随机过程第三章 泊松过程

合集下载

第三章泊松过程

第三章泊松过程

定理 设是{N (t), t≥0}一个强度为l的泊松过程,则对任 意固定的t, N(t)服从泊松分布,即
P(N (t) = k ) = (lt)k e-l t
k!
k = 0,1, 2,L
二、泊松过程的数字特征与特征函数
1. 泊松过程的均值函数
mN (t) = E[N(t)]= lt
2. 泊松过程的方差函数
DN (t) = D[N(t)]= lt
3. 泊松过程的均方值函数
y
2 N
(t)
=
E[N
2
(t)]
=
DN
(t)
+
mN2
(t)
=
lt
+
(lt)2
4. 泊松过程的自相关函数
E(N (t1)N (t2 ))
令t2 ³ t1E{[N (t1)- N (0)][N (t2 )- N (t1)+ N (t1)]} 展开 E{[N(t1)- N (0)][N (t2 )- N(t1)]+ [N(t1)- N(0)]N(t1)} 展开 E{[N(t1)- N (0)][N (t2 )- N(t1)]}+ E{[N(t1)- N (0)]N (t1)} 增量独立E{[N(t1)- N(0)][N(t2 )- N(t1)]}+ E{[N(t1)- N(0)]N(t1)} 增量独立E[N (t1)- N (0)]E[N (t2 )- N (t1)]+ E{[N (t1)- N (0)]N (t1)}
mN (t) = 4t = DN (t)
RN (t1,t2 ) = 4 min(t1,t2 ) + 16t1t2 , t1,t2 Î T
CN (t1,t2 ) = 4 min(t1,t2 )

随机过程第三章-泊松过程

随机过程第三章-泊松过程

N (tk )
X (tk ) X (tk1)
Yi
iN (tk1 )1
相互独立,即 X (t)具有独立增量性.
k 1,2, , n
(2) (2)的证明需要用到矩母函数(略).
例3.10 在保险中的索赔模型中,设索赔 要求以平均2次/月的速率的泊松过程到达 保险公司.每次赔付为均值为10000元的 正态分布,则一年中保险公司平均赔付额 是多少?
例3.3 设进入商店的顾客数可以用一个泊松过程来近似.
第 i 个顾客在商店购物支付的款数记作 Yi ,并设 Y1,Y2 ,
相互独立同分布,则在时段 (0,t] 中商店的营业额
N (t)
X (t) Yi i 1
是一个复合泊松过程.
例3.4 设保险公司接到的索赔次数服从一个泊松过程,每 次要求赔付的金额独立同分布,则在任一时段内保险公司 需要赔付的总金额就是一个复合泊松过程.
事件A发生的次数.
如果在不相交的时间区间中发生的事件数是独立的,则该 计数过程有独立增量.即到时刻t已发生的事件个数必须独 立于时刻t与t+s之间所发生的事件数.这就意味着, N(t)与 N(t s) N(t) 相互独立.
若在任一时间区间中发生的事件个数 N(t) 的分布只依 赖于时间区间的长度,则称计数过程 N(t) 有平稳增量.这就 意味着此时 N (t2 s) N (t1 s)与 N(t2 ) N(t1) 有相同的分布.
,
x0
0,
x0
则称 X 服从参数为 , 的 分布,记为 X ~ ( , )
当 1 时,就是参数为 的指数分布.
(4) 分布关于参数 具有可加性.即若 X ~ (1, ),
Y ~ (2, ), 且 X 与 Y 独立,则

随机过程——泊松过程(习题讲解)

随机过程——泊松过程(习题讲解)
n 0 k 1
n ( x t )n
n!
e ( x t )
因此,
dP( Sn k
k 1 n ( x t )n ( x t ) d 1 e k k 1 n! x | N (t ) n) n 0 ( x t ) e ( x t ) dx dx (k 1)!
即,在 N (t ) n 条件下,在时刻 t 之后首次事件发生的平均时间为 t


1 .
下面求 E{Sn k | N (t ) n} , ( k 1) : E ( Sn k | N (t ) n)

t
xdP(Sn k x | N (t ) n) ,而
由于在 N(t)=n 的条件下,n 个到达时刻 < < …< 区 间 [0 , t] 上 均 匀 分 布
( )<
与时间
,
,… ,
的 顺 序 统 计量
<…<
有相同分布,所以

= 习题九:假设车站有两辆客车准备开出,乘客以速率为 泊松过程登上 A 车,当 A 车坐满 的事件,乘客以速率为 的
个乘客就开出;与此独立
P( Sn k x, N (t ) n) P( N ( x) N (t ) k , N (t ) n) P( N (t ) n) P( N (t ) n) P( N ( x) N (t ) k ) P( N (t ) n) P( N ( x t ) k ) 1 P( N ( x t ) k 1) P( N (t ) n) P( Sn k x | N (t ) n) 1
t
e ( x t )

第三章 泊松过程

第三章 泊松过程

第一节、泊松过程的基本概念
证明: (1) 0 N (0) N1 (0) N2 (0) 可得 N1 (0) N2 (0) 0 (2)由N(t)的独立增量性可得,N1 (t ), N2 (t ) 也为独立增量过程; (3)记 N (t s) N (t ) N (t , t s) P[ N1 (t , t s ) k1 ]
泊松过程(Poisson process)最早由法国人Poisson于 1837年引入。
主 要 内 容
第一节 第二节 第三节 第四节 第五节 第六节
泊松过程的基本概念 相邻时间的时间间隔 剩余寿命与年龄 非时齐泊松过程 复合泊松过程 更新过程
第一节、泊松过程的基本概念
一、定义 一随机过程N (t ), t 0 ,若满足条件: (1)是一计数过程,且N(0)=0; (零初值性) (2)任取 0 t1 t2 tn , (独立增量过程) N (t1 ), N (t2 ) N (t1 ), , N (tn ) N (tn1 ) 相互独立; (3)s, t 0, n 0, P[ N (s t ) N (s) n] P[ N (t ) n] (增量平稳性) (4)对任意 t 0 和充分小的 t 0 ,有 P[ N (t t ) N (t ) 1] t o(t ) P[ N (t t ) N (t ) 2] o(t ) 称N (t ), t 0 是强度 为的时齐泊松过程。 其中 0 称 为强度常数。
即 N (s t ) N ( s) 是参数为 t 的泊松分布。
证明
第一节、泊松过程的基本概念
泊松过程的等价定义: 一计数过程N (t ), t 0 ,若满足条件: (1)N(0)=0; (2)N(t)是独立增量过程; (3)对 s, t 0, N (s t ) N (s) P(t ) ,即

随机过程第三章 泊松过程 ppt课件

随机过程第三章 泊松过程 ppt课件
(5)泊松过程的样本轨迹是跳跃度为1的阶梯函数.记T n 为
第 n次事件发生的时刻, X n 是第 n次与第n 1 次事件发生
的时间间隔.
一. X n和 T n 的分布
定理3.2 X n (n 1)服从参数为 的指数分布,且相互独立.
证 当 t 0时,有
F 1 ( t ) P { X 1 t } 1 P { X 1 t } ቤተ መጻሕፍቲ ባይዱ1 P { N ( t ) 0 }
重复以上的推导可证定理之结论.
定理3.3 Tn ~(n,)
n
证 由于 Tn
Xi
i 1
故由定理3.2以及引理的结论马上可得本定理之结论.
注:1 (n,)的概率密度为
fTn (x) et
(t)n1
(n1)!
2. {T nt} {N (t)n}
(t 0)
由定理3.2,我们给出泊松过程的另一个等价定义.
p 的泊松过程.
证 M (t)满足定义3.2中的前两个条件是显然的,下证它也 满足第三个条件.
显然, M (t)的可能取值为 0,1,2, ,并且由全概率公式,有
P { M (t) m } P { M (t) m |N (t) n } P { N (t) n } n 0
而 P { M (t) m |N (t) n } 0 若 nm
f (x)() x1ex, x0
0,
x0
则称 X服从参数为 , 的 分布,记为 X~(,)
当 1 时,就是参数为 的指数分布.
(4) 分布关于参数 具有可加性.即若 X~(1,),
Y~(2,),且 X与 Y独立,则
X Y~ (1 2,)
指数引分理布,则设有X1,X2, ,Xn 相互独立且均服从参数为 的 X 1 X 2 X n ~ ( n ,)

随机过程第三章 泊松过程

随机过程第三章 泊松过程

解:设一年开始为 0 时刻,1 月末为时刻 1,则年末为时刻 12,依泊松过程的定义可知
PN (12) N (0) n e412 (412)n
n!
平均索赔请求次数及金额
E[N(12) N(0)] 412 48
3.2 与泊松过程相联系的若干分布
记 Tn , n 1, 2,表示第 n 次事件发生的时刻,规定T0 0 。记 Xn , n 1,2, 表示第 n

N(t) n Tn t
因此
PTn
T
P N (t )
n
in
et
(t)i i!
对上式求导,得到Tn 的概率密度函数
f (t)
et (t)i
et
(t)i1
et
(t )( n 1)
in
i! in
(i 1)!
(n 1)!
命题得证。
注:Tn 的数字特征
ETn
n
,
DTn
n 2
;且
ETn
nEX n
P ti Ti ti hi ,i 1, 2,, n N (t) n
PN (ti
hi )
N (ti )
1,
N (ti1) N (ti hi )
PN (t) n
0,1
i
n,
N (t1)
0
h1e h1
h e e hn (th1h2 hn ) n et (t)n / n!
n! tn
-2-
P0 (t) et
类似地,当 n 1时
Pn (t h) PN (t h) n PN (t) n, N (t h) N (t) 0 PN (t) n 1, N (t h) N (t) 1

第3讲第三章泊松过程

第3讲第三章泊松过程
对于n>1 和t>0,以及 s1,s2,…,sn-1>0,有
P Tn t T1 s1,,Tn1 sn1 P Nt s1 sn1 Ns1 sn1 1T1 s1,,Tn1 sn1
PN t s1 sn1 N s1 sn1 1
1 PN t s1 sn1 N s1 sn1 0
(2) N(t)是独立增量过程;
(3) 对一切0≤s,t, N(t+s) -N(s) ~P(λt),即
P[N (t s) N (s)] k et [t]k , k 0,1, 2,
k! 称{N( t ),t≥0)是参数为λ的齐次泊松过程.
注1 从增量分布知:齐次泊松过程也是平稳增量过程.
注2 N(t) ~P(λt).
et (t)k1 dt
t0
(k 1)!
例3.3 设N1(t)和N2( t )分别是强度为λ1和λ2的相互独立的
泊松过程, Wk1为过程N1(t)的第k个事件的到达时间,
W12 为过程N2(t)的第1个事件的到达时间,求 P Wk1 W12
解: fwk1
x
e1x 1
1 x k1
(k 1)!
所以3.2→定义3.3
再证 由定义3.3 → 定义3.2
即:需证明 N(t s) N(s) ~ t 由于是平稳增量故只需证 N(t) ~ t
记:Pn t PN(t) n
下面我们依次求Po(t), P1(t),…, Pk(t) ,…
首先,由定义3.3中的条件(3):
P1 h h oh
P0
0
1,由条件1
N
0
0
解得p0 (t) et , t 0
当n≥1时, n
pn (t h) pk (h)pnk (t) k 0 p0 (h) pn (t) p1(h) pn1(t) oh

随机过程 第3章 泊松过程

随机过程 第3章 泊松过程

泊松过程
[定义] 称计数过程{ X (t) , t 0 }为具有参数 的泊松过程, 若它满足下列条件: (1) X (0) = 0 ; (2) X (t) 是独立增量过程; (3) (平稳性)在任一长度为 t 的区间中,事件A发生的次 数服从参数 >0的泊松分布,即对任意 s , t 0 ,有


3.2 泊松过程的基本性质
泊松分布:
( t ) n t P{ X (t s ) X ( s ) n} e , n!
n 0, 1,
( t ) n t P{ X (t ) n} e , n 0, 1, 2, n!
Φ X ( ) E[e
假设在[0 , t ]内事件A已经发生一次,确定这一事件到 达时间W1的分布 ——均匀分布
P{W1 s, X (t ) 1} P{W1 s X (t ) 1} P{ X (t ) 1} P{ X ( s ) 1, X (t ) X ( s ) 0} P{ X (t ) 1} P{ X ( s ) 1} P{ X (t ) X ( s ) 0} P{ X (t ) 1}
故仪器在时刻 t0 正常工作的概率为:
k 1 ( t ) P P (T t 0 ) e t dt t0 ( k 1)! n k 1 ( t ) 0 P [ X (t 0 ) k ] e t
0
n0
n!
(3) 到达时间的条件分布
P{ X k }
k e
k!
, k 0, 1, 2, ( 0为常数 )
则随机变量X 服从参数为 的泊松分布,简记为 ()。
E(X ) ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 泊松过程
第一节 泊松过程的基本概念
定义3.1(计数过程)随机过程
称为计{数N过(程t),,如t 果0}
N (t) 表示t时刻为止,某一特定事件A发生的次数.
由定义,计数过程具有以下两个特点:
(1) N取(值t)为非负的整数;
s t (2)
时,
N (且s) N (t) 表示N时段(t) 内N (s) 事件A发生的次(s数,.t]
(3)PN(12) 9 N(5) 4 PN(12) N(5) 5 N(5) 4
PN(12) N(5) 5 (7)5e7 5!
(4)PN (5) 4 N (12) 9
PN (5) 4, N (12) 9 PN (12) 9
PN(5) 4PN(12) N(5) 5 PN(12) 9
1. E N t0,t EN t N t0 t t0 ;
2. D N t0,t D N t N t0 t t0 , 特别地,t0 0,由假设N 0 0,可得: N t E N t t, DN t D N t t;
3. CN s,t DN mins,t mins,t, s,t 0;
P{M
(t)
m
|
N
(t)
n}
n m
pm
(1
p)nm

nm
由题意
P{N (t) n} (t)n et
n!
于是
P{M
(t)
m}
nm
n m
p
m
(1
p)nm
(t)n
n!
et
et pm (t)m (1 p)nm (t)nm
m!
nm
(n m)!
et pm (t)m et (1 p)
m!
(pt)m etp

有相同的分布.
N (t )
N (t2 s) N (t1 s) N (t2 ) N (t1)
定义3.2(泊松过程)计数过程
称为参{数N为(t),t 0}
( 0)
的泊松过程,如果:
(1) N (0) 0;
(2) N有(独t)立增量;
(3)对任意的
,有s,t 0
P{N (t s) N (s) n} (t)n et ,
4. RN s,t CN s,t N s N t min s,t 2st,
s,t 0。
例例112:设{N (t),t 0}服从参数为 的泊松过程,求
(1) P{N (5) 4}; (2) P{N (5) 4, N (7.5) 6, N (12) 9}; (3) P{N (12) 9 N (5) 4}; (4) P{N (5) 4 N (12) 9}; (5) E[N (5)], D[N (5)],Cov[N (5), N (12)].
n!
n 0,1,2,
由条件(3)可知泊松过程有平稳增量并且在任一长度为t的区间中事件的个数服从参数(均 值)为 的泊松分布.
t
在实际过程中,条件(3)的验证存在着一定的困难,为此我们给出泊松过程另一个等价定义.
定理3.1 计数过程 如果
称{为N泊(t松),t过程0},参数为
(1) N(0) 0;
m!
所以, {M (t是),t一个0强} 度为 的泊松过程. p
第二节 与泊松过程相联系的若干分布
预备知识
(1) 函数定义为:
(z) x z1ezdz
0
(2)有关 函数的几个重要公式:
(z 1) z(z)
(n 1) n!
1
2
X (3)若随机变量 的概率密度为
f
(
x)
(
)
x
e 1 x
(5)4 e5 4!(7)5 e7 (12)9 e12 9!
5! C94
5 12
4
1
5 12
94
.
(5) E[N(5)]=5, D N 5 5,
Cov[N(5), N(12)] D N 5 5.
记例录2下事来件,并A以的发生表形示成到强t时度刻为被的记泊录松下过来p程的事件总数.,如证果明每次事件发是{生一N时个M(t以强)(,tt概度)率为0} 能够
{M (t),t 0}
p的泊松过程.
证 M满(足t)定义3.2中的前两个条件是显然的,下证它也满足第三个条件.
显然, 的M可(能t)取值为
并且由全0概,1率,2公,式,,有
P{M (t) m} P{M (t) m | N (t) n}P{N (t) n} n0
而 P{M (t) m | N(t) n} 0 若 n m
(2) 过程有平稳与独立增量;
(3) P{N(h) 1} h o(h);
(4) P{N(h) 2} o(h).
若 {N (t),是t 参 数0}为 的泊松过程,则有 E(N(t)) t
于是可以认为 是单位时间内事件发生的平均次数.
称 为泊松过程的强度、风险率或速率.
( 0),
强度为的泊松过程的数字特征:
,
0,
X 则称 服从参数为
的 分布, ,记为
x0 x0
X ~ (, )
1 当
时,就是参数为 的指数分布.
(4) 分布关于参数 具有可加性.即若
Y ~ (2 , ), 且 X与 Y 独立,则
X Y ~ (1 2, )
X ~ (1, ),
引理 设
X1,相X互2独,立且, 均X服n 从参数为 的指数分布,则有
X1 X 2 X n ~ (n, )
(5)泊松过程的样本轨迹是跳跃度为1的阶梯函数.记
次与第 次事件发生的时间间隔第 次事件发生的时刻,Tn是第
n 1
一. X和n 的分Tn布
定理3.2
X n服(从n参数1为) 的指数分布,且相互独立.
证 当 t时,有0
如果在不相交的时间区间中发生的事件数是独立的,则该计数过程有独立增量.即到时刻t 已发生的事件个数必须独立于时刻t与t+s之间所发生的事件数.这就意味着, 与
N (t )
N(t s) N(t) 相互独立.
若在任一时间区间中发生的事件个数 程 有平稳增量.这就意味着此时
的分布只依赖于时N间(区t )间的长度,则称计数过
解:(1) PN 5 4 (5)4e5 4!
(2) PN 5 4, N (7.5) 6, N (12) 9 PN 5 4, N (7.5) N (5) 2, N (12) N (7.5) 3
[(5)4 e5 4!][(2.5)2 e2.5 2!][(4.5)3 e4.5 3!]
相关文档
最新文档