电路实验报告12 有源滤波器设计
有源滤波器实验报告

有源滤波器实验报告一、实验目的。
本实验旨在通过对有源滤波器的实验研究,掌握有源滤波器的基本原理、特性和设计方法,加深对电子电路理论的理解,提高实验操作能力。
二、实验仪器和设备。
1. 信号发生器。
2. 示波器。
3. 直流稳压电源。
4. 电阻、电容、运算放大器等元器件。
5. 电路实验箱。
三、实验原理。
有源滤波器是利用运算放大器的高输入阻抗和低输出阻抗的特性,结合电容和电阻等元件构成的一种滤波器。
根据不同的电路连接方式和元器件参数,可以实现对不同频率信号的滤波作用。
四、实验内容。
1. 搭建低通有源滤波器电路。
2. 搭建高通有源滤波器电路。
3. 测量并记录滤波器的幅频特性曲线。
4. 测量并记录滤波器的相频特性曲线。
五、实验步骤。
1. 按照电路图搭建低通有源滤波器电路,并接通电源。
2. 调节信号发生器输出正弦波信号,接入滤波器输入端,通过示波器观察输出波形,记录频率和幅值。
3. 依次改变输入信号频率,记录输出波形的变化,绘制幅频特性曲线。
4. 根据测量数据计算并绘制滤波器的相频特性曲线。
5. 重复以上步骤,搭建高通有源滤波器电路,进行相同的测量和记录。
六、实验数据记录与处理。
1. 低通有源滤波器幅频特性曲线数据:频率(Hz)幅值(V)。
100 2.5。
500 2.3。
1000 2.0。
5000 1.5。
10000 1.2。
... ...2. 低通有源滤波器相频特性曲线数据:频率(Hz)相位(°)。
100 0。
500 -45。
1000 -90。
5000 -180。
10000 -270。
... ...3. 高通有源滤波器幅频特性曲线数据:频率(Hz)幅值(V)。
100 0.5。
500 0.8。
1000 1.2。
5000 2.0。
10000 2.5。
... ...4. 高通有源滤波器相频特性曲线数据:频率(Hz)相位(°)。
100 180。
500 135。
1000 90。
5000 0。
10000 -90。
有源滤波器实验报告总结

有源滤波器实验报告总结一、引言有源滤波器是一种电子滤波器,它利用放大器来增强信号的幅度并同时进行滤波。
在本次实验中,我们设计了一个有源低通滤波器,并通过实验验证了其性能。
二、实验步骤1. 设计滤波器电路:根据所需的滤波特性,我们选择了适当的电路拓扑结构,并计算了元件的数值。
然后,我们根据计算结果选择了合适的电阻、电容和放大器。
2. 搭建电路:根据设计好的电路图,我们按照所需的元件数值和连接方式搭建了有源滤波器电路。
3. 测试电路:接下来,我们使用信号发生器产生不同频率的正弦信号作为输入信号,通过有源滤波器后,使用示波器观察输出信号的波形和频率响应。
4. 记录实验数据:我们记录了不同频率下输入和输出信号的幅度,以及相位差,并绘制了频率响应曲线。
三、实验结果通过实验,我们得到了有源滤波器的频率响应曲线。
曲线显示,在低频段时,输出信号幅度较大,而在高频段时,输出信号幅度逐渐衰减。
这符合我们设计的低通滤波器的特性。
四、讨论与分析根据实验结果,我们可以得出以下结论:1. 有源滤波器能够对输入信号进行增强和滤波。
2. 频率响应曲线显示了有源滤波器的滤波特性,能够滤除高频信号,保留低频信号。
我们还发现了一些问题和改进的空间:1. 在实际搭建电路的过程中,可能会遇到元件误差和放大器非线性等问题,这都会对滤波器的性能产生影响,需要进一步优化和调整电路。
2. 在选择元件数值时,需要根据具体要求和条件进行综合考虑,以获得更好的滤波效果。
五、总结通过本次实验,我们成功设计并搭建了一个有源低通滤波器,并验证了其滤波特性。
实验结果表明,有源滤波器具有良好的滤波效果,能够滤除高频信号,保留低频信号。
在实际应用中,有源滤波器在音频处理、通信系统等领域具有广泛的应用前景。
六、参考文献1. 张宇. 电子技术实验教程[M]. 北京:高等教育出版社,2015.2. Sedra A S, Smith K C. Microelectronic Circuits[M]. OxfordUniversity Press, 2010.注:本文仅为实验报告总结,旨在总结有源滤波器实验的过程和结果,并对实验中的问题和改进进行讨论。
有源滤波器实验报告

有源滤波器实验报告1. 引言有源滤波器是一种结合了被动元件和有源放大器的滤波器,能够实现对电路信号进行滤波和放大。
本实验旨在通过实际搭建有源滤波器电路并进行实验测量,以验证其性能和功能。
2. 实验目的本实验的主要目的如下:1.理解有源滤波器的基本原理和工作方式;2.掌握有源滤波器的搭建方法和测量技巧;3.分析和评估实验结果,对有源滤波器性能进行验证;3. 实验原理有源滤波器是一种基于放大器的滤波器,其基本原理是利用放大器对输入信号进行放大,并利用电容、电感等被动元件完成滤波功能。
根据放大器的类型和反馈方式的不同,有源滤波器可以分为多种类型,如比例型、积分型、微分型等。
在本实验中,我们将搭建一个基于运算放大器的积分型有源滤波器。
该滤波器的电路图如下所示:有源滤波器电路图有源滤波器电路图其中,R1、R2、R3、C1和OA分别代表电阻、电容和运算放大器,上标“+”和“-”分别表示正反馈和负反馈连接。
有源滤波器工作的基本原理是:输入信号经过R1和C1形成了积分电路,然后通过运算放大器(OA)的负反馈放大输出,最终得到经过滤波和放大后的输出信号。
4. 实验步骤根据上述电路图,我们可以按照以下步骤进行有源滤波器的实验:1.按照电路图搭建实验电路,并确保连接正确可靠。
2.使用函数发生器产生一个正弦波信号作为输入信号,并连接到电路的输入端。
输入信号频率:10kHz幅度:1Vpp3.使用示波器测量电路的输入输出电压,并记录测量结果。
示波器通道1连接到输入信号的输入端示波器通道2连接到电路的输出端4.分别改变输入信号的频率,并记录相应的输入输出电压值,形成频率响应曲线。
频率范围:100Hz ~ 10kHz步进:100Hz5.根据实验结果,分析并讨论有源滤波器的频率响应特性、增益和相位差等指标。
5. 实验结果与分析根据实验步骤中记录的输入输出电压值,我们可以绘制出有源滤波器的频率响应曲线。
下图展示了在不同频率下的输入输出电压值:根据实验结果可以发现,有源滤波器在低频时,对信号的放大倍数较小,随着频率的增加,放大倍数逐渐增大;在高频时,放大倍数趋于稳定。
有源滤波器设计 实验报告

有源滤波器设计实验报告有源滤波器设计实验报告引言:滤波器是电子电路中常见的重要组成部分,用于对信号进行滤波和处理。
有源滤波器是一种采用有源元件(如放大器)来增强信号处理能力的滤波器。
本实验旨在设计并实现一个有源滤波器,通过实验验证其滤波性能。
一、实验目的本实验的主要目的是设计和实现一个有源滤波器,通过调整电路参数和元件值,实现对不同频率信号的滤波。
同时,通过实验结果的分析,了解有源滤波器的工作原理和性能。
二、实验原理有源滤波器是一种利用有源元件(如运算放大器)来增强滤波器性能的电路。
常见的有源滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
它们分别通过选择合适的元件和电路拓扑结构来实现对不同频率信号的滤波。
三、实验步骤1. 根据设计要求,选择合适的电路拓扑结构和元件。
2. 按照电路图连接电路,并确保连接正确无误。
3. 根据设计要求,选择合适的元件值,并进行元件的选取和调整。
4. 使用信号发生器产生测试信号,并连接到有源滤波器的输入端。
5. 使用示波器测量有源滤波器的输出信号,并记录实验数据。
6. 根据实验数据,分析有源滤波器的滤波性能。
四、实验结果与分析通过实验,我们设计并实现了一个二阶有源低通滤波器。
在实验中,我们选择了合适的运算放大器和电容、电阻元件,并根据设计要求进行了调整。
实验结果显示,该有源滤波器能够有效滤除高频信号,只保留低频信号。
通过调整电路参数,我们还可以改变滤波器的截止频率,实现对不同频率信号的滤波。
五、实验总结本实验通过设计和实现有源滤波器,验证了其滤波性能。
通过调整电路参数和元件值,我们可以实现对不同频率信号的滤波。
有源滤波器在电子电路中具有重要的应用价值,能够对信号进行精确的滤波和处理。
通过本实验,我们对有源滤波器的工作原理和性能有了更深入的了解。
六、实验感想通过本次实验,我对有源滤波器的设计和实现有了更深入的理解。
在实验过程中,我遇到了一些问题,如电路连接错误和元件值选择不准确等。
有源滤波器的设计实验报告

有源滤波器的设计实验报告有源滤波器的设计实验报告引言:滤波器是电子工程中常见的设备,用于去除信号中的噪声或者选择特定频率范围内的信号。
有源滤波器是一种常见的滤波器类型,它利用放大器的特性来增强滤波效果。
本实验旨在设计一个有源滤波器,探索其原理和应用。
一、实验背景滤波器是信号处理中重要的组成部分,广泛应用于通信、音频处理、图像处理等领域。
有源滤波器通过引入放大器来增强滤波效果,使得滤波器具有更好的性能和灵活性。
本实验将设计一个有源滤波器,以探索其在信号处理中的应用。
二、实验目的1. 了解有源滤波器的工作原理和特点;2. 学习有源滤波器的设计方法和步骤;3. 掌握实际搭建有源滤波器的技巧和调试方法;4. 分析有源滤波器的性能指标,如增益、带宽等。
三、实验原理有源滤波器由放大器和被动滤波器组成。
放大器起到放大输入信号的作用,同时也引入了放大器的特性和非线性失真。
被动滤波器则通过电容、电感和电阻等元件来选择特定频率范围内的信号。
有源滤波器的设计需要考虑放大器的增益、带宽和稳定性等因素。
四、实验步骤1. 确定滤波器的类型和频率范围。
根据实际需求选择低通、高通、带通或带阻滤波器,并确定所需的截止频率。
2. 选择适当的放大器。
根据滤波器的要求选择合适的放大器,考虑增益、带宽和稳定性等因素。
3. 计算滤波器的元件数值。
根据滤波器类型和截止频率计算所需的电容、电感和电阻数值。
4. 搭建滤波器电路。
根据计算结果,选择合适的元件进行电路搭建。
5. 进行滤波器的调试和优化。
通过实际测试,调整电路参数,优化滤波器的性能。
6. 测试滤波器的性能指标。
测量滤波器的增益、带宽和相位响应等指标,评估滤波器的性能。
五、实验结果与分析通过实验,我们成功设计并搭建了一个低通滤波器。
经过调试和优化,该滤波器在截止频率为1kHz时,具有20dB的增益,-3dB的带宽为500Hz。
实验结果表明,有源滤波器可以有效地选择特定频率范围内的信号,并增强滤波效果。
有源滤波器实验报告

有源滤波器实验报告有源滤波器实验报告引言:在电子电路实验中,滤波器是一种常见的电路元件,用于对信号进行滤波处理。
滤波器可以将某个频率范围内的信号通过,而将其他频率范围内的信号削弱或者抑制。
本实验旨在研究有源滤波器的工作原理和特性,并通过实验验证其有效性。
实验目的:1. 理解有源滤波器的基本原理;2. 掌握有源滤波器的设计和调试方法;3. 通过实验验证有源滤波器的性能。
实验原理:有源滤波器是由一个放大器和一个被动滤波器组成的。
被动滤波器是由电阻、电容和电感等被动元件组成的,其频率响应特性由被动元件的参数决定。
而有源滤波器通过加入一个放大器,可以增加滤波器的增益和频率选择性。
实验步骤:1. 搭建有源低通滤波器电路。
根据实验要求,选择合适的被动滤波器参数和放大器类型,搭建电路。
2. 进行电路调试。
通过信号发生器输入不同频率的正弦波信号,观察输出波形,并调整电路参数,使得输出波形满足实验要求。
3. 测量电路参数。
使用示波器测量电路的输入输出电压,并记录下来。
4. 更换被动滤波器参数,重复步骤2和3,以验证不同参数对滤波器性能的影响。
5. 分析实验数据。
根据测量结果,绘制电路的频率响应曲线,并分析滤波器的特性。
实验结果:通过实验,我们成功搭建了有源低通滤波器电路,并进行了调试和测量。
实验数据显示,该滤波器在截止频率以下的频率范围内,可以将输入信号通过,并且增益较高;而在截止频率以上的频率范围内,输出信号的幅值逐渐下降,达到了滤波的效果。
进一步分析实验数据,我们发现滤波器的截止频率与被动滤波器的参数有关。
当电容或电感的数值增大时,截止频率也会相应增大,滤波器的频率选择性变弱。
而当电阻的数值增大时,滤波器的增益减小,输出信号的幅值也会减小。
讨论与总结:有源滤波器是一种常见的电子电路元件,广泛应用于各种电子设备中。
本实验通过搭建和调试有源滤波器电路,验证了其滤波效果和特性。
在实验过程中,我们发现滤波器的性能受到被动滤波器参数的影响。
无源滤波器和有源滤波器实验报告

无源滤波器和有源滤波器实验报告无源滤波器和有源滤波器实验报告引言滤波器在电子领域中起着至关重要的作用,它可以帮助我们去除信号中的噪声,提高信号的质量。
无源滤波器和有源滤波器是两种常见的滤波器类型,它们在电路结构和性能特点上有所不同。
本实验旨在通过搭建无源滤波器和有源滤波器电路,比较它们的滤波效果和特点。
实验一:无源滤波器无源滤波器是由被动元件(如电阻、电容、电感)构成的滤波电路。
在本实验中,我们选择了RC低通滤波器进行研究。
1. 实验目的通过搭建RC低通滤波器电路,研究其频率特性和滤波效果。
2. 实验步骤a. 准备工作:收集所需器件和元件,包括电源、电阻、电容、示波器等。
b. 搭建电路:按照电路图连接电阻和电容,接入电源和示波器。
c. 调节参数:调节电源电压和示波器参数,使电路正常工作。
d. 测试频率响应:输入不同频率的信号,观察输出波形和幅度变化。
3. 实验结果通过实验观察,我们得到了RC低通滤波器的频率响应曲线。
在低频情况下,输出信号基本与输入信号保持一致;而在高频情况下,输出信号的幅度会逐渐降低,起到了滤波的作用。
这是因为电容器在高频情况下的阻抗较小,导致信号通过电容器的路径而绕过电阻。
实验二:有源滤波器有源滤波器是由主动元件(如运算放大器)和被动元件组成的滤波电路。
在本实验中,我们选择了Sallen-Key低通滤波器进行研究。
1. 实验目的通过搭建Sallen-Key低通滤波器电路,研究其频率特性和滤波效果。
2. 实验步骤a. 准备工作:收集所需器件和元件,包括电源、运算放大器、电阻、电容、示波器等。
b. 搭建电路:按照电路图连接运算放大器、电阻和电容,接入电源和示波器。
c. 调节参数:调节电源电压和示波器参数,使电路正常工作。
d. 测试频率响应:输入不同频率的信号,观察输出波形和幅度变化。
3. 实验结果通过实验观察,我们得到了Sallen-Key低通滤波器的频率响应曲线。
与RC滤波器相比,Sallen-Key滤波器具有更好的滤波效果和增益稳定性。
有源无源滤波器实验报告

有源无源滤波器实验报告实验目的,通过实验,掌握有源和无源滤波器的基本原理和特点,了解其在电路中的应用。
一、实验原理。
有源滤波器是利用放大器的放大作用和反馈作用,通过RC、RL等滤波电路实现滤波功能。
无源滤波器是利用电感、电容等被动元件组成的滤波电路实现滤波功能。
有源滤波器一般具有较高的输入电阻和较低的输出电阻,可以满足各种输入输出阻抗的匹配。
无源滤波器一般具有较低的输入电阻和较高的输出电阻,适合于与高阻抗的负载匹配。
二、实验仪器和器件。
1. 信号发生器。
2. 示波器。
3. 电阻、电容、电感。
4. 运算放大器。
5. 电路板、连接线等。
三、实验内容。
1. 有源低通滤波器的实验。
(1)按照实验电路图连接电路;(2)调节信号发生器的频率和幅值,观察输出波形,并记录实验数据;(3)分析实验数据,得出有源低通滤波器的频率特性曲线。
2. 无源高通滤波器的实验。
(1)按照实验电路图连接电路;(2)调节信号发生器的频率和幅值,观察输出波形,并记录实验数据;(3)分析实验数据,得出无源高通滤波器的频率特性曲线。
四、实验结果与分析。
通过实验数据的记录和分析,我们得出了有源低通滤波器和无源高通滤波器的频率特性曲线。
可以清楚地看到,在一定频率范围内,有源滤波器和无源滤波器对信号的响应特性,从而验证了它们的滤波功能。
五、实验总结。
通过本次实验,我们深入理解了有源和无源滤波器的原理和特点,掌握了它们在电路中的应用。
同时,通过实验操作,提高了我们的动手能力和实验数据处理能力。
六、实验心得。
本次实验让我对有源无源滤波器有了更深入的了解,也提高了我的实验操作能力和数据分析能力。
在未来的学习和工作中,我会更加注重理论与实践相结合,不断提高自己的专业能力。
以上就是本次有源无源滤波器实验的实验报告,希望能对大家有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程名称:电路与电子技术实验II 指导老师:沈连丰成绩:__________________ 实验名称:有源滤波器设计实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)
三、主要仪器设备(必填)四、操作方法和实验步骤
五、实验数据记录和处理六、实验结果与分析(必填)
七、讨论、心得
一、实验目的和要求
1、掌握有源滤波器的分析和设计方法。
2、学习有源滤波器的调试、幅频特性的测量方法。
3、了解滤波器的结构和参数对滤波器性能的影响。
4、用EDA仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响。
二、实验内容和原理
1、滤波器的5个主要指标:
(1) 传递函数A v(s) :反映滤波器增益随频率的变化关系,也称为电路的频率响应、频率特性。
(2) 通带增益A v p:为一个实数。
(针对LPF)、(针对HPF)、(针对BPF)、(针对BEF)。
(3) 固有频率f0:也称自然频率、特征频率,其值由电路元件的参数决定。
(4) 通带截止频率f p:滤波器增益下降到其通带增益A v p 的0.707倍时所对应的频率(也称–3dB 频率、半功率点、上限频率(ωH 、f H )或下限频率(ωL 、f L )。
(5) 品质因数Q:反映滤波器频率特性的一项重要指标,不同类型滤波器的定义不同。
例如,在低通和高通滤波器中,定义为当时增益的模与通带增益之比。
2、有源滤波器的设计流程:
设计一个有源低通滤波器时,一般可以先按照预定的性能指标,选择一定的电路形式,然后写出电路的电压传递函数,计算并选定电路中的各个元器件参数。
最后再通过实验进行调试,确定实际的器件参数。
三、实验器材
运放LM358、
四、操作方法和实验步骤
1、实验内容
(1) 在实验板上安装所设计的电路。
(2) 有源滤波器的静态调零。
(3) 测量滤波器的通带增益A v p、通带截止频率f p。
(4) 测量滤波器的频率特性(有条件时可使用扫频仪)。
(5) 改变电路参数,研究品质因数Q 对滤波器频率特性的影响。
2、设计一个二阶有源低通滤波器。
具体要求如下:
(1) 通带截止频率:f p=1kHz;
(2) 通带增益:A v p=1~2 ;
(3) 品质因数:Q = 0.707 ;
(4) 集成运放选用LM358 ,电容选用0.1~0.01μF,电阻控制在kΩ~MΩ数量级。
3、有源低通滤波器的调试方法
(1) 定性检查电路是否具备低通特性
在输入端加上幅度固定的正弦波信号,改变输入信号的频率范围,用示波器或交流毫伏表观测输出电压的幅度变化(要求峰峰值≤10V pp),检查电路是否具备低通特性。
如不具备,则应找出原因,排除电路故障;如已具备低通特性则可进一步调试低通滤波器的特性。
(2) 低通滤波器的特性调试
低通滤波器的特性调试应按有关计算式进行。
在一般情况下,应尽量选用相互间没有影响或影响较小的元件进行调整。
如果有必要,这些调整须反复进行。
(3) 测绘滤波电路的幅频特性曲线。
有条件时,可用扫频仪直接观测滤波电路的幅频特性。
4、设计一个二阶有源低通滤波器。
分别选用如下3 种电路形式来实现。
二阶、有源、压控型(单一正反馈支路)、低通滤波器(LPF,同相型):
简单的二阶、有源、低通滤波器(LPF,同相型):
二阶、有源、多路负反馈型、低通滤波器(LPF,反相型):
五、实验数据记录和处理
简单的二阶、有源、低通滤波器(LPF ,同相型):
Rf
39k
V215Vd c
V1
15Vd c
FREQ = 3kHz
VAMPL = 5V VOFF = 0V AC = 1V
输入信号幅度控制为500mV 。
有:
幅频特性曲线如下图:
简单的有源、低通滤波器(LPF ,同相型):
FREQ = 3kHz
VAMPL = 5V VOFF = 0V AC = 1V Rf
{Rf}
V
V215Vdc
V1
15Vdc
(1) 输入信号幅度控制为10V。
有:
幅频特性曲线如下图:
当输出电压波形开始成三角波时的示波器波形:
(2) 输入信号幅度控制为10mV。
有:
改变输入信号的频率范围,用示波器或交流毫伏表观察输出电压的幅度变化。
当测出的输出电压值达到Uo×0.707值时,停止信号源频率的改变,此时信号源所对应的输出频率即为上限频率f H或下限频率f L。
Uo=16.0mV。
f H≈600kHz。
二阶、有源、压控型(单一正反馈支路)、低通滤波器(LPF,同相型):
V215Vdc
V1
15Vdc
V
FREQ = 3kHz
VAMPL = 5V VOFF = 0V AC = 1V Rf {Rf}
(1) Rf=39k :
输入信号幅度控制为500mV 。
有:
幅频特性曲线如下图:
(2) Rf=100k :
出现自激振荡。
二阶、有源、多路负反馈型、低通滤波器(LPF ,反相型):
V1
15Vdc
VAMPL V215Vdc
Rf 10k
输入信号幅度控制为500mV 。
(1) C1=0.01u:
幅频特性曲线如下图:
(2) C2=0.1u:
幅频特性曲线如下图:
六、仿真分析
简单的二阶、有源、低通滤波器(LPF,同相型):
简单的有源、低通滤波器(LPF,同相型):
(1) 输入信号幅度控制为10V。
有:
(2) 输入信号幅度控制为10mV。
有:
f H≈537kHz。
二阶、有源、压控型(单一正反馈支路)、低通滤波器(LPF,同相型):(1) Rf=39k:
二阶、有源、多路负反馈型、低通滤波器(LPF,反相型):
(1) C1=0.01u:
(2) C2=0.1u:
七、心得体会
通过本次实验我掌握了有源滤波器的分析和设计方法,学习了有源滤波器的调试、幅频特性的测量方法,了解了滤波器的结构和参数对滤波器性能的影响。
实验完成后我还用EDA仿真的方法来研究滤波电路,加深了对PSpice的熟练程度,了解了元件参数对滤波效果的影响。
2015.05.28。