第三章随机过程作业
第三章随机过程作业

第三章随机过程作业1. 设A 、B 是独立同分布N(0,σ2)的随机变量,求随机过程{X t =At +B,t ∈R 1}的均值函数、自相关函数和协方差函数。
2. 设{X t ,t ≥a}是独立增量过程,且X a =0,方差函数为σX t 2。
记随机过程Y t =kX t +c ,k 、c 为常数,c≠0。
(1) 证明Y t 是独立增量随机过程;(2) 求Y t 的方差函数和协方差函数。
3. 设随机过程X t =X +Y ⋅t +Z ⋅t 2,其中X,Y,Z 是相互独立的随机变量且均值为0、方差为1,求{X t }的协方差函数。
4. 设U 是随机变量,随机过程X t =U,−∞ <t <∞ .(1) X t 是严平稳过程吗?为什么?(2) 如果E(U)=μ ,Var(U)=σ2,证明:X t 的自相关函数是常数。
5. 设随机过程X t =U cos t +V sin t,−∞ <t <∞ ,其中U 与V 独立同分布N(0,1)。
(1) X t 是平稳过程吗?为什么?(2) X t 是严平稳过程吗?为什么?6. 设随机变量X 的分布密度为f X ( x), 令 Y( t) = e − X t ( t > 0 ,X > 0), 试求Y( t)的一维概率分布密度及E(Y ( t ))、R X (s,t)。
7. 若从t = 0开始每隔1/2分钟查阅某手机所接收的短信息 , 令X (t )={cos πt ,如t 时手机接收到短信息,2t ,如t 时手机未接收到短信息,试求:X (t )的一维分布函数 F [12;x],F[1;x]8. 设随机过程Y n =∑X k n k=1,Y 0=0, 其中X k ( 1 ≤ k ≤ n) 是相互独立的随机变量 ,且P( X k = 1 ) = p ,P( X k = 0 ) = 1 − p = q , 试求{ Y n } 的均值与协方差函数 .9. 设X( t) = A sin (ωt +Z) ,其中A 、ω为常数 , 随机变量Z ~ U( −π ,π) , 令Y ( t) = X 2 ( t ) , 试求 :EY ( t ) 和R Y ( t,t +τ)。
第3章 随机过程及答案

互相关函数 R (t1 , t 2 ) E[ (t1 )(t 2 )]
式中 (t) 和 (t) 分别表示两个随机过程。 R(t1, t2)又称为自相关函数。
10
3.2 平稳随机过程 3.2.1 平稳随机过程的定义
12
数字特征:
E (t ) x1 f1 ( x1 )dx1 a
R( t1 , t 2 ) E[ ( t1 ) ( t1 )]
x1 x2 f 2 ( x1 , x2 ; )dx1dx2 R( )
可见,(1)其均值与t 无关,为常数a ; (2)自相关函数只与时间间隔 有关。
P ( f ) 0
P ( f ) P ( f )
这与R()的实偶性相对应。
23
例题
[例3-2] 求随机相位余弦波(t) = Acos(ct + )的功率谱密度。 [解] 在[例3-1]中,我们已经考察随机相位余弦波是一个平稳 过程,并且求出其相关函数为
1 (t ) 2 (t )
n (t )
0
t
3
角度2:随机过程是随机变量概念的延伸。
在一个固定时刻t1上,不同样本的取值{i (t1), i = 1, 2, …, n} 是一个随机变量,记为 (t1)。
样本空间
随机过程是在时间进程中处于不同时刻的随机变量的集合。
S1 x1(t)
t
T /2
T / 2
x( t ) x( t )dt
aa R( ) R( )
应用随机过程第三章习题解

g(t) = f (x, tx)|x|dx
3
第三章 更新过程
第三章 更新过程
其中 f (t, tx) 是 Xi 与 TiXi 的联合密度函数, 当 Xi 与 TiXi 独立时,有
∫ g(t) = λ exp{−λtx}f (x)|x|dx
所以这样的 Ti 是存在的.
3.6 如果 p = P (X = ∞) > 0, 则称 X 是广义的随机变量. 设 X 是广
是 3 分钟. 假设每台电话独立工作, 一共有 6 部电话, 估算上午 10:30 时恰
有 5 部电话占线的概率.
解:
由题可知每台电话占线的概率为
p
=
3 23
,
又各电话是否占线独立,
所以 10:30 有 5 部电话占线的概率为:
P = C65p5(1 − p)
3.11 眨眼使泪水均匀地涂在角膜和结膜的表面,以保持眼球润湿而不
∑ ∑k
∑
P ( Xi = j, Xk+1 > t − j) = (kλ)jexp(−kλ)P (X1 > t − j)/j!
0≤j≤t i=1
0≤j≤t
3.9 设更新过程 N (t) 的更新间隔是 Xn, i1, i2, . . . , in 是 1, 2, . . . , n 的一
个全排列. 对于 n ≥ 2, 证明
= 1/p − 1
3.7 对于泊松过程验证定理 1.2(2)成立.
证明: 对于泊松过程 N (t) 有 m(t) = E(N (t)) = λ·t, 而 λ·(t) 是连续的且 在 t≥0 时是严格增加的,当然是单调不减的, 也即定理 1.2(2) 对于泊松过 程是成立的。
3.8 设更新过程N(t)的更新间隔是来自总体 X 的随机变量。
(解答)《随机过程》第三章习题

(1)试求随机过程{Z (t); t 0}的均值函数 E{Z (t)}和二阶矩 E{Z 2 (t)} ;
(2)试证明: pn (t)u n exp{(1 2 )t } exp{1ut 2u 1t }。 n
P{X (s) i}
P{N (s) 2(i 1)}
P{N (s) 2(i 1)}P{N (t s) 2( j i)} [(t s)]2( ji) e(ts) ; ( j i, t s)
P{N (s) 2(i 1)}
[2( j i)]!
lim
h0
Pt
2
h 2
S2
t2
h 2 ,t5 h2
h 2
S5
t5
h
2
5 2
t2 (t5
t2 )2 et5
,
0 t2 t5
(2)由于{N (t) 1} {S1 t} ,由泊松过程与指数分布的关系可知,在{S1 t} 条件 下, S1 的分布密度函数为
(3)由于{N (t) 1} {S1 t S2} ,令: 0 t1 t t2 ,取充分小的 h1, h2 0 ,
使得: t1 h1 t1 t t2 h2 t2 ,由
t1 h1 S1 t1, t2 h2 S2 t2 N t1 h1 0, N t1 N t1 h1 1,
3、 设{N1 (t); t 0}和{N 2 (t); t 0} 是相互独立的 Poisson过程,其参数分别为 1 和 2 .若 N0 (t) N1 (t) N 2 (t) ,问: (1) {N0 (t); t 0} 是否为 Poisson 过程,请说明理由; (2) {N0 (t); t 0} 是否为平稳过程,请说明理由。 解:(1)由于 N 0 (t) 的状态空间为 S {,1, 0,1,} ,因此 N 0 (t) 不是计数过程,更
随机过程课后题答案

第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
随机过程第三章作业答案

Yk-1 ]] ≤ b ⋅ ∑ E[I{T ≥ k} ]
k =0
= b ⋅ ∑ P(T ≥ k) = b(1 + E[T]) < ∞,即E[W] < ∞
10证明:利用停时定理2 由已知P(T<∞)=1,得条件1已满足。
2 2 又∀n ≥ 1,E[X T ∧ n ]=E[|X T ∧ n | ] ≤ c;
利用柯西-施瓦茨不等式(E[XY])2 ≤ E[X 2 ]E[Y 2 ]: 令Y=1,(E[|X T ∧ n |])2 ≤ E[|X T ∧ n |2 ]E[12 ] ≤ c ∴ E[|X T ∧ n |] ≤ c,进而有E[ sup|X T ∧ n |] ≤ c < ∞,
第三章习题解答
3-(1) ∵{ X n , n ≥ 0}是鞅, ∴ E[X 0 ] = E[X n ] = 0,且有 E[Yk ]=E[X k -X k-1 ]=0;Var(Yk )=E[Yk2 ];Var(X n )=E[X 2 n ];
2 E[Yk2 ]=E[(X k -X k-1 )2 ]=E[X k +X 2 k-1 -2X k X k-1 ] 2 =E[X k ]+E[X 2 其中 k-1 ]-2E[X k X k-1 ],
9 (一)常规证明: 右侧不等号: E[X T ∧ n ]=E[X T ∧ n ⋅ I{T ≥ n} ]+E[X T ∧ n ⋅ I{T<n} ]=E[X n ⋅ I{T ≥ n} ]+E[X T ⋅ I{T<n} ] =E[X n ⋅ I{T ≥ n} ]+E[∑ X k ⋅ I{T=k} ]
k =0 n-1
E[X k X k-1 ]=E[E[X k X k-1|X 0 X1 =E[X k-1E[X k |X 0 X1
电子科大 应用随机过程及应用 (陈良均 朱庆棠)第三章作业

(ii) 分解 对于参数为λ 对于参数为λ的Poisson过程, 过程,假设发生的每一个事件 独立的以概率做了记录, 独立的以概率做了记录,未做记录的概率为1-p。令 N1(t)是到t为止做了记录的事件数, 为止做了记录的事件数,而N2(t)是未做记录 的事件数, 的事件数,则{N1(t);t ≥0}和 {N2(t);t ≥0}分别是具 有参数pλ 和(1-p)λ的独立Poisson过程。 过程。
相互独立。 相互独立。而且
P ( N (t ) = k ) = ∑ P ( N 1 (t ) = j, N 2 (t ) = k − j ) = ∑ P ( N 1 (t ) = j )P ( N 2 (t ) = k − j )
j=0 j=0 j k− j k k
(λ t ) (λ t ) = ∑ 1 e − λ1 t 2 e −λ2t j! ( k − j )! j=0
[
]
( )
( )
(
)
ρ=
(
)(
)
一维概率密度函数
一维特征函数 二维概率函数 f (s , t , x , y ) = −
[X − m (t )]2 t ∈ T 1 exp − 2 D (t ) 2 λ D (t ) x∈ R t∈T ϕ (t , u ) = exp im (t )u − 1 D (t )u 2 2 x∈ R f (t , x ) =
i i i =1
n
X (t )为正态分布 m X (t ) = E [X (t )] = E [ξ t + W (t )] = E (t )E (ξ ) + E [W (t )] = 0
(t > s ) E [X 2 (t )] = E [ξ 2 t 2 + W (t )W (s ) + W (t )ξ s + W (s )ξ t ] = ts + s σ 2 D (t ) = t 2 + t 2σ 2 D (s ) = s 2 + s 2 σ 2 C (s , t ) = C (t , s ) = R (t , s ) = ts + s σ 2
[应用随机过程][习题][01]
![[应用随机过程][习题][01]](https://img.taocdn.com/s3/m/6168bc18964bcf84b9d57b20.png)
Page 17
上海理工大学
2010-7-30
第三章习题
(2)在宽平稳的基础上讨论各态历经性 时间均值:
1 T 1 X (t ) = lim ∫T X (t )dt = Tlim 2T T →∞ 2T →∞ 1 T 1 +T = ∫ s (t + )dt = ∫ s (θ )dθ T 0 T = E[ X (t )]
∫
T
T
s (t + )dt
X(t)的均值具有各态历经性
Page 18
上海理工大学
2010-7-30
第三章习题
时间相关性:
1 T X (t ) X (t + τ ) = lim X (t ) X (t + τ )dt T → ∞ 2T ∫T 1 T = lim s (t + ) s (t + τ + )dt T →∞ 2T ∫T 1 T = ∫ s (t + ) s (t + τ + )dt T 0 1 +T = ∫ s (θ ) s (θ + τ )dθ = RX (t ) T
Page 7 上海理工大学 2010-7-30
第二章习题
R X (t1 , t 2 ) = E[ X (t1 ) X (t 2 )] = E{[ A cos(ω 0 t1 ) + B sin(ω 0 t1 )][ A cos(ω 0 t 2 ) + B sin(ω 0 t 2 )]} = E[ A 2 cos(ω 0 t1 ) cos(ω 0 t 2 ) + B 2 sin(ω 0 t1 ) sin(ω 0 t 2 )] = E[ A 2 ] cos(ω 0 t1 ) cos(ω 0 t 2 ) + E[ B 2 ] sin(ω 0 t1 ) sin(ω 0 t 2 ) = σ 2 [cos(ω 0 t1 ) cos(ω 0 t 2 ) + sin(ω 0 t1 ) sin(ω 0 t 2 )] = σ 2 cos[ω 0 (t1 t 2 )]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章随机过程作业
1.设A、B是独立同分布的随机变量,求随机过程的
均值函数、自相关函数和协方差函数。
2.设是独立增量过程,且,方差函数为。
记随机过程
,、为常数,。
(1)证明是独立增量随机过程;
(2)求的方差函数和协方差函数。
3.设随机过程,其中是相互独立的随机变量且均值为
0、方差为1,求的协方差函数。
4.设U是随机变量,随机过程.
(1) 是严平稳过程吗为什么
(2) 如果,证明:的自相关函数是常数。
5.设随机过程,其中U与V独立同分布。
(1) 是平稳过程吗为什么
(2) 是严平稳过程吗为什么
6.设随机变量的分布密度为, 令,
试求的一维概率分布密度及。
7.若从t = 0开始每隔1/2分钟查阅某手机所接收的短信息 , 令
试求:的一维分布函数
8.设随机过程, 其中是相互独立的随
机变量 , 且, 试求的均值与协方差函数 .
9.设其中为常数 , 随机变量
, 令 , 试求 :和。
10.设有随机过程,并设x是一实数,定义另一个随机过程
试证的均值和自相关函数分别为随机过程的一维和二维分布函数。
11.设有随机过程,,其中为均匀分布
于间的随机变量,即试证:
(1)自相关函数
(2)协相关函数
12.质点在直线上作随机游动,即在时质点可以在轴上往右或往左作
一个单位距离的随机游动。
若往右移动一个单位距离的概率为,往左移动一个单位距离的概率为,即
,且各次游动是相互统计独立的。
经过n 次游动,质点所处的位置为。
(1)的均值;
(2)求的相关函数和自协方差函数和。
13.设,其中服从上的均匀分布。
试证 :
是宽平稳序列。
14.设其中服从上的均匀分布. 试
证 :既不是宽平稳也不是严平稳过程 .
15.设随机过程和都不是平稳的,且
其中和是均值为零的相互独立的平稳过程,它们有相同的相关函数,求证
是平稳过程。
16.设是均值为零的平稳随机过程。
试
证 :
仍是一平稳随机过程 , 其中为复常数,为整数。
17.若平稳过程满足条件,则称是周
期为的平稳过程。
试证是周期为的平稳过程的充分必要条件是其自相关函数必为周期等于的周期函数。