内积空间和正交变换
6. 常微分方程知识点:
- 一阶常微分方程的解法和应用
- 高阶常微分方程的解法和应用
- 线性微分方程的解法和应用
- 隐式函数和显式解
这些知识点和定理是考研数学中常见且重要的内容,考生可以基于这个汇总进行复习和学习。
同时,也建议结合专业教材进行系统的学习和理解。
考研用到的高数基础知识
考研用到的高数基础知识高等数学是考研数学的重要部分,那些重点难点在下文中均有讲述,复习要掌握好一些基础知识. 考研必备高数基础知识在下文列出.第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)3、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解.2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)考研高数怎样学?考研数学考三个科目,分别为高等数学、线性代数、概率论与数理统计. 但是备考数学的考生们总喜欢从高数开始复习,这是为什么呢?原因有二:其一,高等数学在试卷中所占分值最高,达整张卷面分值的百分之五十六,而且难度也居三科之首. 其二,科目之间的先后联系导致先复习高数.线性代数和概率论与数理统计,尤其是概率论与数理统计是以高数为基础的学科,不学高数难以很明白的学习后继学科,大学数学在课程设置上也是按次顺序进行,可见其科学性.为了更好的了解考研高等数学这一科目,在复习它之前我们应该了解一下它的知识体系是很有必要的. 这样我们可以有一个全局观,能清晰的知道每一章节之间的联系和侧重点.高等数学从大的方面分为一元函数微积分和多元函数微积分.一元微积分中包括极限、导数、不定积分、定积分;多元函数微积分包括多元函数微分学(主要是二元函数)和多元函数积分学. 另外还有微分方程和级数,这两章内容可看成是微积分的应用.除此之外还有向量代数与空间解析几何. 其中数一单独考查的内容为向量代数与空间解析几何和多元函数积分学中的三重积分、曲线积分、曲面积分,另外是数一数二数三公共部分,公共部分中也有一些细微差别,下面我们分章去介绍.一、一元微积分1.极限极限是高等数学中非常重要的一章,此概念贯穿整个高等数学始末,导数、定积分、偏导数、多元函数积分、级数等概念都是用极限来定义的.正是有了极限的概念数学才从有限升华到无限,这也是高等数学与初等数学的分水岭. 在考研数学中极限也是每年必考的内容,直接考查的分值高达14-18分.2.倒数有了极限的概念,那么导数的概念就有了理论根基,导数是一元函数微分学的灵魂,在考研中这章是重点,每年必考,而且灵活性和综合性较强. 这一章可从导数微分概念、计算、应用、中值定理三方面学复习.3.不定时积分不定积分本质上是求导的逆运算,本章重点是计算,其重要性怎样描述都不为过. 因为积分是决定高数学习成败的一个关键章节,后继章节如定积分、二重积分、三重积分、曲线曲面积分、微分方程中都会用到.4.定积分定积分是微积分所说的积分,除了掌握基本概念,还要掌握其计算相关内容及定积分的应用,每年必考. 微分方程本质上还是不定积分的计算. 二、多元微积分多元函数的微积分体系上与一元类似,微分学包括基本概念(二重极限、偏导数、可微)、偏导数计算、偏导数应用.多元函数积分学包括二重积分、三重积分、曲线曲面积分,考试重点在计算,属于每年必考题目. 最后一章级数包括三部分常数项级数(主要考查敛散性判别),幂级数(主要考查展开与求和)、傅里叶级数(数一单独考查),本章也属必考内容.►高数该怎样学?虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢.由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸. 同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.考研数学怎样自学成功?(一)抓住主干,突破重点,注重综合虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢. 以高等数学为例,由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸.同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.(二)注重联想记忆,筑起框架体系由于考试时间紧,复习任务重,知识点零散,很多知识都是会了但过了一段时间又忘了,想要做到长效记忆,就必须注重联想记忆,建立知识框架体系. 以线性代数为例,线性代数作为一门全新的学科,知识点分散,概念抽象,性质定理众多,如何快速的掌握所有考试要求的知识,这就需要我们先筑起知识框架,建立知识点间的联系,看到任何一个概念的时候都要多去发散,联想出跟它相关的所有知识点.比如当我们看到实对称矩阵的时候,我们就要想到实对称矩阵的三条重要性质:①实对称矩阵的特征值为实数,它主要应用于已知一个关于方阵A的矩阵方程去求矩阵A的特征值;②实对称矩阵不同特征值对应的特征向量相互正交,它在考试中应用的非常频繁,基本题目出现实对称矩阵八九不离十就是要利用这条性质;③实对称矩阵必能相似对角化,它主要用来判断一个矩阵是否可以相似对角化的问题. 只要这样重复的联想记忆,你就会对所有的知识点形成条件反射,运用起来才会毫无障碍.(三)突出核心考点,加强题型训练根据考研数学考试历年命题规律,有些知识点考查的相当频繁,甚至于每年都考,对于这样的知识点我们应该予以重视,作为我们最后冲刺阶段主攻的地方,通过加强该部分知识点大量题型训练,总结对应的解题技巧和方法,从而实现对该知识点的突破.以概率论与数理统计为例,二维连续型随机变量是历年考试的重点,因此与该知识点相关的所有题型都要掌握,相关题型主要有:①已知联合概率密度求边缘概率密度、条件概率密度,进而求随机变量的数字特征;②已知联合概率密度求二维随机变量落在区域D内的概率;③判断两个随机变量是否独立等,通过对相关题型的大量训练,总结解题套路,我们就能攻克该知识点.考研数学总体复习计划基础阶段基础阶段的主要任务是复习基础知识,掌握基本解题能力. 主要工作是把课本上的重要公式、定理、定义概念等熟练掌握,将课本例题和习题研究透彻. 复习完基础知识之后要做课后习题,进行知识巩固,确保能够准确、深刻地理解每一个知识点.【切忌】1.先做题再看书.2.做难题. 这一阶段不易做难题. 难的题目往往会打击考生基础阶段复习的信心,即使答案弄懂了也达不到复习的效果.【复习建议】1.以教材中的例题和习题为主,不适宜做综合性较强的题目. 做习题时一定要把题目中的考点与对应的基础知识结合起来,达到巩固基础知识的目的,切忌为了做题而做题.2.在考研大纲出来之前,不要轻易放弃任何一个知识点. 在基础复习阶段放弃的知识点,非常有可能成为后期备考的盲点,到最后往往需要花更多的时间来弥补.3.准备一个笔记本,用来整理复习当中遇到过的不懂的知识点. 弄懂后,写上自己的理解,并且将一些易出错、易混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,避免遗忘出错.4.对于基本知识、基本定理和基本方法,关键在理解,并且存在理解程度的问题. 所以不能仅仅停留在“看懂了”的层次上. 对一些易推导的定理,有时间一定要动手推一推;对一些基本问题的描述,特别是微积分中的一些术语的描述,一定要自己动手写一写. 这些基本功都很重要,到临场考试时就可以发挥作用了.PS:复习不下去的时候建议看看数学视频.【基础阶段复习教材】高数:同济版,讲解比较细致,例题难度适中,涉及内容广泛,是当前高校中采用比较广泛的教材,配套的辅导教材也很多.线代:同济版,轻薄短小,简明易懂,适合基础不好的学生;清华版,适合基础比较好的学生.概率论与数理统计:浙大版,基本的题型课后习题都有覆盖.强化阶段强化阶段的主要任务是建立完整的知识体系,提高综合解题能力.强化阶段的复习是提高考试成绩的关键,但是,如果没有基础阶段的知识储备,强化阶段的复习是很难取得良好效果的. 所以小伙伴们一定要注意,数学复习是环环相扣、步步承接的. 【强化阶段复习资料】以数学复习全书和历年考研数学真题为主. 要把考研中的题型归类练习,熟练掌握每一类题型的解题方法.(一)强化训练第一轮以题型与常考知识模块复习为主,通过练习测试巩固所学知识.【学习方法】1.使用教材配套的复习指导或习题集,通过做题巩固知识,遇到不会或似懂非懂的题目不要直接看参考答案,应当先温习教材相关章节,弄懂基本知识.2.按要求完成练习测试后,要留有一些时间对教材的内容进行梳理,对重点、难点做好笔记,以便之后的复习. 对于典型性、灵活性、启发性和综合性的题目要特别注重理解思路和技巧的培养.3.试题虽千变万化,知识结构却基本相同,题型也相对固定. 归纳题型与常考知识模块以便提高解题的针对性,进而提高解题速度和准确性.(二)强化训练第二轮通过综合基础题及考研真题来查漏补缺,训练解题速度.【需要做到】1.加大对综合题和应用题解题能力的训练,力求在解题思路上有所突破. 在综合题的解答中,迅速找到解题的切入点是关键,为此需要熟悉规范的解题思路,以便能够对做过的题目进行归纳分类、延伸拓展.2.在复习备考时对所学知识进行重组,搞清有关知识的纵向和横向联系,转化为自己掌握的东西. 应用题的解题步骤是认真理解题意,建立相关数学模型,如微分方程、函数关系、条件极值等,将其转化为某个数学问题求解.【注】基础阶段与强化阶段的终极目标是对考研数学内容建立一个知识网,熟练掌握考研各常见考试题型与解题方法.冲刺阶段强化阶段完成后,实际上考研数学的复习已经基本完成. 这个时候大家应该已经熟悉考研数学中的每一类题型以及对应的解题方法,而且已经具备较强的计算能力. 因此抽时间要做真题、模拟题培养考试状态,进入冲刺阶段的复习.【注意事项】冲刺阶段需要通过真题和模拟题的训练体验实战感觉,找到做题技巧并摸索出题特点,以便更利于临场发挥. 这一阶段要做到:1.要记忆,不要脱离教材. 对考研数学必需掌握的基本概念、公式、定理进行记忆,尤其是平时记忆模糊的公式,都需要重新回到教材找出原型来记忆.2.要总结、思考. 这一阶段不能搞题海战术,需要对上一轮复习中做过的历年真题和模拟题进行总结(包括理清基本的解题思路,对遗忘的知识点查漏补缺)3.要练习考研数学的套题. 坚持练套题到最后,手不能生. 最后阶段一定要做高质量的模拟题,尽量少做难题、偏题、怪题.【冲刺阶段复习资料】这一阶段的主要任务是查漏补缺,培养考试状态. 所以,建议的复习资料是基础阶段和强化阶段总结的复习笔记,历年真题与模拟题.。
考研高数每章总结知识点
考研高数每章总结知识点一、函数与极限1. 函数的概念与性质2. 一元函数的极限3. 函数的连续性4. 导数与微分5. 多元函数的极限6. 多元函数的连续性7. 偏导数与全微分在这一章节中,我们需要深入理解函数的概念与性质,掌握一元函数的极限和导数与微分的计算方法,以及多元函数的极限、连续性、偏导数与全微分的性质和应用。
二、微分学1. 函数的微分学2. 隐函数与参数方程的微分法3. 高阶导数与微分的应用4. 泰勒公式与函数的逼近5. 不定积分6. 定积分与广义积分7. 定积分的应用在这一章节中,我们需要掌握函数的微分学的相关知识,包括隐函数与参数方程的微分法、高阶导数与泰勒公式的应用,以及不定积分、定积分与广义积分的计算方法及其应用。
三、级数与一些其他杂项1. 数项级数2. 幂级数3. 函数项级数4. 傅立叶级数5. 常微分方程在这一章节中,我们需要掌握数项级数、幂级数和函数项级数的相关知识,包括傅立叶级数的表示和计算方法,以及常微分方程的解法和应用。
四、空间解析几何1. 空间直角坐标系2. 空间点、向量和坐标3. 空间中的直线和平面4. 空间中的曲线5. 空间中的曲面6. 空间曲线和曲面的切线与法线在这一章节中,我们需要掌握空间中的点、向量和坐标的表示和计算方法,以及空间中的直线、平面、曲线和曲面的性质和应用,包括曲线和曲面的切线与法线的计算方法。
五、多元函数微分学1. 函数的极值2. 条件极值与 Lagrange 乘数法3. 二重积分4. 三重积分5. 重积分的应用在这一章节中,我们需要掌握多元函数的极值和条件极值的求解方法,包括 Lagrange 乘数法的应用,以及二重积分和三重积分的计算方法及其应用。
总结起来,考研高数的每个章节都包含了大量的知识点,要想取得好成绩就需要对每个章节的知识点有一个深入的了解和掌握。
在备考的过程中,应该注重理论知识的掌握和应用能力的提升,多做习题和模拟题,以增强对知识点的理解和记忆。
研究生数学复试知识点总结
研究生数学复试知识点总结一、高等数学1. 极限与连续极限的定义、性质、极限存在与否、无穷大与无穷小、洛必达法则、泰勒公式、连续的定义、连续函数的性质2. 导数与微分导数与微分的定义、性质、求导法则、高阶导数、函数的微分、导数与微分的应用3. 积分学不定积分、定积分、积分性质、积分方法、定积分的应用、广义积分、变上限积分4. 多元函数微积分偏导数、全微分、多元函数的极值与最优化、隐函数与参数方程求导、重积分5. 线性代数行列式、矩阵与行列式、向量与矩阵、向量空间及其性质、线性变换二、概率论与数理统计1. 随机事件与概率概率的基本概念、古典概型与几何概型、事件的运算、条件概率、独立事件、重复独立实验、伯努利概型与二项分布2. 随机变量及其分布随机变量的定义、分布函数、密度函数、常见离散型、连续型随机变量及其分布、随机变量的函数的分布3. 多维随机变量及其分布二维随机变量的联合分布、边缘分布、条件分布、独立性、随机变量的函数的分布4. 数理统计样本与统计量、参数估计、区间估计、假设检验、方差分析、相关性与回归分析三、数学分析1. 数列的极限数列的概念、极限的定义、数列极限的性质、收敛子列、无穷小量、无穷大量2. 函数的极限函数极限的概念、极限存在性与运算法则、函数极限的性质、无穷小量、无穷大量3. 函数的连续性连续函数的概念、连续函数的性质、连续函数的运算、间断点与间断函数4. 导数与微分函数的导数与微分的定义、性质、求导法则、高阶导数、微分中值定理5. 积分学不定积分、定积分、积分性质、积分方法、变上限积分、定积分的应用、广义积分6. 一元函数积分学变限积分、牛顿-莱布尼茨公式、定积分的性质、反常积分、积分中值定理7. 函数级数函数项级数的概念、级数收敛性的判别法、幂级数及其收敛区间四、常微分方程1. 一阶微分方程一阶微分方程的基本概念、可分离变量方程、一阶线性微分方程、常系数齐次线性微分方程2. 高阶线性微分方程高阶线性微分方程的概念、线性齐次微分方程、非齐次微分方程、常系数齐次线性微分方程3. 变参数线性微分方程非齐次线性微分方程的特解、常数变易法、欧拉方程五、离散数学与组合数学1. 逻辑与命题命题的概念、命题的逻辑联结词、充分必要条件、充要条件、充分条件、等价命题2. 集合论集合及其运算、集合的基本关系、集合的基数3. 代数结构代数系统及其性质、子群、剩余类4. 图论图、连通性、欧拉图、哈密顿图、树、生成树5. 抽象代数群、环、域的概念、子群、同态映射、同态定理六、数学建模1. 数学建模基础数学建模的基本概念、建模方法2. 数学建模案例分析典型数学建模案例、建模过程与方法、模型的评价与改进七、其他1. 离散数学图论、逻辑、集合论、代数系统2. 函数分析度量空间、赋范空间、拓扑空间3. 实分析Lebesgue积分、实变函数、泛函分析4. 复分析复变函数、解析函数总结:以上是研究生数学复试的知识点总结,希望大家能够认真学习,掌握好这些知识点,取得优异的成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1° f (x) ≥ 0 。
+∞
∫ 2° −∞ f (x)dx = 1。
Edited by 杨凯钧 2005 年 10 月
考研数学知识点-概率统计
+∞
∫ F (+∞) = −∞ f (x)dx = 1的几何意义;在横轴上面、密度
X ~ B(n, p) 。
曲线下面的全部面积等于 1。
∫ ∫ P( x1 < X < x2 ) =
x2 f (x)dx =
x1
x2 1 dx = x2 − x1
x1 b − a
b−a 。
参数 µ = 0 、σ = 1时的正态分布称为标准正态分布,记
为 X ~ N (0,1) ,其密度函数记为
⑦指数分布
设随机变量 X 的密度函数为
λe−λx ,
x ≥ 0,
考研数学知识点-概率统计
一. 随机事件和概率
1、概率的定义和性质
(1)概率的公理化定义
设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一
个实数 P(A),若满足下列三个条件: 1° 0≤P(A)≤1, 2° P(Ω) =1
3° 对于两两互不相容的事件 A1 , A2 ,…有
Υ ∑ P⎜⎜⎝⎛
4° F (x + 0) = F (x) ,即 F (x) 是右连续的;
5° P( X = x) = F (x) − F (x − 0) 。
(3)连续型随机变量的密度函数
定义 设 F (x) 是随机变量 X 的分布函数,若存在非负函 数 f (x) ,对任意实数 x ,有
x
∫ F(x) = −∞ f (x)dx ,
P(A)={(ω1 ) Υ (ω 2 ) ΥΛ Υ (ω m )}
= P(ω1 ) + P(ω 2 ) + Λ + P(ω m )
=
m n
=
A所包含的基本事件数 基本事件总数
2、五大公式(加法、减法、乘法、全概、
贝叶斯)
(4)全概公式
设事件 B1, B2,Λ , Bn 满足
1 ° B1, B2,Λ , Bn 两 两 互 不 相 容 ,
A 当作观察的“结果”,而 B1 , B2 ,…, Bn 理解为“原
因”,则贝叶斯公式反映了“因果”的概率规律,并作出
了“由果朔因”的推断。
(1)加法公式 P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B)
(2)减法公式 P(A-B)=P(A)-P(AB)
f (x) =
0,
x < 0,
ϕ(x) =
1
− x2
e2
2π , − ∞ < x < +∞ ,
分布函数为
∫ Φ(x) 1
x −t2
e 2 dt
2π −∞
。Φ(x) 是不可求积函数,其函数值,
其中 λ > 0 ,则称随机变量 X 服从参数为 λ 的指数分布。
X 的分布函数为
已编制成表可供查用。 φ(x)和 Φ(x)的性质如下: 1° φ(x)是偶函数,φ(数为
0,
x<a,
x−a, b−a
a≤x≤b
Edited by 杨凯钧 2005 年 10 月
考研数学知识点-概率统计
∫x
F(x) = f (x)dx = −∞ 1,
x>b。
F(x) =
∫ 1
2πσ
e dt x
− (t−µ)2 2σ 2
−∞
。。
当 a≤x1<x2≤b 时,X 落在区间( x1, x2 )内的概率为
则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函 数或密度函数,简称概率密度。 f (x) 的图形是一条曲线,
称为密度(分布)曲线。
由上式可知,连续型随机变量的分布函数 F (x) 是连续函
数。 所以,
P(x1 ≤X≤x2)=P(x1 <X≤x2)=P(x1 ≤X<x2)=P(x1 <X<x2)=F(x2)−F(x1)
F(x) =
1 − e−λx , 0,
记住几个积分:
+∞
∫ xe−xdx = 1,
0
+∞
∫ x n−1e−x dx = (n − 1)!
P( A) P( A)
所以这与我们所理解的独立性是一致的。
若事件 A 、B 相互独立,则可得到 A 与 B 、A 与 B 、 A 与 B 也都相互独立。(证明)
由定义,我们可知必然事件 Ω 和不可能事件 Ø 与任
何事件都相互独立。(证明) 同时,Ø 与任何事件都互斥。
(2)多个事件的独立性 设 ABC 是三个事件,如果满足两两独立的条件,
能用分布率表达。例如日光灯管的寿命 X ,P( X = x0) = 0 。
所以我们考虑用 X 落在某个区间 (a, b] 内的概率表示。 定义 设 X 为随机变量, x 是任意实数,则函数 F(x) = P(X ≤ x)
2
3°
F (−∞) = lim F (x) = 0
,
x→−∞
F (+∞) = lim F (x) = 1; x→+∞
③泊松分布
它在连续型随机变量理论中所起的作用与 P( X = xk) = pk
设随机变量 X 的分布律为
在离散型随机变量理论中所起的作用相类似。
P( X = k) = λk e−λ , λ > 0 , k = 0,1,2Λ ,
k!
E → ω, Ω → A → P( A), (古典概型,五大公式,独立性)
∞ i =1
Ai ⎟⎟⎠⎞
=
∞ i =1
P( Ai)
常称为可列(完全)可加性。
则称 P(A)为事件 A 的概率。
(2)古典概型(等可能概型)
1° Ω = {ω1,ω 2 Λ ω n },
2°
P(ω1 )
=
P(ω 2 )
=Λ
P(ω n )
=
1 n
。
设任一事件 A ,它是由ω1,ω 2 Λ ω m 组成的,则有
其中
则称随机变量 X 服从参数为 n , p 的二项分布。记为
3
⑥均匀分布
设随机变量 X 的值只落在[a,b]内,其密度函数 f (x) 在
[a,b]上为常数 k,即
f
(
x)
=
⎧k, ⎩⎨0,
a≤x≤b 其他,
其中 k= 1 , b−a
则称随机变量 X 在[a,b]上服从均匀分布,记为 X~U(a,
当 B ⊂ A 时,P(A-B)=P(A)-P(B)
当 A=Ω时,P( B )=1- P(B)
(3)条件概率和乘法公式
定义 设 A、B 是两个事件,且 P(A)>0,则称 P( AB) 为事件 P( A)
A 发生条件下,事件 B 发生的条件概率,记为
P(B / A) = P( AB) 。 P( A)
n
Υ A ⊂ Bi
2°
i=1 , P( A) > 0 ,
则
P(Bi / A) =
P(Bi )P( A / Bi )
n
,i=1,2,…n。
∑ P(Bj )P(A/ Bj )
j =1
此公式即为贝叶斯公式。
P(Bi ) ,( i = 1 ,2 ,…,n ),通常叫先验概率。P(Bi / A) , ( i = 1 , 2 ,…, n ),通常称为后验概率。如果我们把
k (0 ≤ k ≤ n) 次的概率,
F (x1) ≤ F (x2) ;
二. 随机变量及其分布
1、随机变量的分布函数
(1)离散型随机变量的分布率
设离散型随机变量 X 的可能取值为 Xk(k=1,2,…)且取
各个值的概率,即事件(X=Xk)的概率为 P(X=xk)=pk,k=1,2,…,
则称上式为离散型随机变量 X 的概率分布或分布律。有
x+h
P( X = x) ≤ P(x < X ≤ x + h) = ∫ f (x)dx x
令 h → 0 , 则 右 端 为 零 , 而 概 率 P(X = x) ≥ 0 , 故 得 P(X = x) = 0 。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是 不可能事件;同理,必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
点,随机变量 X 在 xk 处的概率就是 F(x) 在 xk 处的跃
度。 分布函数具有如下性质:
1° 0 ≤ F (x) ≤ 1, − ∞ < x < +∞ ;
1 − p = q , 用 Pn(k) 表 示 n 重 伯 努 利 试 验 中 A 出 现
2° F (x) 是单调不减的函数,即 x1 < x2 时,有
1
Edited by 杨凯钧 2005 年 10 月
考研数学知识点-概率统计
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
称为随机变量 X 的分布函数。
并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。
P(a < X ≤ b) = F (b) − F (a) 可以得到 X 落入区
④超几何分布
P(X
=
k)
=
C
k M
•
C
n−k N −M
C
n N
k = 0,1,2Λ ,l , l = min(M , n)
随机变量 X 服从参数为 n,N,M 的超几何分布。