第四章泊松过程2
泊松过程poisson

研究如何将泊松过程与其他 随机过程进行更有效的结合,
以更好地描述复杂现象。
探索如何利用机器学习方法改 进泊松过程的参数估计和模型 选择,以提高模型的预测能力
和解释性。
THANKS
泊松分布的性质
泊松分布具有指数衰减的性质, 即随着时间的推移,事件发生的
概率逐渐减小。
泊松分布的期望值和方差都是参 数λ(λ > 0),即E(X)=λ, D(X)=λ。
当λ增加时,泊松分布的概率密 度函数值也增加,表示事件发生
的频率更高。
泊松分布的应用场景
通信网络
泊松分布用于描述在一定 时间内到达的电话呼叫或 数据包的数量。
生物信息学中的泊松过程
在生物信息学中,泊松过程用于描述基因表达、蛋白质相互 作用等生物过程中的随机事件。例如,基因表达数据可以用 泊松过程来分析,以了解基因表达的模式和规律。
通过泊松过程,生物信息学家可以识别出与特定生物学功能 或疾病相关的基因,为药物研发和个性化医疗提供有价值的 线索。
06 泊松过程的扩展与展望
交通流量分析
泊松分布用于描述在一定 时间内经过某个地点的车 辆数量。
生物学和医学研究
泊松分布可以用于描述在 一定时间内发生的事件数 量,例如基因突变或细菌 繁殖。
04 泊松过程的模拟与实现
离散时间的模拟
01
定义时间间隔
首先确定模拟的时间区间,并将其 划分为一系列离散的时间点。
随机抽样
使用随机数生成器,在每个时间间 隔内随机决定是否发生事件。
有限可加性
在有限的时间间隔内,泊松过 程中发生的事件数量服从二项
分布。
与其他随机过程的比较
与马尔可夫链的比较
泊松过程

i 1
i
设 E[ X n ] ,由于Xn为非负随机变量且不恒为0,所以 有 0 。 因为Sn代表n次更新所花费的时间,则 N (t ) sup{n; Sn t}
由于>0,故当n∞时,要求Sn 趋于∞;反之,若Sn∞, 必然要求n ∞ ,这就说明在有限长的时间内只能出现 有限次更新。 t 有限时:
§4.4 泊松过程
一、计数过程 1、定义:在[0,t]内出现事件A的总数所组成的过程{N(t), t≥0}称为计数过程。计数过程{N(t), t≥0}应满足下列条件: (1) N(t) ≥0; (2) N(t) 一个是正整数; (3)如果两个时刻s,t, 且s<t, 则N(s)≤N(t)。 (4)对于s < t,N(t)-N(s)代表在时间间隔[s,t]内出 现事件A的次数。
[t 2、设有 t1 t 2 t3 t 4 , 1 , t 2 )和[t 3 , t 4 ) ,是两个不相交 的时间间隔,若 [ N (t 2 ) N (t1 )]与[ N (t 4 ) N (t3 )] 相互统计 独立,则N(t)为独立增量计数过程。
3、若 [ N (t s) N (t )] 仅与s有关而与t无关,则称N(t)为 平稳增量计数过程。
由福克-普朗克方程可得: dp j (t ) j 1 p j 1 (t ) ( j j ) p j (t ) j 1 p j 1 (t ) dt 直接求解以上方程组比较困难,一般仅讨论平稳分布, t∞时的极限情况。 二、排队和服务问题 1、基本概念:任何排队过程包括三个不同的历程: 1)到达过程 2)排队过程 3)服务过程 排队服务系统一般用G1/G2/n/m 表示,其中: G1— 顾客到达服从G1分布; G2—服务时间服从G2分布;n — 服务员数目;m —顾客排队容许长度(或系统容量),m = ∞时不写出,为等待制系统。
随机过程——泊松过程(2)

4.2.2 复合Poisson过程
二、定义
设 N t , t 0 为一齐次 Poisson 过程,n , n 1是 i.i.d 序列,且与N t , t 0相互独立,令
Yt n1 n
Nt
Y 则称随机过程 t , t 0 为复合 Poisson 过程.
• 4.1 到达时间间隔与等待时间分布 • 4.1’ Poisson过程的分解 • 4.2 非齐次和复合Poisson过程
4.1’ Poisson过程的分解
一、Poisson过程的分解
N t , t 0为 一 齐 次 sson 程, 有 时 会 Poi 过
将 事 件 分 类 ,型 和II型 , 事 件 被 分 为 哪 I 一类依赖于发生的时,即事件发生在 间 时 刻s, 则 以 概 率 s 被 归 为 型 , 以 P I 的归类独立,则有如结论: 下
s 0
P0 t , s 1 t s h oh
ln P0 t , s t x dx m t s m t
P0 t , s e
m t s m t
再来看k 1的情形
4.2.1 非齐次P机过程 N t 是一个计数过程,若满 足
(2)N t 是独立增量过程 .
(1) N 0 0
(4)h 0,PN t h N t 1 t h oh
则 称N t 具 有 强 度 函 数t 的 非 齐 次 为 Poisson 程 . 过
u t s P0 t , s t
k 1 e iuk t s Pk t , s t s Pk 1 t , s
iuk iu
泊松过程

泊松过程一种累计随机事件发生次数的最基本的独立增量过程。
例如随着时间增长累计某电话交换台收到的呼唤次数,就构成一个泊松过程。
泊松过程是由法国著名数学家泊松(Poisson, Simeon-Denis)(1781—1840)证明的。
1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来Α.Я.辛钦于50年代在服务系统的研究中又进一步发展了它。
Poisson过程(Poisson process,大陆译泊松过程、普阿松过程等,台译卜瓦松过程、布瓦松过程、布阿松过程、波以松过程、卜氏过程等),是以法国数学家泊松(1781 - 1840)的名字命名的。
泊松过程是随机过程的一种,是以事件的发生时间来定义的。
我们说一个随机过程N(t) 是一个时间齐次的一维泊松过程,如果它满足以下条件:在两个互斥(不重叠)的区间内所发生的事件的数目是互相独立的随机变量。
在区间内发生的事件的数目的概率分布为:其中λ是一个正数,是固定的参数,通常称为抵达率(arrival rate)或强度(intensity)。
所以,如果给定在时间区间之中事件发生的数目,则随机变数呈现泊松分布,其参数为。
更一般地来说,一个泊松过程是在每个有界的时间区间或在某个空间(例如:一个欧几里得平面或三维的欧几里得空间)中的每一个有界的区域,赋予一个随机的事件数,使得•在一个时间区间或空间区域内的事件数,和另一个互斥(不重叠)的时间区间或空间区域内的事件数,这两个随机变数是独立的。
•在每一个时间区间或空间区域内的事件数是一个随机变数,遵循泊松分布。
(技术上而言,更精确地来说,每一个具有有限测度的集合,都被赋予一个泊松分布的随机变数。
)泊松过程是莱维过程(Lévy process)中最有名的过程之一。
时间齐次的泊松过程也是时间齐次的连续时间Markov过程的例子。
一个时间齐次、一维的泊松过程是一个纯出生过程,是一个出生-死亡过程的最简单例子。
泊松过程资料

05
泊松过程的未来研究方向
泊松过程在新兴领域的应用前 景
• 新兴领域的泊松过程应用 • 如人工智能、大数据等领域,泊松过程可以用于分析和优化事 件驱动的随机过程 • 如物联网、车联网等领域,泊松过程可以用于分析和优化信息 传输和信号干扰等随机过程
泊松过程的理论研究进展
• 泊松过程的理论研究进展 • 如高维泊松过程、非齐次泊松过程等,拓展泊松过程的理论研 究范围 • 如泊松过程的极限理论、泊松过程的稳定性理论等,深入研究 泊松过程的性质和规律
泊松过程的性能评估
泊松过程的性能评估
• 对泊松过程的控制和优化效果进行评估,如服务效率、等待时间等 • 可以用来指导泊松过程的控制和优化,如改进控制策略、优化资源分配等
泊松过程性能评估的实例
• 服务效率评估:通过比较控制前后的服务效率,评估控制策略的效果 • 等待时间评估:通过比较控制前后的等待时间,评估控制策略的效果
泊松过程:概念与应用
DOCS SMART CREATE
CREATE TOGETHER
DOCS
01
泊松过程的定义
• 是一个随机过程,表示在固定时间间隔内发生随机事件的次数 • 事件是相互独立的,且在每个时间间隔内发生的概率相同
泊松过程的性质
• 事件发生的概率分布服从泊松分布 • 在小时间间隔内,事件发生的概率与时间间隔成正比 • 泊松过程的均值和方差与时间间隔的长度成正比
泊松分布的概率质量函数
泊松分布的概率质量函数
• 表示在固定时间间隔内发生k次事件的概率 • 形式为:P(X=k) = (e^(-λt) * λ^k) / k!,其中X表示事件发生的次数,λ表示事件 发生的平均速率,t表示时间间隔的长度
泊松分布的性质
泊松过程

第二讲 泊松过程1.随机过程和有限维分布族现实世界中的随机过程例子:液体中,花粉的不规则运动:布朗运动;股市的股票价格; 到某个时刻的电话呼叫次数;到某个时刻服务器到达的数据流数量,等。
特征:都涉及无限多个随机变量,且依赖于时间。
定义(随机过程) 设有指标集T ,对T t ∈都有随机变量)(t X 与之对应,则称随机变量族}),({T t t X ∈为随机过程。
注 一个随机过程是就是一个二元函数E T t X →⨯Ωω:),(。
固定ω,即考虑某个事件相应的随机变量的值,得到函数R T t X →:),(ω称为样本函数或轨道或一个实现。
映射的值域空间E 称为状态空间。
例 随机游动(离散时间,离散状态)质点在直线上每隔单位时间位置就发生变化,分别以概率p 或概率p -1向正或负向移动一个单位。
如果以n S 记时刻n 质点所处的位置,那么就得到随机过程{,0}n S n ≥。
这里指标集},1,0{ =T ,状态空间},1,0,1,{ -=E 。
如果记n X 为时刻n ,质点的移动,那么{,1}n X n ≥也是随机过程。
两个过程的区别:{}n S 不独立;{}n X 独立; 两个过程的关系:01nn kk S S X==+∑习题 计算n ES 和n DS (设00S =)。
提示 利用∑==nk kn XS 1,其中k X 是时刻k 的移动方式。
习题 设从原点出发,则()/2()/2()/2,2()0,21n k n k n k n n C q p n k iP S k n k i +-+⎧+===⎨+=-⎩。
例 服务器到达的数据流(连续时间,离散状态)在],0[t 内,到达服务器的数据包个数记为)(t N ,那么}0),({≥t t N 也是个随机过程,其指标集}{+∈=R t T ,状态空间},1,0{ =E 。
例 布朗运动(连续时间,连续状态)直线上质点的位移是连续的。
在时刻t 的位置为t X 。
泊松过程

泊松过程
泊松过程是由法国著名数学家泊松(Poisson, Simeon-Denis)(1781—1840)证明的。
1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来辛钦于50年代在服务系统的研究中又进一步发展了它。
它是一种累计随机事件发生次数的最基本的独立增量过程。
例如随着时间增长累计某电话交换台收到的呼唤次数的过程。
一般地来说,一个泊松过程是在每个有界的时间区间或在某个空间(例如:一个欧几里得平面或三维的欧几里得空间)中的每一个有界的区域,赋予一个随机的事件数,使得在一个时间区间或空间区域内的事件数,和另一个互斥(不重叠)的时间区间或空间区域内的事件数,这两个随机变数是独立的。
在每一个时间区间或空间区域内的事件数是一个随机变数,遵循泊松分布。
(技术上而言,更精确地来说,每一个具有有限测度的集合,都被赋予一个泊松分布的随机变数。
)泊松过程是莱维过程(Lévy pro cess)中最有名的过程之一。
时间齐次的泊松过程也是时间齐次的连续时间Markov过程的例子。
一个时间齐次、一维的泊松过程是一个纯出生过程,是一个出生——死亡过程的最简单例子。
对泊松过程,通常可取它的每个样本函数都是跃度为1的左(或右)连续阶梯函数。
可以证明,样本函数具有这一性质的、随机连续的独立增量过程必是泊松过程,因而泊松过程是描写随机事件累计发生次数的基本数学模型之一。
直观上,只要随机事件在不相交时间区间是独立发生的,而且在充分小的区间上最多只发生一次,它们的累
计次数就是一个泊松过程。
泊松过程

Wn = ∑ Ti
i =1
n
(n ≥ 1)
t
Wn —— 第n次事件 发生的时刻,或称等待时间, 次事件A发生的时刻 次事件 发生的时刻,或称等待时间, 或者到达时间 Tn —— 从第 次事件 发生到第 次事件 发生的 从第n-1次事件 发生到第n次事件 次事件A发生到第 次事件A发生的 时间间隔,或称第n个时间间隔 时间间隔,或称第 个时间间隔
=C
k n
s s 1 − t t
k
n−k
参数为 n 和 s/t 的 二项分布
[例3] 设在 [ 0 , t ] 内事件 已经发生 n 次,求第 次(k < n) 内事件A已经发生 求第k次
事件A发生的时间 的条件概率密度函数。 事件 发生的时间Wk 的条件概率密度函数。 发生的时间
n重贝努利试验中事件 重贝努利试验中事件A发生的 [二项分布] 随机变量 X 为n重贝努利试验中事件A发生的 ] 次数, 次数,则 X ~ B (n, p)
P ( X = k ) = n p k q n−k k
E ( X ) = np , D ( X ) = npq
是常数, [泊松定理] 在二项分布中,设 np=λ 是常数,则有 ] 在二项分布中,
jω X ( t )
]=e
(1) 泊松过程的数字特征
均值函数 方差函数 相关函数 协方差函数
m X (t ) = E[ X (t )] = λt
2 σ X (t ) = D X (t ) = λ t
R X ( s, t ) = E[ X ( s ) X (t )] = λ s (λ t + 1) , ( s < t )
P{ X ( s ) = k X (t ) = n} =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这个计算过程一定是个泊松过程
证明:我们只需要证明
P(N c (t)=k)= (t)k e-t
k!
令
qk (t)=P(N c (t)=k)
先考虑函数 q0 (t+h) ,其中h>0充分小.
q0 (t+h)=P(N c (t+h)=0)=P(N c (t+h)-N c (t)=0,N c (t)=0)
N (t)
n
n
PN (s) k, N (t) N (s) n k
PN(t) n
PN (s) k PN (t) N (s) n k
PN(t) n
es (s)k e (ts) [(t s)]nk
k!
(n k)!
et (t)n
n!
Cnk
s t
n
1
s t
nk
例6:设在时间区间[0,t]内来到某商店的顾客
f (u1,u2,L
,
un
)
n!, tn
0,
0 u1 u2 其它
un
t
对n个到达时间T1 T2 L Tn取充分小的h1, h2,L , hn ,
使得uk Tk uk hk ,且各小区间[uk ,uk hk ](k 1, 2,L n)
互不相交,则当0 u1 u2 L un t时,有
其中t>0和
N
ge 0
1.
那么对任意的0≤s<t<∞有
E[ Ntge ] 1 Nsge
证明
E[ Ntge ] E{exp[(N(t) N(s)) ln( 1) (t s)]}
Nsge
E{exp[(N (t) N (s)) ln( 1)}e (ts)
e (ts) ( 1)n n (t s)n e (ts)
h1eh1
h2eh2 hnehn (t)n et / n!
e (th1
hn )
n! tn
h1h2
hn
例3:设在[0,t]内事件A已经发生n次,且0 s t, 对于0 k n,求P{N(s) k N(t) n}.
解:PN (s)
k
|
N (t)
n
PN (s) k, N (t) PN (t) n
n
P N (s)
k, N (t) N (s)
PN(t) n
n
k
PN (s) k PN (t) 几何泊松过程)设N={N(t),t≥0}是参数λ>0 的泊松过程,假设常数σ>-1,定义随机过程:
Ntge exp[N (t) ln( 1) t] ( 1)N (t) et
j=2
=qk (t)(1-h+(h))+qk-1(t)(h+(h))+(h)
整理上式得
qk
(t
+h)-qk h
(t
)
=-
qk
(t
)+
qk
-1
(t
)+
(h) h
令上式两边h→0,得迭代常微分方程
qk(t)+qk (t)=qk-1(t),其中q1(0)=0,q0(t)=e-t
解上边的常微分方程得
qk
(t)=
qk (t+h)=P(N c (t+h)=k)
=P(N c (t+h)-N c (t)=0,N c (t)=k)+P(N c (t+h)-N c (t)=1,N c (t)=k-1)
k
+ P(N c (t+h)-N c (t)=j,N c (t)=k-j)
j=2
k
=qk (t)q0 (h)+qk-1(t)q1(h)+ qk-j (t)q j (h)
0)
sese (ts) tet
s t
更一般有以下问题
设 {N(t),t≥0} 是参数为λ 的Poisson过程,如果 在[0,t)内有 n 个随机点到达,则 n 个到达时间 T1 T2 L Tn 服从怎样的概率分布??
例2 设 {N(t),t≥0} 是参数为λ 的Poisson过程,如 果在[0,t)内有 n 个随机点到达,则 n 个到达时 间 T1 T2 L Tn 的联合密度函数为
n
n
P( I (uk Tk uk hk ), N (t) n)
IP( (uk Tk uk hk ) N (t) n) k1
k 1
P(N (t) n)
P(N (h1) 1, N (h2 ) 1,L , N (hn ) 1, N (t h1 h2 L hn ) 0) P(N(t) n)
其中(h) 表示h的高阶无穷小.
(1)P(N(t h) N(t) 0) e-h =1 h (h) (2)P(N(t h) N (t) 1) he-h =h (h)
定理4.2.3
如果一个计数过程
Nc
{N
c t
:t
0} 具有平
稳独立增量性且满足定理4.2.2中的性质(1)(2),那么
§2. 泊松过程的0-1律
本节主要研究在充分小的时间区间内发生跳的次 数等于或大于2的概率趋于0
定理4.2.2 对于参数为λ>0的泊松过程N(t),它 满足如下的性质:对任意的时间指标t>0和充分 小的h>0,
(1)P(N (t h) N (t) 0) 1 h (h) (2)P(N (t h) N (t) 1) h (h)
n0
n!
e( 1)(ts) [( 1)(t s)]n
n0
n!
e ( 1)(ts) e ( 1)(ts) 1
例5:设在[0,t]内事件A已经发生n次,且0 s t, 对于0 k n,求P{N(s) k N(t) n}.
解:PN (s)
k
|
N (t)
n
PN(s) k, PN (t)
数N(t)是强度为λ的泊松过程,每个来到商店 的顾客购买某货物的概率为p,不买东西离去 的概率是1-p,且每个顾客是否购买货物是相互 独立的,令Y(t)为[0,t]内购买货物的顾客数。 试证{Y(t),t≥0}是强度为λp的泊松过程.
(t)k
k!
e-t ,其中k =1,2,L
例子1
对于参数为λ>0的泊松过程N={N(t):t≥0},求在 {N(t)=1}的条件下,泊松过程N的第一个达到时间间 隔T1服从的概率分布
P(T1
s
N (t)
1)
P(T1 s, N (t) 1) P(N (t) 1)
P(N (s)
1, N (t) N (s) P(N (t) 1)
=P(N c (t+h)-N c (t)=0)P(N c (t)=0)
=(1-h+ (h))q0 (t )
于是
q0
(t
+h)-q0 h
(t
)
=-
q0
(t
)+
(h) h
令上式两边h→0,得
q0 (t )=-q0 (t ),其中q0 (0)=1
解上边的常微分方程得
q0 (t)=e-t
下面考虑函数qk(t+h), 其中k=1,2,···