导数的概念及运算复习教材
导数的概念及运算

第一节导数的概念及运算[最新考纲] 1.了解导数概念的实际背景,理解导数的几何意义.2.能根据导数定义求函数y=C(C为常数),y=x,y=x2,y=x3,y=1x,y=x的导数.3.能利用基本初等函数的导数公式和导数的运算法则求简单函数的导数.能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.1.导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线斜率.相应地,切线方程为y-f(x0)=f′(x0)(x-x0).2.基本初等函数的导数公式原函数导函数f(x)=x n(n∈Q*)f′(x)=nx n-1f(x)=sin x f′(x)=cos xf(x)=cos x f′(x)=-sin xf(x)=a x f′(x)=a x ln a(a>0)f(x)=e x f′(x)=e xf(x)=log a x f′(x)=1 x ln af(x)=ln x f′(x)=1 x(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[常用结论]1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af (x )±bg (x )]′=af ′(x )±bg ′(x ).3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.一、思考辨析(正确的打“√”,错误的打“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)f ′(x 0)与[f (x 0)]′表示的意义相同.( )(3)与曲线只有一个公共点的直线一定是曲线的切线.( ) (4)函数f (x )=sin (-x )的导数是f ′(x )=cos x .( ) 二、教材改编1.函数y =x cos x -sin x 的导数为( ) A.x sin x B.-x sin x C.x cos xD.-x cos x2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9 B.-3 C.9D.153.函数y =f (x )的图象如图,则导函数f ′(x )的大致图象为( )A B C D4.在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m )是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =m/s ,加速度a = m/s 2.考点1 导数的计算(1)求函数的导数要准确地把函数分解为基本初等函数的和、差、积、商,再利用运算法则求导数.(2)在求导过程中,要仔细分析函数解析式的结构特征,紧扣法则,记准公式,避免运算错误.已知函数解析式求函数的导数 求下列各函数的导数: (1)y =x 2x ;(2)y =tan x ; (3)y =2sin 2x2-1.[解] (1)先变形:y =2x 32, 再求导:y ′=(2x 32)′=322x 12. (2)先变形:y =sin xcos x ,再求导:y ′=⎝ ⎛⎭⎪⎫sin x cos x ′=(sin x )′·cos x -sin x ·(cos x )′cos 2x =1cos 2x . (3)先变形:y =-cos x ,再求导:y ′=-(cos x )′=-(-sin x )=sin x .[逆向问题] 已知f (x )=x (2 017+ln x ),若f ′(x 0)=2 018,则x 0= . 1 [因为f (x )=x (2 017+ln x ), 所以f ′(x )=2 017+ln x +1=2 018+ln x , 又f ′(x 0)=2 018,所以2 018+ln x 0=2 018,所以x 0=1.]求导之前先对函数进行化简减少运算量.如本例(1)(3). 抽象函数求导已知f (x )=x 2+2xf ′(1),则f ′(0)= . -4 [∵f ′(x )=2x +2f ′(1), ∴f ′(1)=2+2f ′(1), ∴f ′(1)=-2,∴f ′(0)=2f ′(1)=2×(-2)=-4.]赋值法是求解此类问题的关键,求解时先视f ′(1)为常数,然后借助导数运算法则计算f ′(x ),最后分别令x =1,x =0代入f ′(x )求解即可.1.已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为 .2.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)= .3.求下列函数的导数 (1)y =3x e x -2x +e ; (2)y =ln x x 2+1;(3)y =ln2x -12x +1. 考点2 导数的几何意义导数几何意义的应用类型及求解思路(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎨⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可. (3)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.求切线方程(1)(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为 .(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 .(1)3x -y =0 (2)x -y -1=0 [(1)∵y ′=3(x 2+3x +1)e x ,∴曲线在点(0,0)处的切线斜率k =y ′|x =0=3,∴曲线在点(0,0)处的切线方程为y =3x .(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x , ∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0.](1)求解曲线切线问题的关键是求切点的横坐标,在使用切点横坐标求切线方程时应注意其取值范围;(2)注意曲线过某点的切线和曲线在某点处的切线的区别.如本例(1)是“在点(0,0)”,本例(2)是“过点(0,-1)”,要注意二者的区别.求切点坐标(2019·江苏高考)在平面直角坐标系xOy 中,点A 在曲线y =ln x上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是_________(e,1) [设A (x 0,y 0),由y ′=1x ,得k =1x 0,所以在点A 处的切线方程为y -ln x 0=1x 0(x -x 0).因为切线经过点(-e ,-1),所以-1-ln x 0=1x 0(-e -x 0).所以ln x 0=e x 0,令g (x )=ln x -ex (x >0), 则g ′(x )=1x +ex 2,则g ′(x )>0, ∴g (x )在(0,+∞)上为增函数.又g(e)=0,∴ln x=ex有唯一解x=e.∴x0=e.∴点A的坐标为(e,1).]f′(x)=k(k为切线斜率)的解即为切点的横坐标,抓住切点既在曲线上也在切线上,是求解此类问题的关键.求参数的值(1)(2019·全国卷Ⅲ)已知曲线y=a e x+x ln x在点(1,a e)处的切线方程为y=2x+b,则()A.a=e,b=-1B.a=e,b=1C.a=e-1,b=1D.a=e-1,b=-1(2)已知f(x)=ln x,g(x)=12x2+mx+72(m<0),直线l与函数f(x),g(x)的图象都相切,与f(x)图象的切点为(1,f(1)),则m=.(1)D(2)-2[(1)∵y′=a e x+ln x+1,∴y′|x=1=a e+1,∴2=a e+1,∴a=e-1.∴切点为(1,1),将(1,1)代入y=2x+b,得1=2+b,∴b=-1,故选D.(2)∵f′(x)=1x,∴直线l的斜率k=f′(1)=1.又f(1)=0,∴切线l的方程为y=x-1. g′(x)=x+m,设直线l与g(x)的图象的切点为(x0,y0),则有x0+m=1,y0=x0-1,y0=12x2+mx0+72,m<0,∴m=-2.]已知切线方程(或斜率)求参数值的关键就是列出函数的导数等于切线斜率的方程,同时注意曲线上点的横坐标的取值范围.导数与函数图象(1)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y =f′(x)的图象如图所示,则该函数的图象是()A BC D(2)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)= .(1)B (2)0 [(1)由y =f ′(x )的图象是先上升后下降可知,函数y =f (x )图象的切线的斜率先增大后减小,故选 B.(2)由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.] 函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出图象升降的快慢.1.曲线f (x )=e xx -1在x =0处的切线方程为 .2.(2019·大同模拟)已知f (x )=x 2,则曲线y =f (x )过点P (-1,0)的切线方程是 .3.直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b = .。
导数的概念及运算课件——2025届高三数学一轮复习

B.2f ′(3)<2f ′(5)<f (5)-f (3)
C.f (5)-f (3)<2f ′(3)<2f ′(5)
D.2f ′(5)<2f ′(3)<f (5)-f (3)
A
[由题图知:f
5 − 3
′(3)<
5−3
<f ′(5),
即2f ′(3)<f (5)-f (3)<2f ′(5).故选A.]
y-f (x0)=f ′(x0)(x-x0)
斜率
线的____,相应的切线方程为_____________________.
提醒:求曲线的切线时,要分清在点P处的切线与过点P的切线的区别,前者只
有一条,而后者包括了前者.
第1课时 导数的概念及运算
链接教材
夯基固本
典例精研
核心考点
3.基本初等函数的导数公式
)
第1课时 导数的概念及运算
链接教材
夯基固本
4.(人教A版选择性必修第二册P81习题5.2T7改编)函数f
典例精研
核心考点
课时分层作业
1
x
(x)=e + 的图象在x=1
y=(e-1)x+2
处的切线方程为_______________.
y=(e-1)x+2
1
[∵f ′(x)=ex- 2 ,∴f ′(1)=e-1,又f (1)=e+1,∴切点为(1,
cf ′(x)
(4)[cf (x)]′=_______.
5.复合函数的定义及其导数
一般地,对于两个函数y=f (u)和u=g(x),如果通过中间变量u,y可以表示成x
第3章 第1节 导数的概念及其运算-2023届高三一轮复习数学精品备课(新高考人教A版2019)

0 nxn-1 cos x
-sin x axln a
ex
f′(x)±g′(x) f′(x)g(x)+f(x)g′(x)
教材拓展
1.奇函数的导数是偶函数,偶函数的导数是奇函数.周 期函数的导数还是周期函数.
2.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋 势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化 的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.
解析 (1)f′(x0)表示函数f(x)的导数在x0处的值,而f[(x0)]′表 示函数值f(x0)的导数,其意义不同,(1)错.
(2)求f′(x0)时,应先求f′(x),再代入求值,(2)错. (4)f(x)=a3+2ax+x2=x2+2ax+a3.∴f′(x)=2x+2a,(4)错.
◇教材改编
解析 v=h′(t)=-9.8t+6.5,a=v′(t)=-9.8. 答案 -9.8t+6.5 -9.8
◇考题再现
4.已知函数f(x)=x(2 018+ln x),若f′(x0)=2 019,则x0 等于( B )
A.e2
B.1
C.ln 2
D.e
5.已知函数f(x)=exln x,f′(x)为f(x)的导函数,则f′(1)的
2.曲线y=x3+11在点P(1,12)处的切线与y轴交点的 纵坐标是( C )
A.-9 B.-3 C.9
D.15
解析 因为y′=3x2,所以y′|x=1=3,则曲线y=x3+11 在点P(1,12)处的切线方程为y-12=3(x-1),令x=0,
得y=9.
3.在高台跳水运动中,t s时运动员相对于水面的高度 (单位:m)是h(t)=-4.9t2+6.5t+10,则运动员的速度v= ________m/s,加速度a=________m/s2.
高考数学复习讲义:导数的概念及运算、定积分

返回
[基本能力]
一、判断题(对的打“√”,错的打“×”) (1)曲线的切线与曲线不一定只有一个公共点. ( ) (2)求曲线过点 P 的切线时 P 点一定是切点. ( ) 答案:(1)√ (2)×
返回
看成常数,再求导 复合函数 确定复合关系,由外向内逐层求导
返回
[针对训练]
1.设 f(x)=x(2 019+ln x),若 f′(x0)=2 020,则 x0 等于( )
A.e2
B.1
C.ln 2
D.e
解析:f′(x)=2 019+ln x+1=2 020+ln x,由 f′(x0)= 2 020,得 2 020+ln x0=2 020,则 ln x0=0,解得 x0=1. 答案:B
返回
2.曲线 y=log2x 在点(1,0)处的切线与坐标轴所围成三角形的 面积等于________. 解析:∵y′=xln1 2,∴切线的斜率 k=ln12,∴切线方程为 y=ln12(x-1),∴所求三角形的面积 S=12×1×ln12=2ln1 2= 1 2log2e. 答案:12log2e
二、填空题 1.已知函数 f(x)=axln x+b(a,b∈R),若 f(x)的图象在 x=1
处的切线方程为 2x-y=0,则 a+b=________. 解析:由题意,得 f′(x)=aln x+a,所以 f′(1)=a,因为函 数 f(x)的图象在 x=1 处的切线方程为 2x-y=0,所以 a=2, 又 f(1)=b,则 2×1-b=0,所以 b=2,故 a+b=4. 答案:4
答案:-xsin x 2.已知 f(x)=13-8x+2x2,f′(x0)=4,则 x0=________.
专题四+4.1导数的概念及运算课件——2023届高三数学一轮复习

1 3
,
0
,C
0,
1 4
,则S△BOC=
1 2
×
1 3
×
1 4
=
1 24
.
综上,△BOC的面积为 4 或 1 .
3 24
考向二 两曲线的公切线问题
1.(2023届贵州遵义新高考协作体入学质量监测,11)若直线y=kx+b是曲线 y=ex+1的切线,也是y=ex+2的切线,则k= ( ) A.ln 2 B.-ln 2 C.2 D.-2 答案 C
4.(2019课标Ⅲ,文7,理5,5分)已知曲线y=aex+xln x在点(1,ae)处的切线方程 为y=2x+b,则 ( )
A.a=e,b=-1 B.a=e,b=1
C.a=e-1,b=1 答案 D
D.a=e-1,b=-1
5.(2021新高考Ⅰ,7,5分)若过点(a,b)可以作曲线y=ex的两条切线,则 ( )
解析 由题意可知y'=2cos x-sin x,则y'|x=π=-2.所以曲线y=2sin x+cos x在点 (π,-1)处的切线方程为y+1=-2(x-π),即2x+y+1-2π=0,故选C.
答案 C
例2 (2016课标Ⅱ,16,5分)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线
y=ln(x+1)的切线,则b=
,即f
'(x0)=
lim
x0
y x
=
. lim
x0
f
( x0
x)
f
(x0 )
x
注意:f '(x)与f '(x0)的区别与联系:f '(x)是一个函数,f '(x0)是函数f '(x)在x0处
导数的概念及其意义 、导数的运算(高三一轮复习)

;
gfxx′=f′xgx[g-xf]2xg′x(g(x)≠0);
[cf(x)]′= 16 cf′(x)
.
— 8—
数学 N 必备知识 自主学习 关键能力 互动探究
— 9—
5.复合函数的定义及其导数
(1)一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x 的函数,那么称这个函数为函数y=f(u)与u=g(x)的复合函数,记作y= 17 f(g(x)) .
— 20 —
数学 N 必备知识 自主学习 关键能力 互动探究
— 21 —
命题点2 导数的几何意义
考向1 求切线方程
例2
(1)(2022·湖南衡阳二模)函数f(x)=xln(-2x),则曲线y=f(x)在x=-
e 2
处的
切线方程为 4x-2y+e=0
.
(2)(2y0=22-·新1e高x 考Ⅱ卷.)曲线y=ln|x|过坐标原点的两条切线的方程为
(2)f1x′=-f[′fxx]2(f(x)≠0). (3)曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次函数的图 象相切只有一个公共点. (4)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变 化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越 “陡”.
f(x)=xα(α∈Q且α≠0) f′(x)= 7αxα-1
f(x)=sin x
f′(x)= 8 cos x
f(x)=cos x
f′(x)= 9 -sin x
— 6—
数学 N 必备知识 自主学习 关键能力 互动探究
f(x)=ax(a>0且a≠1) f′(x)= 10 axln a
高考数学-导数-专题复习课件

)
v0t
,求1物gt体2 在时刻
2
时的瞬t0时速度.
解析:
s(t)
v0
1 2
g
2t
v0
gt
∴物体在 t时0 刻瞬时速度为 s(t0 ) v0 gt0. 题型四 导数的几何意义及几何上的应用
【例4】(12分)已知曲线 y 1 x3 4 .
33
(1)求曲线在点P(2,4)处的切线方程; (2)求过点P(2,4)的曲线的切线方程.
x0
x0
x0
典例分析
题型一 利用导数求函数的单调区间
【例1】已知f(x)= e-xax-1,求f(x)的单调增区间.
分析 通过解f′(x)≥0,求单调递增区间.
解 ∵f(x)= -aexx -1,∴f′(x)= -a. ex 令f′(x)≥0,得 ≥ae. x 当a≤0时,有f′(x)>0在R上恒成立; 当a>0时,有x≥ln a. 综上,当a≤0时,f(x)的单调增区间为(-∞,+∞); 当a>0时,f(x)的单调增区间为[ln a,+∞).
分析 (1)在点P处的切线以点P为切点.关键是求出切线斜率k=f′(2). (2)过点P的切线,点P不一定是切点,需要设出切点坐标.
解(1)∵y′= ,…x2……………………………2′ ∴在点P(2,4)处的切线的斜率 k y |x..23′ 4. ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2), 即4x-y-4=0……………………………………….4′ (2)设曲线 y 1 x过3 点4 .P(2,4)的切线相切于点
33
则切线的斜率 k y |xx0……x02…. …………..6′
∴切线方程为
y
(1 3
导数的概念与导数运算考点及题型全归纳

第三章 导数及其应用第一节 导数的概念与运算基础知识1.导数的概念一般地,函数y =f (x )在x =x 0处的瞬时变化率lim →Δ0x ΔyΔx =lim →Δ0x f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim→Δ0x ΔyΔx =lim →Δ0x f (x 0+Δx )-f (x 0)Δx .f ′(x )与f ′(x 0)的区别与联系f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),所以[f ′(x 0)]′=0.2.导数的几何意义函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).曲线y =f (x )在点P (x 0,f (x 0))处的切线是指以P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.3.函数f (x )的导函数称函数f ′(x )=lim →Δ0xf (x +Δx )-f (x )Δx为f (x )的导函数.4.导数的运算(1)几种常见函数的导数①(C )′=0(C 为常数);②(x n )′=nx n -1(n ∈Q *); ③(sin x )′=cos_x ;④(cos x )′=-sin_x ;⑤(e x )′=e x ; ⑥(a x )′=a x ln_a (a >0,a ≠1);⑦(ln x )′=1x ;⑧(log a x )′=1x ln a(a >0,a ≠1). (2)导数的四则运算法则 ①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x );③⎣⎡⎦⎤u (x )v (x )′=u ′(x )v (x )-u (x )v ′(x )[v (x )]2(v (x )≠0).熟记以下结论: (1)⎝⎛⎭⎫1x ′=-1x 2; (2)⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0); (3)[af (x )±bg (x )]′=af ′(x )±bg ′(x );(4)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.考点一 导数的运算[典例] 求下列函数的导数.(1)y =ln x +1x ;(2)y =(2x +1)·e x ; (3)y =1+x 5x 2;(4)y =x -sin x 2cos x2.[解] (1)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (2)y ′=[(2x +1)·e x ]′=(2x +1)′·e x +(2x +1)·(e x )′=2e x +(2x +1)·e x =(2x +3)·e x .(3)∵1+x 5x2=x 35+x -25,∴y ′=⎝ ⎛⎭⎪⎫1+x 5x 2′=(x 35)′+(x -25)′=35x -25-25x -75.(4)∵y =x -sin x 2cos x 2=x -12sin x ,∴y ′=1-12cos x .[题组训练]1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( )A .-eB .-1C .1D .e解析:选B 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x.所以f ′(1)=2f ′(1)+1,则f ′(1)=-1. 2.求下列函数的导数.(1)y =cos x -sin x ; (2)y =(x +1)(x +2)(x +3); (3)y =ln x x 2+1.解:(1)y ′=(cos x )′-(sin x )′=-sin x -cos x .(2)∵y =(x +1)(x +2)(x +3) =(x 2+3x +2)(x +3) =x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11.(3)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x(x 2+1)-2x ·ln x(x 2+1)2=x 2(1-2ln x )+1x (x 2+1)2.考点二 导数的几何意义考法(一) 求曲线的切线方程[典例] (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x[解析] ∵f (x )=x 3+(a -1)x 2+ax ,∴f ′(x )=3x 2+2(a -1)x +a .又∵f (x )为奇函数,∴f (-x )=-f (x )恒成立, 即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . [答案] D[解题技法]若已知曲线y =f (x )过点P (x 0,y 0),求曲线过点P 的切线方程的方法(1)当点P (x 0,y 0)是切点时,切线方程为y -y 0=f ′(x 0)·(x -x 0). (2)当点P (x 0,y 0)不是切点时,可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过点P ′(x 1,f (x 1))的切线方程y -f (x 1)=f ′(x 1)(x -x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程. 考法(二) 求切点坐标[典例] 曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)和(-1,3)D .(1,-3)[解析] f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3).经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. [答案] C[解题技法] 求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.考法(三) 求参数的值(范围)[典例] 函数f (x )=ln x +ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.[解析] 函数f (x )=ln x +ax 的图象上存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,即1x +a =2在(0,+∞)上有解,a =2-1x 在(0,+∞)上有解,因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). [答案] (-∞,2)[解题技法]1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.2.求解与导数的几何意义有关问题时应注意的两点(1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.[题组训练]1.曲线y =e x 在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( )A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B ∵y ′=e x ,令e x =1,得x =0.当x =0时,y =1,∴点A 的坐标为(0,1). 2.设曲线y =a (x -1)-ln x 在点(1,0)处的切线方程为y =2x -2,则a =( )A .0B .1C .2D .3解析:选D ∵y =a (x -1)-ln x ,∴y ′=a -1x ,∴y ′|x =1=a -1.又∵曲线在点(1,0)处的切线方程为y =2x -2, ∴a -1=2,解得a =3.3.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A .x +y -1=0B .x -y -1=0C .x +y +1=0D .x -y +1=0 解析:选B 因为点(0,-1)不在曲线y =f (x )上,所以设切点坐标为(x 0,y 0).又因为f ′(x )=1+ln x ,所以⎩⎪⎨⎪⎧ y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得⎩⎪⎨⎪⎧x 0=1,y 0=0.所以切点坐标为(1,0),所以f ′(1)=1+ln 1=1,所以直线l 的方程为y =x -1,即x -y -1=0.[课时跟踪检测]A 级1.设f (x )=x e x 的导函数为f ′(x ),则f ′(1)的值为( )A .eB .e +1C .2eD .e +2解析:选C 由题意知f (x )=x e x ,所以f ′(x )=e x +x e x ,所以f ′(1)=e +e =2e. 2.曲线y =sin x +e x 在x =0处的切线方程是( )A .x -3y +3=0B .x -2y +2=0C .2x -y +1=0D .3x -y +1=0解析:选C ∵y ′=cos x +e x ,∴当x =0时,y ′=2.又∵当x =0时,y =1,∴所求切线方程为y -1=2x ,即2x -y +1=0.3.设f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0等于( )A .e 2B .1C .ln 2D .e解析:选B f ′(x )=2 019+ln x +1=2 020+ln x ,由f ′(x 0)=2 020,得2 020+ln x 0=2 020,则ln x 0=0,解得x 0=1.4.已知函数f (x )=a ln x +bx 2的图象在点P (1,1)处的切线与直线x -y +1=0垂直,则a 的值为( )A .-1B .1C .3D .-3解析:选D 由已知可得P (1,1)在函数f (x )的图象上,所以f (1)=1,即a ln 1+b ×12=1,解得b =1, 所以f (x )=a ln x +x 2,故f ′(x )=ax+2x .则函数f (x )的图象在点P (1,1)处的切线的斜率k =f ′(1)=a +2, 因为切线与直线x -y +1=0垂直, 所以a +2=-1,即a =-3.5.(2018·合肥第一次教学质量检测)已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值是( )A.12 B .1 C .2D .e解析:选B 由题意知y ′=a e x +1,令a e x +1=2,则a >0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.6.设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)解析:选D 因为f ′(x )=3x 2+2ax ,所以f ′(x 0)=3x 20+2ax 0=-1.又因为切点P 的坐标为(x 0,-x 0),所以x 30+ax 20=-x 0.联立两式得⎩⎪⎨⎪⎧ 3x 20+2ax 0=-1,x 30+ax 20=-x 0,解得⎩⎪⎨⎪⎧ a =2,x 0=-1或⎩⎪⎨⎪⎧a =-2,x 0=1.所以点P 的坐标为(-1,1)或(1,-1).7.已知直线y =-x +1是函数f (x )=-1a ·e x图象的切线,则实数a =________.解析:设切点为(x 0,y 0),则f ′(x 0)=-1a·e 0x =-1,∴ex =a ,又-1a·e 0x =-x 0+1,∴x 0=2,a =e 2.答案:e 28.(2019·安徽名校联考)已知函数f (x )=2x -ax 的图象在点(-1,f (-1))处的切线斜率是1,则此切线方程是________.解析:因为f ′(x )=-2x 2-a ,所以f ′(-1)=-2-a =1,所以a =-3,所以f (x )=2x +3x ,所以f (-1)=-5,则所求切线的方程为y +5=x +1,即x -y -4=0. 答案:x -y -4=09.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________. 解析:因为y ′=-1-cos xsin 2x ,所以y ′|=2x π=-1,由条件知1a =-1, 所以a =-1. 答案:-110.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________.解析:由y =x 2-ln x ,得y ′=2x -1x(x >0),设点P 0(x 0,y 0)是曲线y =x 2-ln x 上到直线y =x -2的距离最小的点, 则y ′|x =x 0=2x 0-1x 0=1,解得x 0=1或x 0=-12(舍去).∴点P 0的坐标为(1,1).∴所求的最小距离为|1-1-2|2= 2.答案: 211.求下列函数的导数.(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =x ·tan x ; (3)y =cos x ex .解:(1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =x -12-x 12,∴y ′=(x-12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x .12.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解:(1)∵y ′=x 2-4x +3=(x -2)2-1,∴当x =2时,y ′min =-1,此时y =53,∴斜率最小时的切点为⎝⎛⎭⎫2,53,斜率k =-1, ∴切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,∴tan α≥-1, 又∵α∈[0,π),∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. B 级1.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 由题图可知切线过点(0,2),(3,1),则曲线y =f (x )在x =3处的切线的斜率为-13,即f ′(3)=-13,又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 2.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.解析:由f (x )=x 3+ax +14,得f ′(x )=3x 2+a ,f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x,∴⎩⎨⎧-ln x 0-14=ax 0, ①a =-1x 0. ②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e34=-e-34.答案:-e-343.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意,得{ f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的概念及运算一.复习目标:理解导数的概念和导数的几何意义,会求简单的函数的导数和曲线在一点处的切线方程.二.知识要点:1.导数的概念:0()f x '= ;()f x '= .2.求导数的步骤是 . 3.导数的几何意义是 .三.课前预习:1.函数22(21)y x =+的导数是 ( C )()A 32164x x + ()B 348x x + ()C 3168x x +()D 3164x x + 2.已知函数)(,31)(x f x x f 则处的导数为在=的解析式可 ( A )()A )1(3)1()(2-+-=x x x f ()B )1(2)(-=x x f()C 2)1(2)(-=x x f ()D 1)(-=x x f3.曲线24y x x =-上两点(4,0),(2,4)A B ,若曲线上一点P 处的切线恰好平行于弦A B ,则点P 的坐标为 ( B )()A (1,3)()B (3,3) ()C (6,12)- ()D (2,4) 4.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数()f x '的图象5.已知曲线()y f x =在2x =-处的切线的倾斜角为34π,则(2)f '-=1-,[(2)]f '-=0.()C ()D6.曲线2122y x=-与3124y x =-在交点处的切线的夹角是4π.四.例题分析:例1.(1)设函数2()(31)(23)f x x x x =+++,求(),(1)f x f ''-; (2)设函数32()25f x x x x =-++,若()0f x '= ,求x 的值. (3)设函数()(2)n f x x a =-,求()f x '. 解:(1)32()61153f x x x x =+++,∴2()18225f x x x '=++ (2)∵32()25f x x x x =-++,∴2()341f x x x '=-+ 由()0f x '= 得:203410xx -+=,解得:01x =或013x =(3)0(22)(2)()limnnx x a x x a f x x∆→-+∆--'=∆11221lim [(2)24(2)2()]n n nnn n n n x C x a C x x a C x ---∆→=-⋅+∆-++∆ 12(2)n n x a -=-例2.物体在地球上作自由落体运动时,下落距离212S gt=其中t 为经历的时间,29.8/gm s=,若 0(1)(1)limt S t S Vt∆→+∆-=∆9.8/m s=,则下列说法正确的是( C )(A )0~1s 时间段内的速率为9.8/m s(B )在1~1+△ts 时间段内的速率为9.8/m s (C )在1s 末的速率为9.8/m s(D )若△t >0,则9.8/m s 是1~1+△ts 时段的速率;若△t <0,则9.8/m s 是1+△ts ~1时段的速率.小结:本例旨在强化对导数意义的理解,0lim →∆t tS t S ∆-∆+)1()1(中的△t 可正可负 例3.(1)曲线C :32y ax bx cx d =+++在(0,1)点处的切线为1:1l y x =+ 在(3,4)点处的切线为2:210l y x =-+,求曲线C 的方程;(2)求曲线3:2S y x x =-的过点(1,1)A 的切线方程. 解:(1)已知两点均在曲线C 上. ∴⎩⎨⎧=+++=439271d c b a d∵232y ax bx c '=++ /(0)f c=/(3)276f a b c =++ ∴12762c a b c =⎧⎨++=-⎩, 可求出11,1,,13dc a b ===-=∴曲线C :32113y x x x =-+++(2)设切点为3000(,2)P x x x -,则斜率200()23k f x x '==-,过切点的切线方程为:3200002(23)()y x x x x x -+=--,∵过点(1,1)A ,∴32000012(23)(1)x x x x -+=-- 解得:01x =或012x =-,当01x =时,切点为(1,1),切线方程为:20x y +-=当012x=-时,切点为17(,)28--,切线方程为:5410x y --=例4.设函数1()1,0f x x x=->(1)证明:当0a b <<且()()f a f b =时,1ab >;(2)点00(,)P x y (0<x 0<1)在曲线()y f x =上,求曲线上在点P 处的切线与x 轴,y 轴正向所围成的三角形面积的表达式.(用0x 表示) 解:(1)∵()()f a f b =,∴11|1||1|ab-=-,两边平方得:22121211a abb+-=+-即:111111()()2()a b a bab-+=-,∵0a b <<,∴110a b-≠,∴112,2a b abab+=+=2ab a b ⇒=+>∴1ab >(2)当01x <<时,11()11f x xx=-=-,0021()(01)f x x x '=-<< 曲线()y f x =在点P处的切线方程为:0021()y y x x x -=--,即:22x x y x x -=-+∴切线与与x 轴,y 轴正向的交点为200002(2,0),(0,)x x x x --∴所求三角形的面积为2200000211()(2)(2)22x A x x x x x -=-⋅=-例5.求函数42y x x =+- 图象上的点到直线4y x =-的距离的最小值及相应点的坐标.解:首先由⎩⎨⎧-=-+=424x y x x y 得420x +=知,两曲线无交点.341y x '=+,要与已知直线平行,须3411x +=,0x =故切点:(0 , -2). d ==2.五.课后作业: 班级 学号 姓名1.曲线3231y x x =-+在点(1,1)-处的切线方程为()()A 34y x =-()B 32y x =-+ ()C 43y x =-+ ()D 45y x =-2.已知质点运动的方程为24105s t t =++,则该质点在4t =时的瞬时速度为 ( )()A 60 ()B 120 ()C 80 ()D 50 3.设点P 是曲线335y x =-+上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是( )()A 2[0,]3π()B 2[0,][,)23πππ()C 2(,]23ππ()D 2[,]33ππ4.若0()2f x '=,则00()()lim2k f x k f x k→∞--=5.设函数()f x 的导数为()f x ',且2()2(1)f x x xf '=+,则(2)f '= 6.已知曲线3:2S y x x =-(1)求曲线S 在点(1,1)A 处的切线方程;(2)求过点(2,0)B 并与曲线S相切的直线方程.7.设曲线S :3266y x x x =---,S 在哪一点处的切线斜率最小?设此点为00(,)P x y求证:曲线S 关于P 点中心对称.8.已知函数22(),()f x x ax b g x x cx d =++=++. 若(21)4()f x g x +=,且()()f x g x ''=,(5)30f =,求(4)g .9..曲线(1)(2)=+-上有一点P,它的坐标均为整数,且过P点的切y x x x线斜率为正数,求此点坐标及相应的切线方程.10.已知函数32==++的图像过点(1,2)y x ax bx cP.过P点的切线与图象仅P点一个公共点,又知切线斜率的最小值为2,求()f x的解析式.。