高中数学错题集及解析

合集下载

高一数学必修一易错题汇总

高一数学必修一易错题汇总

集合部分错题库1.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )A .3个B .5个C .7个D .8个2.已知集合M ={(x ,y)|x +y =3},N ={(x ,y)|x -y =5},那么集合M ∩N 为 A.x =4,y =-1 B.(4,-1) C.{4,-1} D.{(4,-1)}3.已知集合A ={x|x 2-5x+6<0},B ={x|x< a2},若A B ,则实数a 的范围为A.[6,+∞)B.(6,+∞)C.(-∞,-1)D.(-1,+∞) 4.满足{x|x 2-3x +2=0}M {x ∈N|0<x<6}的集合M 的个数为 A.2 B.4 C.6 D.85.图中阴影部分所表示的集合是( )A .)]([C A C B U ⋃⋂ B.)()(C B B A ⋃⋃⋃ C.)()(B C C A U ⋂⋃ D. )]([C A C B U ⋂⋃6.高一某班有学生45人,其中参加数学竞赛的有32人,参加物理竞赛的有28人,另外有5人两项竞赛均不参加,则该班既参加数学竞赛又参加物理竞赛的有__________人.7.已知集合12,6A x x N N x ⎧⎫=∈∈⎨⎬-⎩⎭用列举法表示集合A 为8. 已知集合{}2210,A x ax x x R =++=∈,a 为实数(1)若A 是空集,求a 的取值范围(2)若A 是单元素集,求a 的值(3)若A 中至多只有一个元素,求a 的取值范围9.判断如下集合A 与B 之间有怎样的包含或相等关系: (1)A={x|x=2k-1,k ∈Z},B={x|x=2m+1,m ∈Z}; (2)A={x|x=2m,m ∈Z},B={x|x=4n,n ∈Z}.10.集合A={x|-2≤x ≤5},B={x|m+1≤x ≤2m-1}, (1)若B ⊆A,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.函数概念部分错题库1、与函数32y x =-有相同图象的一个函数是( ) A. 32y x =- B. 2y x x =-C.y =- D. y x =2、为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位C .沿x 轴向左平移1个单位D .沿x 轴向左平移12个单位3、若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是A .[0,1]B .[0,1)C . [0,1)(1,4]D .(0,1)4、若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( )A .1[,3]2B .10[2,]3C .510[,]23D .10[3,]35、已知函数f (x )=221x x +,那么f (1)+f (2)+f (21)+f (3)+f (31)+f (4)+f (41)=_____.6、已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 。

高中数学必修一第四章指数函数与对数函数易错题集锦(带答案)

高中数学必修一第四章指数函数与对数函数易错题集锦(带答案)

高中数学必修一第四章指数函数与对数函数易错题集锦单选题1、若ln2=a,ln3=b,则log818=()A.a+3ba3B.a+2b3aC.a+2ba3D.a+3b3a答案:B分析:先换底,然后由对数运算性质可得.log818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a3a.故选:B2、设函数f(x)=lg(x2+1),则使得f(3x−2)>f(x−4)成立的x的取值范围为()A.(13,1)B.(−1,32)C.(−∞,32)D.(−∞,−1)∪(32,+∞)答案:D分析:方法一 :求出f(3x−2),f(x−4)的解析式,直接带入求解.方法二 : 设t=x2+1,则y=lgt,判断出f(x)=lg(x2+1)在[0,+∞)上为增函数,由f(3x−2)>f(x−4)得|3x−2|>|x−4|,解不等式即可求出答案.方法一 :∵f(x)=lg(x2+1)∴由f(3x−2)>f(x−4)得lg[(3x−2)2+1]>lg[(x−4)2+1],则(3x−2)2+1>(x−4)2+1,解得x<−1或x>32.方法二 :根据题意,函数f(x)=lg(x2+1),其定义域为R,有f(−x)=lg(x2+1)=f(x),即函数f(x)为偶函数,设t=x2+1,则y=lgt,在区间[0,+∞)上,t=x2+1为增函数且t≥1,y=lgt在区间[1,+∞)上为增函数,则f(x)=lg(x2+1)在[0,+∞)上为增函数,f(3x−2)>f(x−4)⇒f(|3x−2|)>f(|x−4|)⇒|3x−2|>|x−4|,解得x <−1或x >32, 故选:D .3、Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I(t)=K1+e −0.23(t−53),其中K 为最大确诊病例数.当I (t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A .60B .63C .66D .69答案:C分析:将t =t ∗代入函数I (t )=K 1+e −0.23(t−53)结合I (t ∗)=0.95K 求得t ∗即可得解. ∵I (t )=K 1+e −0.23(t−53),所以I (t ∗)=K 1+e −0.23(t ∗−53)=0.95K ,则e 0.23(t∗−53)=19, 所以,0.23(t ∗−53)=ln19≈3,解得t ∗≈30.23+53≈66.故选:C. 小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.4、若x 1,x 2是二次函数y =x 2−5x +6的两个零点,则1x 1+1x 2的值为( )A .−12B .−13C .−16D .56答案:D分析:解方程可得x 1=2,x 2=3,代入运算即可得解.由题意,令x 2−5x +6=0,解得x =2或3,不妨设x 1=2,x 2=3,代入可得1x 1+1x 2=12+13=56. 故选:D.5、已知9m =10,a =10m −11,b =8m −9,则( )A .a >0>bB .a >b >0C .b >a >0D .b >0>a答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出.[方法一]:(指对数函数性质)由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b .[方法二]:【最优解】(构造函数)由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1,令f ′(x)=0,解得x 0=m 11−m ,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x) 在 (1,+∞) 上单调递增,所以f(10)>f(8) ,即 a >b ,又因为f(9)=9log 910−10=0 ,所以a >0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法; 法二:利用a,b 的形式构造函数f(x)=x m −x −1(x >1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、若2x =3,2y =4,则2x+y 的值为( )A .7B .10C .12D .34答案:C分析:根据指数幂的运算性质直接进行求解即可.因为2x =3,2y =4,所以2x+y =2x ⋅2y =3×4=12,故选:C7、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名答案:B分析:算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为500+1600−1200=900,90050=18,故至少需要志愿者18名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.8、已知实数a,b∈(1,+∞),且log2a+log b3=log2b+log a2,则()A.a<√b<b B.√b<a<b C.b<√a<a D.√a<b<a答案:B分析:对log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,结合y=x−1x 的单调性判断b<a,同理利用换底公式得log2a−1log2a<log3b−1log3b,即log2a>log3b,再根据对数运算性质得log2a>log2√b,结合y=log2x单调性,a>√b,继而得解.由log2a+log b3=log2b+log a2,变形可知log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,由函数f(x)=x−1x在(0,+∞)上单调递增知,log2a<log2b,即a<b,排除C,D;其次,因为log2b>log3b,得log2a+log b3>log3b+log a2,即log2a−log a2>log3b−log b3,同样利用f(x)=x−1x的单调性知,log2a>log3b,又因为log3b=log√3√b>log2√b,得log2a>log2√b,即a>√b,所以√b<a<b.故选:B.多选题9、已知函数f(x)=log2x,g(x)=2x+a,若存在x1,x2∈[1,2],使得f(x1)=g(x2),则a的取值可以是()A.-4B.-2C.2D.3答案:AB分析:根据条件求出两个函数的值域,结合若存在x1,x2∈[1,2],使得f(x1)=g(x2),等价为两个集合有公共元素,然后根据集合的关系进行求解即可.当1≤x≤2时,0≤log2x≤1,即0≤f(x)≤1,则f(x)的值域为[0,1],当1≤x≤2时,2+a≤g(x)≤4+a,则g(x)的值域为[2+a,4+a],若存在x1,x2∈[1,2],使得f(x1)=g(x2),则[2+a,4+a]∩[0,1]≠∅,若[2+a,4+a]∩[0,1]=∅,则2+a>1或4+a<0,解得a>−1或a<−4.所以当[2+a,4+a]∩[0,1]≠∅时,a的取值范围为−4≤a≤−1.故选:AB10、已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是()A.a>1B.0<a<1C.c>1D.0<c<1答案:BD分析:根据对数函数的图象判断.由图象知0<a<1,可以看作是y=log a x向左移动c个单位得到的,因此0<c<1,故选:BD .11、已知函数f (x )={(12)x−1,x ≤0x 12,x >0,则下列结论中错误的是( ) A .f (x )的值域为(0,+∞)B .f (x )的图象与直线y =2有两个交点C .f (x )是单调函数D .f (x )是偶函数答案:ACD分析:利用指数函数、幂函数的性质画出f (x )的图象,由图象逐一判断即可.函数f (x )的图象如图所示,由图可知f (x )的值域为[0,+∞),结论A 错误,结论C ,D 显然错误,f (x )的图象与直线y =2有两个交点,结论B 正确.故选:ACD填空题12、函数f (x )=log 12(x 2−5x +6)的单调递减区间为___________.答案:(3,+∞)分析:利用对数型复合函数性质求解即可.由题知:x 2−5x +6>0,解得x >3或x <2.令t =x 2−5x +6,则y =log 12t 为减函数.所以t ∈(−∞,2),t =x 2−5x +6为减函数,f (x )=log 12(x 2−5x +6)为增函数,t ∈(3,+∞),t =x 2−5x +6为增函数,f (x )=log 12(x 2−5x +6)为减函数.所以函数f (x )=log 12(x 2−5x +6)的单调递减区间为(3,+∞).所以答案是:(3,+∞)13、解指数方程2x+3=3x 2−9:__________.答案:x =−3或x =3+log 32分析:直接对方程两边取以3为底的对数,讨论x +3=0和x +3≠0,解出方程即可. 由2x+3=3x2−9得log 32x+3=log 33x 2−9,即(x +3)log 32=(x −3)(x +3),当x +3=0即x =−3时,0=0显然成立;当x +3≠0时,log 32=x −3,解得x =log 32+3;故方程的解为:x =−3或x =3+log 32. 所以答案是:x =−3或x =3+log 32.14、设x 13=2,则√x 53⋅x −1=___________.答案:4分析:由根式与有理数指数幂的关系,结合指数幂的运算性质,求值即可.由√x 53⋅x −1=x 53⋅x −1=x 23=(x 13)2=22=4. 所以答案是:4.解答题15、证明:函数f (x )=log 3(1+x )的图象与g (x )=log 2x 的图象有且仅有一个公共点. 答案:证明见解析分析:把要证两函数的图象有且仅有一个公共点转化为证明方程log 3(1+x )=log 2x 有且仅有一个实根.易观察出x =2为其一根,再假设(x 0,y 0)(x 0≠2)是函数图象的另一个公共点,然后得出矛盾即可. 要证明两函数f (x )和g (x )的图象有且仅有一个公共点,只需证明方程log 3(1+x )=log 2x 有且仅有一个实根,观察上述方程,显然有f (2)=g (2),则两函数的图象必有交点(2,1).设(x 0,y 0)(x 0≠2)是函数图象的另一个公共点.则log 3(1+x 0)=log 2x 0,1+x 0=3y 0,x 0=2y 0,∴1+2y 0=3y 0,即(13)y 0+(23)y 0=1, 令M (x )=(13)x +(23)x ,易知函数M (x )=(13)x +(23)x 为指数型函数.显然M (x )在(−∞,+∞)内是减函数,且M (1)=1,故方程(13)y 0+(23)y 0=1有唯一解y 0=1,从而x 0=2,与x 0≠2矛盾, 从而知两函数图象仅有一个公共点.。

高中数学高频错题总结 (含例题答案)

高中数学高频错题总结 (含例题答案)

高一上学期易错陷阱总结1、 对数型函数中,(易忽略真数位置大于0)5.已知y =log a (2-ax )在[0,1]上为减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 2、 集合中,空集的特殊性(易忘记讨论空集)13.已知集合A ={x |2a +1≤x ≤3a -5},B ={x |x <-1,或x >16},分别根据下列条件求实数a 的取值范围. (1)A ∩B =∅; (2)A ⊆(A ∩B ). 3、集合中,元素的互异性(易忽略导致取值错误)[例2] 已知集合⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },求a 2 019+b 2 020的值.跟踪探究 2.已知集合A ={2,x ,y },B ={2x,2,y 2}且A =B ,求x ,y 的值.4、集合中,元素的特殊要求(比如:易忽略x等条件)跟踪探究 1.若集合A ={x |1≤x ≤3,x ∈N },B ={x |x ≤2,x ∈N },则A ∩B =( )A.{x |1≤x ≤2} B .{x |x ≥1} C .{2,3}D .{1,2}5、抽象函数的定义域问题(定义域仅代表x ,括号内取值范围一致)14、函数的定义域为,则的定义域是___;函数的定义域为___.6、 区间中默认a<b14.已知函数f (x )=, x是偶函数,则a+b=7、 换元法求值域类问题(易忽略换元后,t 的取值范围)(1)f (x +1)=x +2x ,求f (x )的值域;8、动轴定区间类问题(分类讨论不重不漏)典型案例:求函数y =x 2-2ax -1在[0,2]上的最值.9同增异减求单调区间问题(对数型时不能忽略真数位置大于0)(多个区间,隔开)跟踪探究 2.求函数y =log 2(x 2-5x +6)的单调区间.10、分段函数单调性问题。

(易忽略结点处)13.已知函数f (x )=⎩⎪⎨⎪⎧x 2-ax +4,(x ≤1),-ax +3a -4,(x >1)且f (x )在R 上递减,则实数a 的取值范围________.11.解分式不等式。

高中高考数学错题集精讲精析

高中高考数学错题集精讲精析
4
大。
解析:由于 x 2 2 y2 1得(x+2)2=1- y 2 ≤1,∴-3≤x≤-1 从而 x2+y2=-3x2-16x-12=
4
4
+
28
因此当 x=-1 时 x2+y2 有最小值 1,
8
当 x=-
时,x2+y2 有最大值 28
。故 x2+y2 的取值范围
3
3
3
28
是[1, ]
3
【知识点归类点拔】事实上我们可以从解析几何的角度来理解条件 x 2 2 y2 1对 x、y
f 1 y x 1,
2
x f 1 y 1 再将 x、y 互换即得 y f x 1 的反函数为 y f 1 x 1 ,故
y f x 1 的反函数不是 y f 1 x 1 ,因此在今后求解此题问题时一定要谨慎。
【练 4】(2004 高考福建卷)已知函数 y=log2x 的反函数是 y=f-1(x),则函数 y= f-1(1-x)的图象是 ()
答案:B 【易错点 4】求反函数与反函数值错位
例 4、已知函数 f x 1 2x ,函数 y g x 的图像与 y f 1 x 1 的图象关于直线
1 x
y x 对称,则 y g x 的解析式为()
A、 g x 3 2x B、 g x 2 x C、 g x 1 x D、 g x 3
x
1 x
2 x
2 x
【易错点分析】解答本题时易由 y g x 与 y f 1 x 1 互为反函数,而认为
y f 1 x 1 的反函数是 y f x 1 则
y
g
x
=
f
x
1 =
பைடு நூலகம்

高中数学易错题整理

高中数学易错题整理

高中数学错题集1、“直线ax+y +1=0和直线4x+ay -2=0”平行的充要条件为”a = “.22、.已知函数f(x)是R 上的减函数,A(0,-2),B(-3,2)是其图像上的两点,那么不等式|f(x -2)|>2的解集为 .请将错误的一个改正为 .3、已知正数x,y 满足x+ty =1,其中t 是给定的正实数,若1/x +1/y 的最小值为16,则实数t 的值为 .4、已知,,x y z R +∈,230x y z -+=,则2y xz的最小值 .34、若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围 。

(5,7).5、已知正数x,y 满足4x-y=xy 则,x-y 的做小值为 .6、偶函数f(x)在[0,+∞]上是增函数,若f(ax+1)>f(x-3)在[1,2]上恒成立,则实数的取值范围为 .(a>1ora<-3)7、若数列{a n }的通项公式⋅⋅2n-2n-1n 22a =5()-4()55,数列{a n }的最大项为第x 项,最小项为第y 项,则x+y=_______________. 12. 38、已知a ,b 是两个互相垂直的单位向量, 且1=⋅=⋅b c a c 2=,则对0>t a t ++的最小值是 。

9、定义:区间)](,[2121x x x x <的长度为12x x -.已知函数|log |5.0x y =定义域为],[b a ,值域为]2,0[,则区间],[b a 的长度的最大值为 10.154函数f(x)=sin(ωx+π/3)(ω>0)在[0,2]上恰有一个最大值和最小值,则ω的取值范围是 .10.设D 、P 为△ABC 内的两点,且满足,51),(41+=+=则ABCAPDS S ∆∆= .0.1 11、设D 为ABC ∆的边AB 上的点,P 为ABC ∆内一点,且满足52,43+==,则=∆∆ABCAPD S S .10312、若函数2()x f x x a =+(0a >)在[)1,+∞上的最大值为3,则a 的值为113、 已知函数M,最小值为m,则mM的值为 ___________。

(完整版)高中数学易错题

(完整版)高中数学易错题

高中数学易错题数学概念的理解不透必修一(1)若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( ) A.a ≤-21或a ≥21 B.a <21 C.-21≤a ≤21 D.a ≥ 21【错解】选A.由题意,方程ax 2+x+a=0的根的判别式20140a ∆<⇔-<⇔ a ≤-21或a ≥21,所以选A.【正确解析】D .不等式ax 2+x+a <0的解集为 Φ,若a=0,则不等式为x<0解集不合已知条件,则a 0≠;要不等式ax 2+x+a <0的解集为 Φ,则需二次函数y=ax 2+x+a 的开口向上且与x 轴无交点,所以a>0且20140120a a a ⎧∆≤⇔-≤⇔≥⎨>⎩.必修一(2)判断函数f(x)=(x -1)xx-+11的奇偶性为____________________【错解】偶函数.f(x)=(x -===,所以()()f x f x -===,所以f (x )为偶函数.【正解】非奇非偶函数.y=f(x)的定义域为:(1)(1)01011101x x xx x x +-≥⎧+≥⇔⇔-≤<⎨-≠-⎩,定义域不关于原点对称,所以此函数为非奇非偶函数.1) 必修二(4)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ) (A)12l l ⊥,23l l ⊥13//l l ⇒ (B )12l l ⊥,3//l l ⇒13l l ⊥(C)123////l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 【错解】错解一:选A.根据垂直的传递性命题A 正确; 错解二:选C.平行就共面;【正确解答】选B.命题A 中两直线还有异面或者相交的位置关系;命题C 中这三条直线可以是三棱柱的三条棱,因此它们不一定共面;命题D 中的三条线可以构成三个两两相交的平面,所以它们不一定共面.必修五(5)x=ab 是a 、x 、b 成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 【错解】C.当.x=ab 时,a 、x 、b 成等比数列成立;当a 、x 、b 成等比数列时,x=ab 成立 .【正确解析】选D.若x=a=0,x=ab 成立,但a 、x 、b 不成等比数列, 所以充分性不成立;反之,若a 、x 、b成等比数列,则2x ab x =⇔=x=ab 不一定成立,必要性不成立.所以选D.排列组合(6)(1)把三枚硬币一起掷出,求出现两枚正面向上,一枚反面向上的概率. 分析:(1)【错解】三枚硬币掷出所有可能结果有2×2×2=8种,而出现两正一反是一种结果,故所求概率P=.81【正解】在所有的8种结果中,两正一反并不是一种结果,而是有三种结果:正、正、反,正、反、正,反、正、正,因此所求概率,83=P 上述错解在于对于等可能性事件的概念理解不清,所有8种结果的出现是等可能性的,如果把上述三种结果看作一种结果就不是等可能性事件了,应用求概率的基本公式n m P =自然就是错误的.公式理解与记忆不准(7)若1,0,0=+>>y x y x ,则yx41+的最小值为___________.【错解】 y x 41+8)2(14422=+≥≥y x xy ,错解原因是忽略等号成立条件. 【正解】yx 41+=945)(4≥++=+++yx xy yy x xy x(8)函数y=sin 4x+cos 4x -43的相位____________,初相为__________ .周期为_________,单调递增区间为____________.【错解】化简y=sin 4x+cos 4x -43=1cos 44x ,所以相位为4x ,初相为0,周期为2π,增区间为….【正确解析】y=sin 4x+cos 4x -43=11cos 4sin(4)442x x π=+.相位为42x π+,初相为2π,周期为2π,单调递增区间为21[,]()42k k k Z ππ-∈. 审题不严 (1)读题不清必修五(9)已知()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图像大致是【错解】选B.因为1()2x y =在0x >内递减,且1()()12x f x =+过点(0,2),所以选B. 【正确解答】A .根据函数与其反函数的性质,原函数的定义域与值域同其反函数的值域、定义域相同.当10,0()1,122x x y ><<⇒<<,所以选A.或者首先由原函数过点(0,2),则其反函数过点(2,0),排除B 、C ;又根据原函数在0x >时递减,所以选A. 排列组合(10)一箱磁带最多有一盒次品.每箱装25盒磁带,而生产过程产生次品磁带的概率是0.01.则一箱磁带最多有一盒次品的概率是 .【错解】一箱磁带有一盒次品的概率240.01(10.01)⨯-,一箱磁带中无次品的概率25(10.01)-,所以一箱磁带最多有一盒次品的概率是240.01(10.01)⨯-+25(10.01)-.【正确解析】一箱磁带有一盒次品的概率124250.01(10.01)C ⋅⨯-,一箱磁带中无次品的概率02525(10.01)C ⋅-,所以一箱磁带最多有一盒次品的概率是124250.01(10.01)C ⋅⨯-+02525(10.01)C ⋅-.(2)忽视隐含条件必修一(11)设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是( )不存在)D (18)C (8)B (449)A (-【错解】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--选A.【正确解析】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--Θ 原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆ ⇒.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18.选B. 必修一(12)已知(x+2)2+ y 24=1, 求x 2+y 2的取值范围.【错解】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328, ∴当x=-83 时,x 2+y 2有最大值283 ,即x 2+y 2的取值范围是(-∞, 283].【正确解析】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328 由于(x+2)2+ y 24 =1 ⇒ (x+2)2=1- y 24≤1 ⇒ -3≤x ≤-1,从而当x=-1时x 2+y 2有最小值1.∴ x 2+y 2的取值范围是[1, 283 ].(此题也可以利用三角函数和的平方等于一进行求解)必修一(13) 方程1122log (95)log (32)20x x ------=的解集为___________________- 【错解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=11111122log (95)log 4(32)954(32)(31)(33)0x x x x x x -------=-⇔-=-⇔--=1310x --=或1330x --=所以x=1或x=2.所以解集为{1,2}.【正解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=111111221954(32)log (95)log 4(32)3203302950x x x x x x x x -------⎧-=-⎪-=-⇔->⇔-=⇔=⎨⎪->⎩所以解集为{2}.字母意义含混不清(14)若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为( )A.0916x y ±= B.0169x y ±= C.034x y ±= D.043x y±= 【错解】选D.22222222252593310416164443c c a b b b b x y e y x a a a a a a +==⇒===+⇒=⇒=±⇒=±⇒±=,选D. 【正确解析】2222222211x y y x a b b a-=-⇒-=,与标准方程中字母a,b 互换了.选C.4.运算错误(1)数字与代数式运算出错若)2,1(),7,5(-=-=b a ρρ,且(b a ρρλ+)b ρ⊥,则实数λ的值为____________.【错解】(5,72)a b λλλ+=--+r r ,则(b a ρρλ+)()052(72)03b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r.【正确解析】(5,72)a b λλλ+=--+r r,(ba ρρλ+)19()052(72)05b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r必修二18. 已知直线l 与点A (3,3)和B (5,2)的距离相等,且过二直线1l :3x -y -1=0和2l:x+y-3=0的交点,则直线l的方程为_______________________【错解】先联立两直线求出它们交点为(1,2),设所求直线的点斜式,再利用A、B到12k=⇔=-,所以所求直线为x+2y-5=0.【正确解析】x-6y+11=0或x+2y-5=0.联立直线1l:3x-y-1=0和2l:x+y-3=0的方程得它们的交点坐标为(1,2),令过点(1,2)的直线l为:y-2=k(x-1)(由图形可看出直线l的斜率必然存在),11,62k k=⇔==-,所以直线l的方程为:x-6y+11=0或x+2y-5=0.(2)运算方法(如公式、运算程序或运算方向等)选择不当导致运算繁杂或不可能得解而出错必修二19. 已知圆(x-3)2+y2=4和直线y=mx的交点分别为P,Q两点,O为坐标原点,则OQOP⋅的值为.【运算繁杂的解法】联立直线方程y=mx与圆的方程(x-3)2+y2=4消y,得关于x的方程22(1)650m x x+-+=,令1122(,),(,)P x y Q x y,则12122265,11x x x xm m+=⋅=++,则221212251my y m x xm==+,由于向量OPuuu r与向量OQuuu r共线且方向相同,即它们的夹角为0,所以212122255511mOP OQ OP OQ x x y ym m⋅=⋅=+=+=++u u u r u u u r.【正确解析】根据圆的切割线定理,设过点O的圆的切线为OT(切点为T),由勾股定理,则222325OP OQ OT⋅==-=.(3)忽视数学运算的精确性,凭经验猜想得结果而出错曲线x2-122=y的右焦点作直线交双曲线于A、B两点,且4=AB,则这样的直线有___________条.【错解】4条.过右焦点的直线,与双曲线右支交于A、B时,满足条件的有上、下各一条(关于x轴对称);与双曲线的左、右分别两交于A、B两点,满足条件的有上、下各一条(关于x 轴对称),所以共4条.【正解】过右焦点且与X 轴垂直的弦AB (即通径)为222241b a ⨯==,所以过右焦点的直线,与双曲线右支交于A 、B 时,满足条件的仅一条;与双曲线的左、右分别两交于A 、B 两点,满足条件的有上、下各一条(关于x 轴对称),所以共3条. 5.数学思维不严谨(1)数学公式或结论的条件不充分24.已知两正数x,y 满足x+y=1,则z=11()()x y x y++的最小值为 .【错解一】因为对a>0,恒有12a a +≥,从而z=11()()x y x y++≥4,所以z 的最小值是4.【错解二】22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最小值是1). 【正解】z=11()()x y x y ++=1y xxy xy x y+++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210()24x y t xy +<=≤=,由2()f t t t =+在10,4⎛⎤⎥⎝⎦上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值334.(2)以偏概全,重视一般性而忽视特殊情况必修一(1)不等式|x+1|(2x -1)≥0的解集为____________解析:(1)【错解】1[,)2+∞.因为|x+1|≥0恒成立,所以原不等式转化为2x-1≥0,所以1[,)2x ∈+∞【正确解析】}1{),21[-⋃+∞.原不等式等价于|x+1|=0或2x-1≥0,所以解集为1[,){1}2x ∈+∞⋃-.必修一(2)函数y =的定义域为 .(2) 【错解】10(1)(1)011x x x x x+≥⇒+-≥⇒≥-或1x ≤-.【正解】(1)(1)0(1)(1)010111011x x x x x x x x x+-≥+-≤⎧⎧+≥⇒⇒⇒-≤<⎨⎨-≠≠-⎩⎩(3)解题时忽视等价性变形导致出错 27.已知数列{}n a 的前n 项和12+=n n S ,求.n a【错解】 .222)12()12(1111----=-=+-+=-=n n n n n n n n S S a 【正确解析】当1=n 时,113a S ==,n 2≥时,1111(21)(21)222nn n n n n n n a S S ----=-=+-+=-=.所以13(1)2(2)n n n a n -⎧=⎪=⎨≥⎪⎩.选修实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点. 【错解】 将圆012222=-+-+a ax y x 与抛物线 x y 212=联立,消去y , 得 ).0(01)212(22≥=-+--x a x a x ①因为有两个公共点,所以方程①有两个相等正根,得⎪⎪⎩⎪⎪⎨⎧>->-=∆.01021202a a , 解之得.817=a【正确解析】要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根.当方程①有一正根、一负根时,得⎩⎨⎧<->∆.0102a 解之,得.11<<-a因此,当817=a 或11<<-a 时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点.(1)设等比数列{}n a 的全n 项和为n S .若9632S S S =+,求数列的公比q .【错解】 ,2963S S S =+Θq q a q q a q q a --⋅=--+--∴1)1(21)1(1)1(916131, .012(363)=整理得--q q q1q 24q ,0)1q )(1q 2(.01q q 20q 33336=-=∴=-+∴=--≠或得方程由.【正确解析】若1=q ,则有.9,6,3191613a S a S a S ===但01≠a ,即得,2963S S S ≠+与题设矛盾,故1≠q .又依题意 963S 2S S =+ ⇒ q q a q q a q q a --⋅=--+--1)1(21)1(1)1(916131 ⇒ 01q q 2(q 363)=--,即,0)1)(12(33=-+q q 因为1≠q ,所以,013≠-q 所以.0123=+q 解得 .243-=q空间识图不准必修二直二面角α-l -β的棱l 上有一点A ,在平面α、β内各有一条射线AB ,AC 与l 成450,AB βα⊂⊂AC ,,则∠BAC= .【错解】如右图.由最小角定理,12221cos cos cos 23BAC BAC πθθ∠=⋅=⨯=⇒∠=. 【正确解析】3π或23π.如下图.当6CAF π∠=时,由最小角定理,时,12221cos cos cos 2223BAC BAC πθθ∠=⋅=⨯=⇒∠=;当AC 在另一边DA 位置23BAC π∠=.。

高三数学错题整理与解析

高三数学错题整理与解析在高三数学学习过程中,学生经常会遇到各种错题。

对于这些错题,我们需要进行仔细的整理与解析,以提高学生的数学水平。

本文将对高三数学错题进行整理分类,并给出详细的解答和解析。

一、代数与函数1. 题目:已知函数$f(x) = \frac{1}{x}$,求函数$f(f(x))$的表达式。

解析:将$f(x) = \frac{1}{x}$代入$f(f(x))$中,得到$f(f(x)) =\frac{1}{f(x)} = \frac{1}{\frac{1}{x}} = x$。

2. 题目:已知二次函数$f(x) = ax^2 + bx + c$的图像关于$x$轴对称,且顶点在直线$y = 2x + 1$上。

求$a$、$b$、$c$的值。

解析:由于图像关于$x$轴对称,所以顶点的纵坐标为0。

将顶点的横坐标代入直线方程$y = 2x + 1$中,得到$0 = 2x_0 + 1$,解得$x_0 = -\frac{1}{2}$。

将$x_0 = -\frac{1}{2}$代入二次函数$f(x)$中的横坐标,得到$a\left(-\frac{1}{2}\right)^2 + b\left(-\frac{1}{2}\right) + c = 0$。

根据顶点坐标的性质,我们知道顶点的横坐标为$-\frac{b}{2a}$,因此$-\frac{b}{2a} = -\frac{1}{2}$,解得$b = a$。

将$b = a$代入上述方程,得到$a\left(-\frac{1}{2}\right)^2 + a\left(-\frac{1}{2}\right) + c = 0$,整理得$c = \frac{1}{4}$。

综上所述,$a = b$,$c = \frac{1}{4}$。

二、几何与三角学1. 题目:已知$\triangle ABC$中,$AB = 7$,$AC = 9$,$BC = 5$,$D$为边$BC$上一点,且$\angle BAD = \angle CAD$。

高一数学错题集锦与讲解

高一数学错题集锦与讲解1. 周长与面积题目:一个正方形的周长为16cm,求它的面积。

解析:设正方形的边长为a,则周长可以表示为4a,根据题目可得4a=16cm,解方程得到a=4cm。

正方形的面积可以表示为a²,代入已知的边长得到面积为4²=16cm²。

所以,这个正方形的面积为16平方厘米。

2. 相似三角形题目:两个三角形的两个内角分别为45°和90°,它们的两边分别成比例,则这两个三角形相似吗?解析:根据三角形的内角和定理可知,三角形的内角和为180°。

已知其中一个三角形的两个内角分别为45°和90°,则第三个内角为180°-45°-90°=45°。

另一个三角形的两个内角分别为45°和90°,则第三个内角也为45°。

因此,这两个三角形的内角完全相同,所以它们是相似三角形。

3. 平行线与相交线题目:如图,AB//CD,AD是两平行线AB和CD的相交线段。

已知∠ABC=80°,求∠CDA的度数。

解析:根据平行线的性质,平行线AB和CD之间的对应角是相等的。

所以∠ABC=∠CDA。

已知∠ABC=80°,代入已知条件可得∠CDA=80°。

4. 三角函数的计算题目:已知cosθ=1/2,求sinθ的值。

解析:根据三角函数的定义可知,sinθ=√(1-cos²θ)。

已知cosθ=1/2,代入公式可得sinθ=√(1-(1/2)²)=√(1-1/4)=√(3/4)=√3/2。

所以,sinθ的值为√3/2。

5. 数列的求和题目:求等差数列1, 4, 7, 10, …, 100的前n项和Sn。

解析:已知第一项a₁=1,公差d=3(等差数列的公差是指相邻两项之间的差值)。

根据等差数列的求和公式,Sn=n(a₁+an)/2。

高中数学经典错题深度剖析及针对训练 独立事件、独立重复试验的概率和条件概率

高中数学经典错题深度剖析及针对训练 独立事件、独立重复试验的概率和条件概率【标题01】把独立重复试验的概率定性为古典概型了【习题01】某食品厂为了检查一条自动包装流水线的生产情况,从该流水线上随机抽取40件产品作为样本,测得它们的重量(单位:克),将重量按如下区间分组:(490,495],(495,500],(500,505],(505,510],(510,515],得到样本的频率分布直方图(如图所示).若规定重量超过495克但不超过510克的产品为合格产品,且视频率为概率,回答下列问题:(1)在上述抽取的40件产品中任取2件,设X 为合格产品的数量,求X 的分布列和数学期望EX ; (2)若从流水线上任取3件产品,求恰有2件合格产品的概率.【经典错解】(1)由样本的频率分布直方图得,合格产品的频率为0.0450.0750.0550.8⨯+⨯+⨯=.所以抽取的40件产品中,合格产品的数量为400.832⨯=. 则X 可能的取值为0,1,2,所以()2824070195C P X C ===,()11832240641195C C P X C ===,()2322401242195C P X C ===, 因此X 的分布列为故X 数学期望76412431280121951951951955EX =⨯+⨯+⨯==. (2)由题得从流水线上任取3件产品,求恰有2件合格产品的概率213283404961235C C P C == 【详细正解】(1)同上;(2)因为从流水线上任取1件产品合格的概率为40.85=, 所以从流水线上任取3件产品,恰有2件合格产品的概率为223144855125P C ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭.【习题01针对训练】某工厂在试验阶段大量生产一种零件,这种零件有A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响.若仅有A ,A 、B 两项技术指标都不达标的(1)求一个零件经过检测为合格品的概率;(2)若任意抽取该种零件4个,设ξ表示其中合格品的个数,求ξ的分布列及数学期望E ξ.【标题02】把独立重复试验的概率定性为独立事件的概率了【习题02】某次数学考试中有三道选做题,分别为选做题1,2,3.规定每位考生必须且只须在其中选做一 题.甲、乙、丙三名考生选做这一题中任意一题的可能性均为13,每位学生对每题的选择是相互独立的,各 学生的选择相互之间没有影响.求这三个人选做的是同一道题的概率.【经典错解】由题得设这三个人选做的是同一道题为事件A ,则1111()33327P A =鬃=【详细正解】由题得设这三个人选做的是同一道题为事件A ,则131111()3339P A C =鬃?.【深度剖析】(1)经典错解错在把独立重复试验的概率定性为独立事件的概率了.(2)这三个人选做的是同一道题为事件A ,则A 实际上是三个互斥事件和和事件,因为甲乙丙可能同时选做第一题或第二题或第三题,而每一个互斥事件的概率又是三个独立事件同时发生的概率.错解把事件A 直接定性为独立事件同时发生的概率了,是错的.(3)解答概率题时,要先定性(六大概型:古典概型、几何概型、互斥事件的概率、独立事件同时发生的概率、独立重复试验的概率和条件概率),后定量.在定性时,要仔细分析,不要把事件定性错了.【习题02针对训练】某市公租房的房源位于A 、B 、C 三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中: (1)恰有2人申请A 片区房源的概率;(2)申请的房源所在片区的个数的ξ分布列与期望.【标题03】对事件)4,3,2,1(0=≥i S i 且28=S 理解错误【习题03】某人抛掷一枚均匀骰子,构造数列}{n a ,使⎩⎨⎧-=)(,1)(,1次掷出奇数当第次掷出偶数当第n n a n ,记n n a a a S +++= 21 求)4,3,2,1(0=≥i S i 且28=S 的概率.【经典错解】记事件A :28=S ,即前8项中,5项取值1,另3项取值-1,∴28=S 的概率858)21()(⋅=C A P记事件B :)4,3,2,1(0=≥i S i ,将)4,3,2,1(0=≥i S i 分为两种情形: (1)若第1、2项取值为1,则3,4项的取值在1和-1中任意取值;(2)若第1项为1,第2项为-1,则第3项必为1,第四项在1和-1中任意取值. ∴()P B =83)21()21(32=+ ∴所求事件的概率为()()P P A P B =⋅ =858)21(83⋅⋅C 【详细正解】∵)4,3,2,1(0=≥i S i ∴前4项的取值分为两种情形①若1、3项为1;则余下6项中3项为1,另3项为-1即可.即8361)21(⋅=C P ;②若1、2项为正,为避免与第①类重复,则第3项必为-1,则后5项中只须3项为1,余下2项为-1,即8352)21(⋅=C P ,∴所求事件的概率为783536215)21()(=⋅+=C C P【习题03针对训练】一种电脑屏幕保护画面,只有符号""""X O 和随机地反复出现,每秒钟变化一次,每次变化只出现""""X O 和之一,其中出现""O 的概率为p ,出现""X 的概率为q ,若第k 次出现""O ,则记1=k a ;出现""X ,则记1-=k a ,令n n a a a S +⋅⋅⋅++=21. (1)时,求3S 的分布列及数学期望. (2)时,求),,,且4321(028=≥=i S S i 的概率.【标题04】对事件“A B 、两组中有一组恰有两支弱队”没有理解清楚【习题04】已知8支球队中有3支弱队,以抽签方式将这8支球队分为A B 、两组,每组4支,求A B 、两组中有一组恰有两支弱队的概率.【经典错解】将8支球队均分为A B 、两组,共有4448C C 种方法:A B 、两组中有一组恰有两支弱队的分法为:先从3支弱队取2支弱队,又从5支强队取2支强队,组成这一组共有2325C C 种方法,其它球队分在另一组,只有一种分法.∴所求事件的概率为:7344482225=C C C C . 【详细正解】将8支球队均分为A B 、两组,共有4448C C 种方法:A B 、两组中有一组恰有两支弱队的分法为:先从3支弱队取2支弱队,又从5支强队取2支强队,组成这一组共有2325C C 种方法.再把这这组队伍分给A 组或B 组,有12C种方法,所以所求事件的概率P=76244482225=C C C C .【习题04针对训练】某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,且只能从中选一门.该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同. (1)求恰有2门选修课这3个学生都没有选择的概率;(2)设随机变量ξ为甲、乙、丙这三个学生选修数学史这门课的人数,求ξ的分布列及期望、方差.【标题05】概型判断错误【习题05】某人有5把不同的钥匙,逐把地试开某房门锁,试问他恰在第3次打开房门的概率.【经典错解】由于此人第一次不能开房门的概率为45,若第一次未开,第2次不能打开房门的概率应为34;所以此人第3次打开房门的概率为31. 【详细正解】第1次未打开房门的概率为54;第2次未开房门的概率为43;第3次打开房门的概率为31,所求概率为:51314354=⨯⨯=P .【习题05针对训练】某种项目的射击比赛,开始时在距目标100米处射击,如果命中记3分,且停止射击,若第一次射击未命中,可以进行第二次射击,但目标已经在150米处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200米处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分,已知射手甲在100m 处击中目标的概率为,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.(1)求这名射手在三次射击中命中目标的概率;(2)求这名射手比赛中得分的均值.【标题06】没有注意事件的先后顺序导致遗漏了一些情况 【习题06】某运动员射击一次所得环数x 的分布列如下:现进行两次射击,以该运动员两次射击中最高的环数作为他的成绩记为ξ,求ξ的分布列.【经典错解】ξ的取值为8,9,10.ξ=7,两次环数为7,7;ξ=8,两次成绩为7,8或8,8;ξ=9,两次成绩7,9或8,9或9,9;ξ=10,两次队数为7,10或8,10或9,10或10,10. ∴04.02.02.0)7(=⨯==ξP 15.03.03.02.0)8(2=+⨯==ξP23.03.03.03.03.02.0)9(2=+⨯+⨯==ξP 2.02.03.03.02.03.02.0)10(2=+⋅+⋅⨯==ξP (分布列略)【详细正解】8=ξ,即两次成绩应为7,8或8,7或8,8实际为三种情形,21.03.03.02.02)8(2=+⨯⨯==ξP 9=ξ两次环数分别为7,9(或9,7);8,9(或9,8),9.9∴39.03.03.03.023.02.02)9(2=+⨯⨯+⨯⨯==ξP ,同理36.02.042.03.0212.0)10(22=+⨯⨯+⨯==ξP 【深度剖析】(1)经典错解错在没有注意事件的先后顺序导致遗漏了一些情况.(2)8=ξ,即两次成绩应为7,8或8,7或8,8实际为三种情形,21.03.03.02.02)8(2=+⨯⨯==ξP9=ξ两次环数分别为7,9(或9,7);8,9(或9,8),9.9 ∴39.03.03.03.023.02.02)9(2=+⨯⨯+⨯⨯==ξP ,同理36.02.042.03.0212.0)10(22=+⨯⨯+⨯==ξP .【习题06针对训练】学校要用三辆校车从南校区把教职工接到校本部,已知从南校区到校本部有两条公路,校车走公路①堵车的概率为14,不堵车的概率为34;校车走公路②堵车的概率为p ,不堵车的概率为1p -.若甲、乙两辆校车走公路①,丙校车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.(Ⅰ)若三辆校车中恰有一辆校车被堵的概率为716,求走公路②堵车的概率;(Ⅱ)在(1)的条件下,求三辆校车中被堵车辆的辆数ξ的分布列和数学期望.【标题07】把独立事件的概率定性为互斥事件的概率了【习题07】甲投篮命中概率为0.8,乙投篮命中概率为0.7,每人投3次,两人恰好都命中2次的概率是多少?【经典错解】设“甲恰好投中2次”为事件A ,“乙恰好投中2次”为事件B ,则两人恰好投中2次为A B +.所以()()()P A B P A P B +=+ =825.03.07.02.08.0223223=⨯+⨯C C .【详细正解】设“甲恰好投中2次”为事件A ,“乙恰好投中2次”为事件B ,则两人恰好都投中2次为AB .所以()()()P AB P A P B =⋅ =2222330.80.20.70.3C C ⨯⨯⨯0.169=【习题07针对训练】地为绿化环境,移栽了银杏树2棵,梧桐树3棵.它们移栽后的成活率分别为23、12,每棵树是否存活互不影响,在移栽的5棵树中:(1)求银杏树都成活且梧桐树成活2棵的概率;(2)求成活的棵树ξ的分布列与期望.【标题08】把独立事件同时发生的概率定性为独立重复试验了【习题08】某射手射击一次,击中目标的概率是0.5,现该射手连射4次,(1)求恰好前3次击中的概率;(2)恰好第3次击中的概率.【经典错解】(1)由题得334111()()224P C ==;(2P =(10.5)(10.5)0.5(10.5)-⨯-⨯⨯-0.0625= 【详细正解】(1)由题得3111()2216P ==;(2)P =(10.5)(10.5)0.5(10.5)-⨯-⨯⨯-0.0625=【习题08针对训练】甲、乙两人进行乒乓球比赛,采用“五局三胜制”,即五局中先胜三局为赢,若每场比赛甲获胜的概率是23,乙获胜的概率是13,则比赛以甲三胜一负而结束的概率为________.【标题09】把古典概型定性为独立重复试验了【习题09】某产品100件,其中恰有5件次品,现从中任意抽取5件,求恰有一件次品的概率. 【经典错解】由题得145595(A)()()100100P C = 【详细正解】由题得145955100()0.2144C C P A C == 【深度剖析】(1)经典错解错在把古典概型定性为独立重复试验了.(2)所求事件的概型应该是一个古典概型,而错解把它当作是独立重复试验了.因为已知中的抽取,是一次性地从100件产品中抽取5件,所以没有抽多次,所以根本上不是独立重复试验.如果有的同学分5次来抽,每次抽取一件,也不是独立重复.因为第一次抽取时,抽到次品的概率是5100,第二次抽取时,只有99件产品,此时抽到次品的概率肯定不是5100,由于概率不同,所以也不是独立重复试验.【习题09针对训练】现有一批产品共有10件,其中8件为正品,2件为次品. (1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率; (2)如果从中一次取3件,求3件都是正品的概率. 【标题10】把条件概率定性为古典概型了【习题10】一盒中放有大小相同的10个小球,其中8个黑球、2个红球,现甲、乙二人先后各自从盒子中无放回地任意抽取2个小球,已知甲取到了2个黑球,则乙也取到2个黑球的概率是________.【经典错解】由题得228622108151()453C C P A C C ===【详细正解】记事件“甲取到2个黑球”为A ,“乙取到2个黑球”为B ,则有(|)P B A =()()P AB P A =22862288C C C C ⋅⋅=1528,即事件“甲取到2个黑球,乙也取到2个黑球”的概率是1528.【习题10针对训练】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.【标题11】审题不清忽略了“有放回地取”这个关键词【习题11】一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取1个.求连续取两次都是白球的概率;【经典错解】由题得22241()6A P A A ==.【详细正解】记事件A 为“连续取两次都是白球”,所以()P A 14.【深度剖析】(1)经典错解错在审题不清,忽略了“有放回地取”这个关键词.(2)抽样常用的有“有放回抽样”和“不放回抽样”两种,所以在解题时一定要注意抽样的方法.【习题11针对训练】一个袋中装有形状大小完全相同的球9个,其中红球3个,白球6个,每次随机取1个,直到取出....3.次红球即停止........(1)从袋中不放回地取球,求恰好取4次停止的概率1P ; (2)从袋中有放回地取球;①求恰好取5次停止的概率2P ;②记5次之内(含5次)取到红球的个数为ξ,求随机变量ξ的分布列及数学期望.【标题12】对事件“某位顾客返券的金额为30元”没有理解透彻【习题12】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.求某位顾客返券的金额为30元的概率.【经典错解】设A =某位顾客返券的金额为30元,则111()236P A ==.【详细正解】设A =某位顾客返券的金额为30元,则11111()23323P A =+= .【习题12针对训练】某运动员射击一次所得环数x 的分布列如下:现进行两次射击,以该运动员两次射击中最高的环数作为他的成绩记为ξ,求(8)P x =.【标题13】把此种条件概率和“丢开法”条件概率混淆了【习题13】10名同学中,有7个人获得了全国数学联赛一等奖,3人没有获得.现在从中任选2名同学,已知其中1名同学获得全国一等奖,求另外一名同学也获得全国一等奖的概率. 【经典错解】由题得6293P ==. 【详细正解】设A =2名同学中有1人获得全国一等奖,B =2名同学中另外一个同学也获得全国一等奖,由题得27112737()211(|)(A)422C n AB P B A n C C C ====+,所以另外一名同学也获得全国一等奖的概率为12.【习题13针对训练】抛掷红、蓝两颗骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”.当已知蓝色骰子的点数为3或6时,则两颗骰子的点数之和大于8的概率为________.【标题14】把古典概型定性为独立重复试验概率了【习题14】某产品100件,其中恰有5件次品,现从中任意抽取5件,求恰有一件次品的概率. 【经典错解】由题得145595(A)()()100100P C = 【详细正解】由题得145955100()0.2144C C P A C == 【深度剖析】(1)经典错解错在把古典概型定性为独立重复试验概率了.(2)所求事件的概型应该是一个古典概型,而错解把它当作是独立重复试验了.因为已知中的抽取,是一次性地从100件产品中抽取5件,所以没有抽多次,所以根本上不是独立重复试验.如果有的同学分5次来抽,每次抽取一件,也不是独立重复.因为第一次抽取时,抽到次品的概率是5100,第二次抽取时,只有99件产品,此时抽到次品的概率肯定不是5100,由于概率不同,所以也不是独立重复试验. 【习题14针对训练】现有一批产品共有10件,其中8件为正品,2件为次品. (1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率. (2)如果从中一次取3件,求3件都是正品的概率.【标题15】概率定性定错了【习题15】某射手射击一次,击中目标的概率是0.5,现该射手连射4次,(1)求恰好前3次击中的概率;(2)恰好第3次击中的概率.【经典错解】(1)由题得334111()()224P C ==;(2)P= (10.5)(10.5)0.5(10.5)-⨯-⨯⨯-0.0625=【详细正解】(1)由题得3111()2216P ==;(2)P=(10.5)(10.5)0.5(10.5)-⨯-⨯⨯-0.0625=【习题15针对训练】甲、乙两人进行乒乓球比赛,采用“五局三胜制”,即五局中先胜三局为赢,若每场比赛甲获胜的概率是23,乙获胜的概率是13,则比赛以甲三胜一负而结束的概率为________.高中数学经典错解深度剖析及针对训练第29讲: 独立事件的概率、独立重复试验的概率和条件概率参考答案【习题01针对训练答案】(1(2满足条件的事件是恰有2人申请A 片区房源,共有2242C C ∴根据等可能事件的概率公式得到224248327C C P == (2)由题意知ξ的可能取值是1,2,3.431(1)327P ξ=== 231222341423414(2)327A C C C C C P ξ+=== 234344(3)39C A P ξ=== ∴ξ的分布列是:∴1144651232727927E ξ=⨯+⨯+⨯= 【习题03针对训练答案】(1)详见解析;(2)218780. 【习题03针对训练解析】(1)3,1,1,33--=S()()0318183=⨯+⨯+⨯-+⨯-=EX(2)前4次有2次出现""O 的概率是前4次有3次出现""O 的概率是前4次有4次出现""O 的概率是P (ξ= 0 ) =P (ξ= 1) =P (ξ= 2 ) =P (ξ= 3 ) =∴ξ的分布列为:E np ξ=34416D npq ξ==⨯⨯=【习题05针对训练答案】(1)95144;(2)8548.【习题05针对训练解析】记第一、二、三次射击命中目标分别为事件,,A B C三次均未命中目标的事件为D.依题意1 ()2P A=.(Ⅱ)依题意,设射手甲得分为ξ,则1121(3)(2)2299P Pξξ====⨯=171749(1)(0)298144144P Pξξ==⨯⨯===∴ξ的分布列为∴32102914414448Eξ=⨯+⨯+⨯+⨯=.【习题06针对训练答案】(Ⅰ; (Ⅱ【习题06针对训练解析】(1)由已知条件得即31p=,则所以p的值为(2)解:ξ可能的取值为0,1,2,3所以ξ的分布列为:,【习题7针对训练答案】(1)6;(2)详见解析.ξ∴的分布列为6E ξ∴=. 【习题08针对训练答案】827【习题08针对训练解析】甲三胜一负即前3次中有2次胜1次负,而第4次胜,∴P=C3223⎛⎫⎪⎝⎭2·13⎛⎫⎪⎝⎭·23=827,∴甲三胜一负而结束的概率为827.【习题09针对训练答案】(1)0.512;(2)7 15.【习题10针对训练答案】(1)0.55 ; (2)311;(3)1.23.【习题10针对训练解析】(1)记A为事件:“一续保人本年度的保费不高于基本保费”.则()0.200.200.100.050.55P A=+++=(2)记B为事件:“一续保人本年度的保费比基本保费60%”.()0.100.050.15P B=+=所以()()0.153 (|A)()()0.5511P AB P BP BP A P A====,所以一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率为3 11.(3)续保人本年度的平均保费估计值为0.850.300.15 1.250.20 1.50.20 1.750.1020.05 1.23 EX a a a a a a a =⨯+⨯+⨯+⨯+⨯+⨯=所以续保人本年度的平均保费与基本保费的比值为1.23.【习题11针对训练答案】(1)128;(2) ①881②13181.【习题11针对训练解析】(1)113363149128C C APA==(2)①22224121833381 P C⎛⎫⎛⎫=⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭②随机变量ξ的取值为0,1,2,3; 由n 次独立重复试验概率公式()()1n kk kn n P k C p p -=-,得()505132013243P C ξ⎛⎫==⨯-= ⎪⎝⎭ ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()231511802133243P C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭()328080173124381P ξ++==-=随机变量ξ的分布列是ξ的数学期望是 3280801713101232432432438181E ξ=⨯+⨯+⨯+⨯=∴()P B =1036=518. 当蓝色骰子的点数为3或6时,两颗骰子的点数之和大于8的结果有5个,故()P AB =536.∴(|)P B A =()()P AB P A =53613=512.【习题14针对训练答案】(1)0.512;(2)715. 【习题14针对训练解析】(1)有放回地抽取3次,按抽取顺序(,,)x y z 记录结果,则,,x y z 都有10种可能,所以基本事件总数为10×10×10=103(种);设事件A 为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此338()0.51210P A ==.(2)可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(,,)x y z ,。

高一下学期数学期末考试易错题总结及详解


a
的取值范围是
( ,
8] .
【解答】解:由
1
A
可得,
a(1 2) 1 3
2
第3页共7页
a 8 故答案为: ( , 8]
11.设 a , b 0 , a b 5 ,则 a 1 b 3 的最大值为 3 2 . 【解答】解:由题意, ( a 1 b 3)2(1 1)(a 1 b 3) 18 ,
C.当 k 2 时, ABC 是钝角三角形
D.当 k 1 时, ABC 是钝角三角形
【解答】解: sin A sin B sin C (k 为非零实数),可得: sin A : sin B : sin C k : 3 : 4 ,
k
3
4
由正弦定理 a b c 2R ,可得: a : b : c k : 3 : 4 , sin A sin B sin C
m n1 【解答】解:正实数 m , n 满足 m n 3 , 所以: m (n 1) 4 ,
则: m(n 1)4 ,
则 m2 1 n2 , m n1
m 1 (n 1 1)2 , m n1
m n12 1 1 , m n1
2 1 1 , m n1
2 2 1 , m(n 1)
在 B 中,由正弦定理得: a b , a sin B b sin A ,故 B 正确; sin A sin B
在 C 中, a b cos C c cos B ,
由余弦定理得: a b a2 b2 c2 c a2 c2 b2 ,
2ab
2ac
整理,得 2a2 2a2 ,故 C 正确;
2A 2B 或 2 A 2 2B , AB或AB ,
2 ABC 是等腰三角形或直角三角形,因此是假命题, C 错误.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学错题集及解析
1. 题目:如图所示,已知AD∥CF,DE∥CF,∠ADE=40°,
∠FCD=120°,求∠BCF的度数。

A B C D
E F
解析:根据题目所给的已知条件,我们可以得到如下信息:
AD∥CF,DE∥CF,∠ADE=40°,∠FCD=120°。

要求∠BCF的度数,我们可以利用几何知识进行推理和计算。

首先,根据平行线的性质,我们知道∠ADE=∠FCD=40°。

由于∠FCD=120°,所以∠DCF=180°-120°=60°。

接下来,我们观察四边形ADCF,可以发现∠CAF和∠ADF是对顶角,因此它们的度数相等。

∠ADE和∠DCF是共顶角,它们的度数也相等。

由此,我们可以得到以下等式:
∠CAF=∠ADF=40°
∠ADE=∠DCF=60°
现在我们来考虑三角形BCF。

已知∠CAF=∠ADF=40°,∠BCF为所求。

我们知道,三角形内角和为180°,因此有:
∠CAF+∠ADF+∠BCF=180°
带入已知信息,得到:
40°+40°+∠BCF=180°
化简得:
80°+∠BCF=180°
再进一步,我们可以得到:
∠BCF=180°-80°
∠BCF=100°
因此,∠BCF的度数为100°。

2. 题目:已知函数f(x)=2x^3-3x^2+x-5,求f(-1)和f(2)的值。

解析:我们可以使用给定的函数,将x的值代入函数中进行计算,从而得到f(x)的值。

首先,计算f(-1)的值。

将x=-1代入函数f(x)中,有:
f(-1)=2(-1)^3-3(-1)^2+(-1)-5
化简得:
f(-1)=-2-3+(-1)-5
=-2-3-1-5
=-11
因此,f(-1)的值为-11。

接下来,计算f(2)的值。

将x=2代入函数f(x)中,有:f(2)=2(2)^3-3(2)^2+(2)-5
化简得:
f(2)=16-12+2-5
=1
因此,f(2)的值为1。

相关文档
最新文档