管路串并联实验报告流体力学

合集下载

流体力学实验报告

流体力学实验报告

实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。

2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。

二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。

在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。

在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。

流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。

若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。

三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。

水的流量由出口阀门调节,出口阀关闭时流体静止。

四、实验步骤及思考题3、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。

思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?4、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?5、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 雷诺实验一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。

管路水力平衡实验报告

管路水力平衡实验报告

实验三 管路水力平衡实验一、实验目的1.测定管路阻抗;2.验证串、并联管路流量分配规律; 3.掌握管路系统水力平衡调节方法。

二、实验原理任何复杂管路都是由简单管路经串联、并联组合而成。

1.串联管路串联管路由许多简单管路首尾相接组合而成,管段相接之点称为节点,在每一个节点上都遵循质量平衡原理,即流入的质量流量与流出的质量流量相等,当ρ=常数时,流入的体积流量等于流出的体积流量,因此,对串联管路则有:Q 1=Q 2=Q 3 (1) 串联管路阻力损失,按阻力叠加原理,则:h 1-3=h 1+h 2+h 3=S 1Q 12+S 2Q 22+S 2Q 32 (2) 因流量Q 各段相等于是得:S =S 1+S 2+S 2 (3) 式中 Q —流量,m 3/s ;h —管段阻力,包括沿程阻力和局部阻力,Pa ; S —管段阻抗,kg/m 7。

由此得出结论:无中途分流或合流的串联管路,各管段流量相等,阻力叠加,总管路的阻抗S 等于各管段的阻抗叠加。

这就是串联管路的流动规律。

2.并联管路流体从总管路节点上分出两根以上的管段,而这些管段同时又汇集到另一节点上,在两节点间的各管段称为并联管路。

同串联管路一样,并联管路也遵循质量平衡原理,当ρ=常数时,则有:Q=Q 1+Q 2+Q 3 (4) 并联管路各管段阻力损失相等,于是:h 1-3=h 1=h 2=h 3 (5) S 1Q 12=S 2Q 22=S 2Q 32 (6) 由公式4、公式5、公式6可得:S1=11S +21S +31S (7)321::Q Q Q =11S :21S :31S (8)于是得到并联管路流动规律:并联节点上的总流量为各支管中流量之和;并联各支管上的阻力损失相等,总的阻抗平方根倒数等于各支管阻抗平方根的倒数之和。

3.串并联管路流动规律的意义各分支管路的管段几何尺寸、局部构件确定后,可确定各管段的阻抗及管路系统的总阻抗。

对于串联管路系统,由总阻抗可得出管路系统特性曲线方程:ΔP 总=S 总Q 总2,通过特性曲线方程可得出系统总压头损失随流量变化的规律,为工程设计中动力设备(水泵或风机)的选取提供一定的参考。

流体力学综合实训报告总结

流体力学综合实训报告总结

本次流体力学综合实训旨在通过实际操作和理论学习的结合,使我对流体力学的基本原理、基本方法及实验技能有更深入的理解和掌握。

通过实训,我能够提高自己的动手能力、实验技能和综合运用知识解决实际问题的能力。

二、实训内容1. 流体力学基本实验(1)流体流速分布测量实验通过实验,我学习了流速分布的测量方法,掌握了流速分布曲线的绘制技巧。

实验结果表明,流速分布曲线呈现出明显的抛物线形状,符合流体力学的基本理论。

(2)流量测量实验在流量测量实验中,我学习了流量计的使用方法,掌握了不同流量计的优缺点。

通过实验,我了解了流量测量在工程实践中的应用,提高了自己的实际操作能力。

(3)伯努利方程实验通过伯努利方程实验,我加深了对伯努利方程的理解,学会了如何运用伯努利方程解决实际问题。

实验结果表明,伯努利方程在流体力学中具有广泛的应用价值。

2. 流体力学综合实验(1)管道摩擦系数测定实验在管道摩擦系数测定实验中,我学习了管道摩擦系数的测量方法,掌握了不同管道的摩擦系数。

实验结果表明,管道摩擦系数与管道材料、粗糙度等因素有关。

(2)弯管流量测量实验弯管流量测量实验使我了解了弯管对流体流动的影响,学会了如何测量弯管流量。

实验结果表明,弯管流量与弯管角度、管道直径等因素有关。

(3)流体阻力实验流体阻力实验使我掌握了流体阻力系数的测量方法,了解了流体阻力系数与流体特性、管道形状等因素的关系。

实验结果表明,流体阻力系数在工程实践中具有重要的应用价值。

1. 实验技能提高通过本次实训,我掌握了流体力学基本实验和综合实验的操作方法,提高了自己的实验技能。

在实验过程中,我学会了如何使用实验仪器、如何观察实验现象、如何分析实验数据,为今后从事相关领域的工作奠定了基础。

2. 理论知识深化在实训过程中,我结合实验现象对流体力学的基本原理进行了深入思考,使我对流体力学的基本理论有了更深刻的理解。

同时,通过实验数据的分析,我对流体力学的基本方法有了更全面的掌握。

流体力学综合实验报告

流体力学综合实验报告

流体力学综合实验报告流体力学综合实验报告引言:流体力学是研究流体运动规律和流体力学性质的学科,广泛应用于工程领域。

本实验旨在通过一系列实验,深入了解流体的性质和运动规律,加深对流体力学的理论知识的理解和应用。

实验一:流体静力学实验在这个实验中,我们使用了一个容器装满了水,并通过一个小孔使水流出。

通过测量水的高度和流量,我们可以了解到流体静力学的基本原理。

实验结果表明,当小孔的面积增大时,流出的水流量也随之增加,而当容器的高度增加时,流出的水流量也会增加。

实验二:流体动力学实验在这个实验中,我们使用了一台水泵和一段水管,通过改变水泵的转速和水管的直径,我们可以观察到水流的速度和压力的变化。

实验结果表明,当水泵的转速增加时,水流的速度也会增加,而当水管的直径增加时,水流的速度会减小。

同时,我们还发现,水流的速度和压力之间存在一定的关系,即当水流速度增加时,压力会减小。

实验三:流体粘度实验在这个实验中,我们使用了一个粘度计和一种称为甘油的液体。

通过测量液体在粘度计中的流动时间,我们可以计算出液体的粘度。

实验结果表明,甘油的粘度较大,流动时间较长,而水的粘度较小,流动时间较短。

这表明不同液体的粘度是不同的。

实验四:流体流动实验在这个实验中,我们使用了一个流量计和一段水管,通过改变水管的直径和流速,我们可以观察到水流的流量和流速的变化。

实验结果表明,当水管的直径增加时,水流的流量也会增加,而当流速增加时,水流的流量也会增加。

同时,我们还发现,水流的流量和流速之间存在一定的关系,即当流速增加时,流量也会增加。

结论:通过以上实验,我们深入了解了流体的性质和运动规律。

我们发现,流体静力学和动力学的基本原理可以通过实验来验证,并且不同液体的粘度是不同的。

此外,我们还发现,流体的流量和流速之间存在一定的关系。

这些实验结果对于工程领域的流体力学应用具有重要的意义,可以帮助我们更好地理解和应用流体力学的理论知识。

流体综合实验报告分析

流体综合实验报告分析

一、实验背景流体力学是研究流体运动规律及其与固体壁面相互作用的科学。

随着工业、交通、建筑等领域的发展,流体力学在各个领域的应用越来越广泛。

为了提高学生对流体力学知识的理解和应用能力,我们进行了流体综合实验。

二、实验目的1. 掌握流体力学基本实验方法,提高实验操作技能。

2. 验证流体力学基本理论,加深对流体运动规律的理解。

3. 分析实验数据,提高数据处理和分析能力。

4. 培养团队合作精神和创新意识。

三、实验内容1. 流体静力学实验:通过测量液体静压强,验证不可压缩流体静力学基本方程,掌握用测压管测量液体静水压强的技能。

2. 流体阻力实验:测定流体流经直管、管件和阀门时的阻力损失,验证在一般湍流区内雷诺准数与直管摩擦系数的关系曲线。

3. 流体流动阻力测定实验:测定流体流经直管、管件和阀门时的阻力损失,验证在一般湍流区内雷诺准数与直管摩擦系数的关系曲线。

四、实验方法与步骤1. 流体静力学实验:使用液式测压计测量液体静压强,记录数据,分析结果。

2. 流体阻力实验:通过测量不同雷诺准数下的流体阻力,绘制雷诺准数与直管摩擦系数的关系曲线。

3. 流体流动阻力测定实验:通过测量不同管件和阀门处的阻力损失,分析流体流动阻力的影响因素。

五、实验结果与分析1. 流体静力学实验:实验结果表明,液体静压强与测压管深度成正比,验证了不可压缩流体静力学基本方程。

2. 流体阻力实验:实验结果表明,在一般湍流区内,雷诺准数与直管摩擦系数呈非线性关系,验证了雷诺准数与直管摩擦系数的关系曲线。

3. 流体流动阻力测定实验:实验结果表明,管件和阀门对流体流动阻力有显著影响,其中弯头、三通等管件对阻力的影响较大。

六、讨论与心得1. 通过流体静力学实验,我们深入理解了不可压缩流体静力学基本方程,为后续学习流体动力学奠定了基础。

2. 流体阻力实验和流体流动阻力测定实验使我们认识到,在工程实践中,流体阻力对设备性能和能耗有重要影响。

因此,在设计过程中,应充分考虑流体阻力因素,以提高设备性能和降低能耗。

流体力学实验实训总结报告

流体力学实验实训总结报告

一、实验背景与目的流体力学是研究流体运动规律和力学特性的学科,广泛应用于工程、科学研究和日常生活等领域。

为了提高我们对流体力学基本理论的认识,培养实际操作能力,我们进行了流体力学实验实训。

本次实训旨在通过一系列实验,加深对流体力学基本概念、基本理论和实验方法的理解,提高我们的动手能力和分析问题的能力。

二、实验内容与过程本次实训共进行了五个实验,分别为:1. 沿程阻力实验:通过测定流体在不同雷诺数情况下,管流的沿程水头损失和沿程阻力系数,学会体积法测流速及压差计的使用方法。

2. 动量定律实验:测定管嘴喷射水流对挡板所施加的冲击力,测定动量修正系数,分析射流出射角度与动量力的相关性,加深对动量方程的理解。

3. 康达效应实验:观察流体流动,发现某些问题和现象,分析流体与物体表面之间的相互作用。

4. 毛细现象实验:研究毛细现象的产生原因及其影响因素,了解毛细现象在工程中的应用。

5. 填料塔流体力学性能及传质实验:了解填料塔的构造,熟悉吸收与解吸流程,掌握填料塔操作方法,观察气液两相在连续接触式塔设备内的流体力学状况,测定不同液体喷淋量下塔压降与空塔气速的关系曲线,并确定一定液体喷淋量下的液泛气速。

在实验过程中,我们严格按照实验指导书的要求进行操作,认真记录实验数据,并对实验结果进行分析和讨论。

三、实验结果与分析1. 沿程阻力实验:通过实验,我们得到了不同雷诺数情况下,管流的沿程水头损失和沿程阻力系数。

结果表明,随着雷诺数的增加,沿程水头损失和沿程阻力系数均有所减小,说明层流和湍流对流体阻力的影响不同。

2. 动量定律实验:实验结果显示,管嘴喷射水流对挡板所施加的冲击力与射流出射角度密切相关。

当射流出射角度增大时,冲击力也随之增大,说明动量修正系数在动量方程中的重要性。

3. 康达效应实验:通过观察流体流动,我们发现当流体与物体表面之间存在表面摩擦时,流体会沿着物体表面流动,这种现象称为康达效应。

实验结果表明,康达效应在工程中具有广泛的应用,如飞机机翼的形状设计等。

流体实验综合实验报告

流体实验综合实验报告

实验名称:流体力学综合实验实验日期:2023年4月10日实验地点:流体力学实验室一、实验目的1. 通过实验加深对流体力学基本理论的理解和掌握。

2. 掌握流体力学实验的基本方法和步骤。

3. 培养学生的实验操作技能和数据处理能力。

4. 培养学生严谨的科学态度和团队合作精神。

二、实验原理本实验主要研究流体在管道中流动时的基本特性,包括流速分布、压力分布、流量测量等。

实验采用流体力学的基本原理,如连续性方程、伯努利方程、雷诺数等,通过实验数据验证理论公式,分析实验结果。

三、实验仪器与设备1. 实验台:包括管道、阀门、流量计、压力计等。

2. 数据采集系统:用于采集实验数据。

3. 计算机软件:用于数据处理和分析。

四、实验步骤1. 实验准备:检查实验仪器和设备是否完好,熟悉实验操作步骤。

2. 实验数据采集:a. 打开阀门,调节流量,使流体在管道中稳定流动。

b. 在管道不同位置安装压力计,测量压力值。

c. 在管道出口处安装流量计,测量流量值。

d. 记录实验数据,包括流量、压力、管道直径等。

3. 实验数据处理:a. 利用伯努利方程计算流速。

b. 利用连续性方程计算流量。

c. 分析实验数据,验证理论公式。

4. 实验结果分析:a. 分析流速分布、压力分布的特点。

b. 分析流量测量误差。

c. 总结实验结论。

五、实验结果与分析1. 实验数据:a. 管道直径:D = 0.02 mb. 流量:Q = 0.01 m³/sc. 压力:P = 1.0×10⁵ Pad. 流速:v = 0.5 m/s2. 实验结果分析:a. 流速分布:实验数据表明,管道中流速分布均匀,流速在管道中心最大,靠近管道壁面最小。

b. 压力分布:实验数据表明,管道中压力分布均匀,压力在管道中心最大,靠近管道壁面最小。

c. 流量测量误差:实验数据表明,流量测量误差较小,说明实验装置和测量方法可靠。

六、实验结论1. 实验验证了流体力学基本理论,如连续性方程、伯努利方程等。

流体力学综合实训报告范文

流体力学综合实训报告范文

一、实训目的本次流体力学综合实训旨在通过实际操作和实验,加深对流体力学基本理论的理解,掌握流体力学实验的基本方法和技能,提高分析问题和解决问题的能力。

通过实训,使学生能够熟练运用流体力学原理解决实际问题,为今后的学习和工作打下坚实的基础。

二、实训内容1. 流体力学基本实验(1)流体静力学实验:通过测量不同深度下的液体压强,验证流体静力学基本公式。

(2)流体运动学实验:通过测量不同位置的流速和流线,研究流体运动规律。

(3)流体动力学实验:通过测量不同形状的物体在流体中的阻力,分析流体动力学特性。

2. 流体力学综合实验(1)流体流动可视化实验:通过实验观察流体流动状态,分析流动特点。

(2)管道流动实验:通过测量管道内流体流动参数,研究管道流动特性。

(3)湍流流动实验:通过测量湍流流动参数,研究湍流流动特性。

三、实训过程1. 流体静力学实验(1)实验原理:根据流体静力学基本公式,测量不同深度下的液体压强,验证公式。

(2)实验步骤:①将实验装置组装好;②将液体注入实验装置;③在不同深度处测量液体压强;④记录实验数据。

(3)实验结果分析:通过对比理论值和实验值,验证流体静力学基本公式。

2. 流体运动学实验(1)实验原理:通过测量不同位置的流速和流线,研究流体运动规律。

(2)实验步骤:①将实验装置组装好;②将液体注入实验装置;③在不同位置测量流速;④绘制流线。

(3)实验结果分析:通过对比理论值和实验值,研究流体运动规律。

3. 流体动力学实验(1)实验原理:通过测量不同形状的物体在流体中的阻力,分析流体动力学特性。

(2)实验步骤:①将实验装置组装好;②将物体放入实验装置;③测量物体在不同流速下的阻力;④记录实验数据。

(3)实验结果分析:通过对比理论值和实验值,分析流体动力学特性。

4. 流体流动可视化实验(1)实验原理:通过实验观察流体流动状态,分析流动特点。

(2)实验步骤:①将实验装置组装好;②将液体注入实验装置;③观察流体流动状态;④记录实验现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管路串并联实验报告流体力学
实验目的:
1.通过实验,了解和掌握管路串并联的基本原理和流体力学的相关概念;
2.通过实验,掌握串并联管路的流量计算方法;
3.通过实验,验证管路串并联对流量和压力的影响。

实验原理:
1.管路串联实验原理:
当两个管路串联时,流入和流出的质量流量相等,即m1=m2;
由连续性方程可得,A1v1=A2v2,其中A为横截面积,v为流速;
令Q1=A1v1为第一个管路的流量,Q2=A2v2为第二个管路的流量,则
Q1=Q2
2.管路并联实验原理:
当两个管路并联时,流入和流出的压力相等,即p1=p2;
由伯努利定律可得,p1 + 0.5ρv1^2 + ρgh1 = p2 + 0.5ρv2^2 +
ρgh2,其中ρ为流体密度,g为重力加速度,h为管道高度差;
令Δp1=p1-p2为流体流过第一个管路时的压力损失,Δp2=p2-p3为
流体流过第二个管路时的压力损失,则Δp1=Δp2
实验设备:
1.串联管路实验装置:包括输液瓶、流量计、球阀、直径不同的管道;
2.并联管路实验装置:包括输液瓶、压力计、球阀、直径不同的管道。

实验步骤:
1.串联管路实验:
a)打开球阀,使开度最大,待流量计稳定后记录流量Q1和压力p1;
b)关闭球阀,改变流量计跨度,使流量变为Q2,打开球阀,待流量
计稳定后记录流量Q2和压力p2;
c)比较Q1和Q2的大小,并记录相应的压力差。

2.并联管路实验:
a)打开球阀,调整压力计,使压力差为Δp1,待压力计稳定后记录
流量Q1;
b)改变压力计跨度,使压力差变为Δp2,待压力计稳定后记录流量
Q2;
c)比较Q1和Q2的大小。

数据处理:
1.串联管路实验:
a)计算不同流量下的压力差Δp=p1-p2;
b)绘制流量-压力差曲线,并进行线性拟合,得到斜率k1;
c)使用Q1=Q2,计算出k2=Δp1/Δp2;
d)比较k1和k2的大小,验证串联管路对流量和压力的影响。

2.并联管路实验:
a)计算不同压力差下的流量比值Q2/Q1;
b)使用Δp1=Δp2,计算出Q2/Q1的理论值;
c)比较计算结果与实测值的误差,验证并联管路对流量和压力的影响。

实验结论:
1.串联管路实验结果表明,两个管路串联时,流量不变,压力根据管
路流量损失而变化;
2.并联管路实验结果表明,两个管路并联时,压力不变,流量根据管
路压力差而变化;
3.串并联管路实验结果表明,串并联管路对流量和压力的影响是相反的;
4.实验结果与理论计算结果符合较好,验证了基本原理和流体力学的
相关概念。

相关文档
最新文档