8、菱形、矩形存在性问题
202X年中考数学复习存在性问题系列菱形的存在性问题专题探究

千里之行,始于足下。
202X年中考数学复习存在性问题系列菱形的存在性问题专题探究202X年中考数学复习存在性问题系列——菱形的存在性问题专题探究一、引言菱形是中学数学中常见的一种图形,是四边形的一种特殊状况。
在几何学中,我们通常将具有相等对角线长度的四边形称为菱形。
然而,在菱形的定义和性质方面,中同学往往存在一些常见的错误和迷思。
本文将通过对菱形的存在性问题进行专题探究,分析常见的错误观念,并提出正确的解决方法,以挂念同学正确生疏菱形的存在性问题。
二、错误观念分析1. 菱形必需是正方形这是一个常见的错误观念。
很多同学认为只有四边形的四个内角都是直角时,才能称之为菱形。
然而,这种理解是不正确的。
事实上,菱形只需要满足对角线相等即可,对角线之间的夹角并没有限制。
2. 任意平行四边形都可以称为菱形这也是一个常见的错误观念。
很多同学认为只要四边形的对边平行且对角线相等,就可以称其为菱形。
然而,这种理解也是不正确的。
事实上,菱形是一种特殊的四边形,除了要满足对角线相等外,还必需满足两对相邻边相等。
三、正确解决方法第1页/共3页锲而不舍,金石可镂。
1. 基本定义菱形的定义是:两对对角线相等的四边形称为菱形。
这是菱形存在的基本条件,也是区分菱形和其他四边形的关键特征。
2. 避开混淆同学在解决菱形存在性问题时,需要避开将菱形和其他外形混淆。
例如,正方形和菱形是两个不同的概念,虽然正方形也是一种菱形,但并不是全部的菱形都必需是正方形。
3. 留意推断在推断一个四边形是否为菱形时,可以通过测量四条边的长度和对角线的长度来进行推断。
假如对角线的长度相等,并且两对相邻边的长度也相等,那么这个四边形就是一个菱形。
否则,它就不是菱形。
四、进一步探究1. 菱形的性质菱形具有一些特殊的性质,同学可以通过进一步的探究来加深对菱形的生疏。
例如,菱形的内角和为360度,对角线的交点可以将菱形划分为四个全等的三角形等等。
2. 利用菱形解决问题千里之行,始于足下。
一次函数背景下的图形存在性问题(原卷版)-2023年中考数学重难点解题大招复习讲义-函数

例题精讲考点一:一次函数中等腰三角形存在性问题【例1】.如果一次函数y=﹣x+6的图象与x轴、y轴分别交于A、B两点,M点在x轴上,并且使得以点A、B、M为定点的三角形是等腰三角形,则M点的坐标为.变式训练【变1-1】.如图,在平面直角坐标系中,直线MN的函数解析式为y=﹣x+3,点A在线段MN上且满足AN=2AM,B点是x轴上一点,当△AOB是以OA为腰的等腰三角形时,则B点的坐标为.【变1-2】.如图,在平面直角坐标系中,直线y=﹣2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△OPC是等腰三角形时P的坐标.考点二:一次函数中直角三角形存在性问题【例2】.已知点A、B的坐标分别为(2,2)、(5,1),试在x轴上找一点C,使△ABC为直角三角形.【变2-1】.如图,一次函数y=kx+1的图象过点A(1,2),且与x轴相交于点B.若点P 是x轴上的一点,且满足△ABP是直角三角形,则点P的坐标是.【变2-2】.如图,已知一次函数y=x﹣2的图象与y轴交于点A,一次函数y=4x+b的图象与y轴交于点B,且与x轴以及一次函数y=x﹣2的图象分别交于点C、D,点D的坐标为(﹣2,﹣4).(1)关于x、y的方程组的解为.(2)求△ABD的面积;(3)在x轴上是否存在点E,使得以点C,D,E为顶点的三角形是直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.考点三:一次函数中平行四边形存在性问题【例3】.如图,已知一次函数y=kx+b的图象经过A(1,3),B(﹣2,﹣1)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)求△AOB的面积;(3)平面内是否存在一点M,使以点M、C、O、B为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标,若不存在,请说明理由.变式训练【变3-1】.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.考点四:一次函数中矩形存在性问题【例4】.如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.变式训练【变4-1】.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣4x+3=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求点H到x轴的距离;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.考点五:一次函数中菱形存在性问题【例5】.如图1,直线y=x+6与x,y轴分别交于A,B两点,∠ABO的角平分线与x轴相交于点C.(1)求点C的坐标;(2)在直线BC上有两点M,N,△AMN是等腰直角三角形,∠MAN=90°,求点M 的坐标;(3)点P在y轴上,在平面上是否存在点Q,使以点A、B、P、Q为顶点的四边形为菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.变式训练【变5-1】.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于点D、C,直线AB与y轴交于点B(0,﹣2),与直线CD交于点A(m,2).(1)求直线AB的解析式;(2)点E是射线CD上一动点,过点E作EF∥y轴,交直线AB于点F,若以O、C、E、F为顶点的四边形是平行四边形,请求出点E的坐标;(3)设P是射线CD上一点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.1.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点C,使△ABC为等腰三角形,则这样的点C的坐标为.2.如图,在平面直角坐标系中,点A坐标为(2,1),连接OA,点P是x轴上的一动点,如果△OAP是等腰三角形,请你写出符合条件的点P坐标.3.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y 的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.4.如图,一次函数y=k2x+b的图象与y轴交于点B,与正比例函数y=k1x的图象相交于点A(3,4),且OA=OB.(1)分别求出这两个函数的解析式;(2)求△AOB的面积;(3)点P在x轴上,且△POA是等腰三角形,请直接写出点P的坐标.5.直线l1交x轴于点A(6,0),交y轴于B(0,6).(1)如图,折叠△AOB,使BA落在y轴上,折痕所在直线为l2,直线l2与x轴交于C 点,求C点坐标及l2的解析式;(2)在直线l1上找点M,使得以M、A、C为顶点的三角形是等腰三角形,求出所有满足条件的M点的坐标.6.在平面直角坐标系中,直线y=kx+8k(k是常数,k≠0)与坐标轴分别交于点A,点B,且点B的坐标为(0,6).(1)求点A的坐标;(2)如图1,将直线AB绕点B逆时针旋转45°交x轴于点C,求直线BC的解析式;(3)在(2)的条件下,直线BC上有一点M,坐标平面内有一点P,若以A、B、M、P 为顶点的四边形是菱形,请直接写出点P的坐标.7.如图,在平面直角坐标系中,一次函数的图象与x轴交于点A(﹣4,0),与y轴交于点B,且与正比例函数y=x的图象交于点C(m,6).(1)求一次函数的解析式;(2)求△BOC的面积;(3)在x轴上是否存在一点P,使得△ABP是等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.8.如图,已知一次函数y=x+m的图象与x轴交于点A(﹣6,0),交y轴于点B.(1)求m的值与点B的坐标(2)问在x轴上是否存在点C,使得△ABC的面积为16?若存在,求出点C的坐标;若不存在,说明理由.(3)问在x轴是否存在点P,使得△ABP为等腰三角形,求出点P坐标.(4)一条经过点D(0,2)和直线AB上的一点的直线将△AOB分成面积相等的两部分,请求出这条直线的函数表达式.9.在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴、y轴分别于A、B两点,交直线y=kx于P(2,a).(1)求点A、B的坐标;(2)若Q为x轴上一动点,△APQ为等腰三角形,直接写出Q点坐标;(3)点C在直线AB上,过C作CE⊥x轴于E,交直线OP于D,我们规定若C,D,E 中恰好有一点是其他两点所连线段的中点,则称C,D,E三点为“和谐点”,求出C,D,E三点为“和谐点”时C点的坐标.10.如图所示,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4).(1)求△AOB的面积;(2)动点M从A点以每秒1个单位的速度沿x轴向左移动,求△COM的面积S与M的移动时间t之间的函数关系式;(3)当动点M在x轴上移动的过程中,在平面直角坐标系中是否存在点N,使以点A,C,N,M为顶点的四边形为菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.11.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,直线BC与x轴、y轴分别交于C、B两点,连接BC,且OC=OB.(1)求点A的坐标及直线BC的函数关系式;(2)点M在x轴上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;(3)若点P在x轴上,平面内是否存在点Q,使点B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.12.已知,一次函数y=的图象与x轴、y轴分别交于点A、点B,与直线y=相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)求点C到直线l的距离.=S△BCP,求点P的坐标.(3)若S△AOC(4)若点E是直线y=上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,请直接写出点E的坐标.13.如图,在平面直角坐标系xOy中,直线y=﹣x+与y=x相交于点A,与x轴交于点B.(1)求点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C的坐标;如果不存在,请说明理由;(3)在直线OA上,是否存在一点D,使得△DOB是等腰三角形?如果存在,试求出所有符合条件的点D的坐标,如果不存在,请说明理由.14.如图,经过点B(0,2)的直线y=kx+b与x轴交于点C,与正比例函数y=ax的图象交于点A(﹣1,3)(1)求直线AB的函数的表达式;(2)直接写出不等式(kx+b)﹣ax<0的解集;(3)求△AOC的面积;(4)点P是直线AB上的一点,且知△OCP是等腰三角形,写出所有符合条件的点P 的坐标.15.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.16.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.17.如图1,在平面直角坐标系中.直线与x轴、y轴相交于A、B两点,动点C 在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当直线B′C′经过点D时,求点D的坐标;(3)若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.18.如图,在平面直角坐标系中,直线AB:y=﹣x+4与x轴、y轴分别交于点A、B,点C在y轴的负半轴上,若将△CAB沿直线AC折叠,点B恰好落在x轴正半轴上的点D 处.(1)点A的坐标是,点B的坐标是,AB的长为;(2)求点C的坐标;=S△OCD,直接写出点M的坐标.(3)点M是y轴上一动点,若S△MAB(4)在第一象限内是否存在点P,使△PAB为等腰直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.19.如图,直角坐标系中,直线y=kx+b分别与x轴、y轴交于点A(3,0),点B(0,﹣4),过D(0,8)作平行x轴的直线CD,交AB于点C,点E(0,m)在线段OD上,延长CE交x轴于点F,点G在x轴正半轴上,且AG=AF.(1)求直线AB的函数表达式.(2)当点E恰好是OD中点时,求△ACG的面积.(3)是否存在m,使得△FCG是直角三角形?若存在,直接写出m的值;若不存在,请说明理由.20.如图直线l:y=kx+6与x轴、y轴分别交于点B、C两点,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值.(2)若点P是直线l在第二象限内一个动点,当点P运动到什么位置时,△PAC的面积为3,求出此时直线AP的解析式.(3)在x轴上是否存在一点M,使得△BCM为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.21.如图1,在平面直角坐标系中,O为坐标原点,直线l:y=﹣x+m与x、y轴的正半轴分别相交于点A、B,过点C(﹣4,﹣4)画平行于y轴的直线交直线AB于点D,CD=10(1)求点D的坐标和直线l的解析式;(2)求证:△ABC是等腰直角三角形;(3)如图2,将直线l沿y轴负方向平移,当平移适当的距离时,直线l与x、y轴分别相交于点A′、B′,在直线CD上存在点P,使得△A′B′P是等腰直角三角形.请直接写出所有符合条件的点P的坐标.(不必书写解题过程)22.直线y=kx﹣4与x轴、y轴分别交于B、C两点,且=.(1)求点B的坐标和k的值;(2)若点A时第一象限内的直线y=kx﹣4上的一动点,则当点A运动到什么位置时,△AOB的面积是6?(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.23.如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为,点C的坐标为;(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.24.如图,在平面直角坐标系中,一次函数y=kx+b的图象与y轴交于点A(0,4),与直线y=﹣x﹣1在第四象限相交于点B,连接OB,△AOB的面积为6.(1)求点B的坐标及直线AB的解析式;(2)已知点M在直线AB右侧,且△MAB是以AB为直角边的等腰直角三角形,请求出符合条件的点M的坐标.25.综合与探究:如图,直线l1:y=x+3与过点A(3,0)的直线l2:y=kx+b(k≠0)交于点C(1,m)与x轴交于点B.(1)求直线l2对应的函数解析式;(2)请直接写出不等式kx+b<x+3的解集;(3)若点N在平面直角坐标系内,则在直线l1上是否存在点F使以A,B,F,N为顶点的四边形为菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.26.一次函数y=kx+(k≠0)的图象与x轴、y轴分别交于A(1,0)、B(0,m)两点.(1)求一次函数解析式和m的值;(2)将线段AB绕着点A旋转,点B落在x轴负半轴上的点C处.点P在直线AB上,直线CP把△ABC分成面积之比为2:1的两部分.求直线CP的解析式;(3)在第二象限是否存在点D,使△BCD是以BC为腰的等腰直角三角形?若存在,请直接写出点D的坐标;若不存在,请说明理由.27.如图,在平面直角坐标系中,一次函数y=k1x+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=k2x的图象交点为C(3,4).(1)求正比例函数与一次函数的关系式.(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,请求出点D的坐标.(3)在y轴上是否存在一点P使△POC为等腰三角形,若存在,求出所有符合条件的点P的坐标.28.在学习一元一次不等式与一次函数的过程中,小新在同一个坐标系中发现直线l1:y1=﹣x+3与坐标轴相交于A,B两点,直线l2:y2=kx+b(k≠0)与坐标轴相交于C,D两点,两直线相交于点E,且点E的横坐标为2.已知OC=,点P是直线l2上的动点.(1)求直线l2的函数表达式;(2)过点P作x轴的垂线与直线l1和x轴分别相交于M,N两点,当点N是线段PM的三等分点时,求P点的坐标;(3)若点Q是x轴上的动点,是否存在以A,E,P,Q为顶点的四边形是平行四边形?若存在,请求出所有满足条件的P点坐标;若不存在,请说明理由.29.(1)认识模型:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)应用模型:①已知直线y=﹣2x+4与y轴交于A点,与x轴交于B点,将线段AB绕点B顺时针旋转90度,得到线段CB,求点C的坐标;②如图3,矩形ABCO,O为坐标原点,B的坐标为(5,4),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣3上的一点,点Q是平面内任意一点.若四边形ADPQ是正方形,请直接写出所有符合条件的点D的坐标.30.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,点B的坐标是(4,6),将矩形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC、BC于点E、D,且点D的坐标是(,6).(1)求BF的长度;(2)如图2,点P在第二象限,且△PDE≌△CED,求直线PE的解析式;(3)若点M为直线DE上一动点,在x轴上是否存在点N,使以M、N、D、F为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.。
中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究在平行四边形的存在性问题中,常会遇到两类探究性的问题。
第一类问题是已知三点的位置,在二次函数上或在坐标平面内找一动点,使这四点构成平行四边形(简称“三定一动”)。
第二类问题是已知两个点的位置,在二次函数上或在坐标平面内找两个动点,使这四点构成平行四边形(简称“两定两动”)。
平行四边形的这四个点有可能是定序的,也有可能没有定序。
在解决这些问题时,容易出现遗漏或方法不当或错解的情况。
因此,需要分清题型并分类讨论且作图,利用几何特征计算,并灵活运用平移坐标法等解题技巧。
可以把存在性问题的基本思路叫做“三步曲”:一“分”二“作”三“算”。
对于“三定一动”,要找出平行四边形第四个顶点,则符合条件的有3个点。
这三个点的找法是以三个定点为顶点画三角形,过每个顶点画对边的平行线,三条直线两两相交,产生所要求的3个点。
对于“两定两动”,要找出平行四边形第三、四个顶点,将两个定点连成定线段,将此线段按照作为平行四边形的边或对角线两种分类讨论。
如果平行四边形的四个顶点都能用坐标来表示,则可以直接利用坐标系中平行四边形的基本特征:即对边平行且相等或对边水平距离相等和竖直距离相等列方程求解。
如果平行四边形的四个顶点中某些点不能用坐标表示,则可以利用列方程组解图形交点的方法解决。
此外,还可以灵活运用平行四边形的中心对称的性质,或者使用平移坐标法。
平移坐标法的具体步骤是先由题目条件探索三点的坐标(若只有两个定点,可设一个动点的坐标),再画出以三点为顶点的平行四边形,根据坐标平移的性质写出第四个顶点的坐标。
最后根据题目的要求(动点在什么曲线上),判断平行四边形的存在性。
除了平行四边形,矩形、菱形和正方形也有存在性问题。
对于矩形,增加对角线相等和邻边垂直的性质,还可以转化为直角三角形的存在性问题。
对于菱形,增加四边相等和对角线垂直的性质,还可以转化为直角三角形或等腰(等边)三角形的存在性问题。
中考数学压轴题分析:矩形存在性问题

中考数学压轴题分析:矩形存在性问题矩形的存在性问题每年出现的概率相对较少。
本文内容选自2020年鸡西中考数学压轴题。
难度中等,涉及折叠与矩形的存在性问题,值得学习。
【中考真题】(2020·鸡西)如图,在平面直角坐标系中,四边形的边在轴上,在轴上.为坐标原点,,线段,的长分别是方程的两个根,.(1)求点,的坐标;(2)为上一点,为上一点,,将翻折,使点落在上的点处,双曲线的一个分支过点.求的值;(3)在(2)的条件下,为坐标轴上一点,在平面内是否存在点,使以,,,为顶点四边形为矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.【分析】题(1)求坐标,先解方程可得到,。
已知三角函数值,作垂线构建直角三角形得线段长即可。
题(2)因为点Q的位置固定,易得四边形是矩形。
遇到翻折问题常常设未知数,利用勾股定理建立等量关系求解。
题(3)表面上是矩形的存在性问题,实际上是直角三角形的存在性问题。
可以先以O′Q为边构造直角三角形。
那么这个问题就转化为了“两线一圆”型的直角三角形存在性问题。
发现坐标轴中有4个点符合要求。
利用直角三角形的相关性质进行求解即可。
【答案】解:(1)解方程:,,得,,,,,如图1,过点作于点,,,,,,点的坐标为,点的坐标为;(2)如图2,,,,四边形为矩形.,由翻折,得,,,;(3)存在.分四种情况:①如图3,在轴的正半轴上,四边形是矩形,过轴于,过作轴于,四边形,设,则,,在的解析式为:,则,解得:,是矩形,由②知:,是矩形,过轴于,,,即,,,<span role="presentation" data-formula="\because O" (2,4)'="" data-formula-type="inline-equation">,,,综上,点的坐标为:或,或或.【总结】矩形的存在性问题,直接转化为直角三角形的存在性问题即可。
平行四边形菱形矩形正方形的易错点

平行四边形菱形矩形正方形的易错点平行四边形、菱形、矩形、正方形这些几何概念在初中数学中是非常重要的基础知识点。
然而,由于其相似的外观和特性,学生们常常容易混淆它们之间的区别和性质。
在这篇文章中,我们将介绍这些图形的易错点,以帮助学生们更好地理解它们。
首先,我们来看平行四边形。
平行四边形是一个具有两对平行边的四边形。
它的特点是对边平行且长度相等,相邻角的和为180°。
学生们常常容易将平行四边形和其他四边形混淆,例如矩形和菱形。
其次,菱形是一个特殊的平行四边形,具有以下特点:所有边都相等,对角线相互垂直且相等,对角线的交点称为菱心。
很多学生容易错误地认为菱形必定是矩形或正方形,这是一个常见的误解。
接下来,我们谈谈矩形。
矩形是一个具有四个直角的平行四边形,它的特点是所有角都是90°。
同样,学生们常常错把矩形当作正方形,因为它们都具备直角。
最后,我们来讨论正方形。
正方形是一个特殊的矩形,它具有以下特点:所有边相等,所有角都是90°,对角线相等且相互垂直。
尽管正方形的定义相对简单,但学生们在判断平行四边形、矩形和正方形时仍然容易出现困惑。
为了帮助学生们更好地区分这些图形,这里提供一些指导意义。
首先,要注意图形的边长和角度特征。
学生们可以通过测量边长和角度来判断一个图形到底是平行四边形、菱形、矩形还是正方形。
其次,要以图形的特征为准,而不是只凭直觉。
例如,如果一个图形具有所有边和角都相等的特点,那它就是一个正方形,而不是矩形或其他形状。
最后,多加练习和思考。
通过做一些练习题,学生们可以更好地理解和记忆这些图形的特性,避免出现混淆的情况。
总之,平行四边形、菱形、矩形和正方形是初中数学中非常基础的几何图形。
要正确理解和应用它们,学生们需要仔细观察它们的特点,并加以思考和实践。
希望这篇文章能帮助学生们更好地理解这些图形,并避免常见的易错点。
中考数学“特殊四边形的存在性问题”题型解析

中考数学“特殊四边形的存在性问题”题型解析由抛物线上的点构成特殊四边形的问题,需要根据特殊四边形的性质与判定去确定点的坐标,然后求解 . 具体而言,解该类题时,我们要根据题目中的条件,科学地进行分类,然后画出图形,再根据这个四边形的性质或判定求出这点的坐标,若这一点是根据特殊四边形的特性得到的坐标,我们还应将这一点代入到抛物线的解析式中去验证是否是抛物线上的点 .本节主要来讨论下特殊四边形:平行四边形、菱形、矩形的存在性问题 .类型一:平行四边形问题【例题1】如图,抛物线y = 1/2 x^2 + bx + c 经过点A(-1,0)和点B(3,0),同时交y 轴于点C .(1)求抛物线的解析式;(2)若点Q 在y 轴上,点P 在抛物线上,且以A , B , Q , P 为顶点的四边形是平行四边形,求满足条件的点P 的坐标 .【分析】(1)根据抛物线经过A , B 两点即可求得b , c 的值,可解题;(2)以A , B , Q , P 为顶点的四边形是平行四边形,则点P 横坐标为4 或- 4,将x = 4 或- 4 代入抛物线解析式即可求得y 的值,即可解题 .【解析】(1)把A(-1,0),B(3,0)代入y = 1/2 x^2 + bx + c 中,∴抛物线的解析式是y = 1/2 x^2 - x - 3/2 .(2)①当AB 为边时,只要PQ∥AB 且PQ = AB = 4 即可 .又知点Q 在y 轴上,∴点P 的横坐标为4 或- 4 ,这时符合条件的点P 有两个,分别记为P1 , P2,把x = 4 代入y = 1/2 x^2 - x - 3/2 ,得y = 5/2 ,把x = - 4 代入y = 1/2 x^2 - x - 3/2 ,得y = 21/2 ,此时P1(4 , 5/2),P2(- 4 , 21/2);②当AB 为对角线时,只要线段PQ 与线段AB 互相平分即可 .又知点Q 在y 轴上,且线段AB 中点的横坐标为1,∴点P 的横坐标为2,这时符合条件的P 只有一个记为P3 ,而且当x = 2 时,y = - 3/2 ,此时P3(2,- 3/2),综上,满足条件的P 为P1(4 , 5/2),P2(- 4 , 21/2),P3(2,-3/2).类型二:菱形问题【例题2】如图,在平面直角坐标系中,点O 为坐标原点,直线y = -x + b 与坐标轴交于C,D 两点,直线AB 与坐标轴交于A , B 两点,线段OA , OC 的长是方程x^2 - 3x + 2 = 0 的两个根(OA > OC).(1)求点A , C 的坐标;(2)直线AB 与直线CD 交于点E,若点E 是线段AB 的中点,反比例函数y = k/x (k ≠0 )的图象的一个分支经过点E,求k 的值;(3)在(2)的条件下,点M 在直线CD 上,坐标平面内是否存在点N,使以点B , E , M , N 为顶点的四边形是菱形?若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由 .【分析】(1)利用分解因式法解一元二次方程x^2 - 3x + 2 = 0 即可得出OA , OC 的值,再根据点所在的位置即可得出A , C 的坐标;(2)根据点C 的坐标利用待定系数法即可求出直线CD 的解析式,根据点A , B 的横坐标结合点E 为线段AB 的中点即可得出点E 的横坐标,将其代入直线CD 的解析式中即可求出点E 的坐标,再利用待定系数法即可求出k 的值;(3)假设存在,设点M 的坐标为(m , - m + 1), 分别以BE 为边、BE 为对角线来考虑 .根据菱形的性质找出关于m 的方程,解方程即可得出点M 的坐标,再结合点B , E 的坐标即可得出点N 的坐标 .【解析】(1)x^2 - 3x + 2 = (x - 1)(x - 2)= 0 ,∴x1 = 1 , x2 = 2 ,∵OA > OC ,∴OA = 2 , OC = 1 ,∴A(-2,0),C(1,0);(2)将C(1,0)代入y = - x + b 中,得0 = - 1 + b , 解得b = 1 ,∴直线CD 的解析式为y = - x + 1 .∵点E 为线段AB 的中点,A(-2,0),B 的横坐标为0 ,∴点E 的横坐标为- 1 .∵点E 为直线CD 上一点,∴E(-1,2).将点E(-1,2)代入y = k/x (k ≠0 )中,得2 = k / -1 , 解得k = -2 ;(3)假设存在,设点M 的坐标为(m , - m + 1),以点B , E , M , N 为顶点的四边形是菱形分两种情况(如上图所示)类型三:矩形问题【例题3】【解题策略】这三道例题分别呈现了运动变化过程中的平行四边形、菱形、矩形的存在性问题,三道例题的思路都是要依据特殊四边形的性质构图并建立方程求点的坐标 .特别地,由于菱形任意三个顶点组成的三角形都是等腰三角形,因此可将菱形问题转化为等腰三角形的存在性问题;而矩形问题则可转化为直角三角形的问题,要注意体会相关知识之间的联系 .。
平行四边形,矩形,菱形的存在性问题(有答案)

平行四边形,矩形,菱形的存在性问题一、平行四边形存在性问题1.在平面直角坐标系中,点A,B,C的坐标分别是A(﹣1,3),B(﹣5,﹣3),C(1,﹣3),在平面内找一点D,使四边形ABCD是平行四边形,则点D的坐标是.2.已知平行四边形ABCD的两条对角线相交于平面直角坐标系中的原点O,点A(﹣1,3),B(1,2),则点C,D的坐标分别为.3.在直角坐标系中,点A、B的坐标分别为(﹣2,4)、(﹣5,2),点M在x轴上,点N 在y轴上.如果以点A、B、M、N为顶点的四边形是平行四边形,那么符合条件的点M 有个.4.如图,在平面直角坐标系中,AD∥BC,AD=5,B(﹣3,0),C(9,0),E是BC的中点,P是线段BC上一动点,当PB=时,以点P、A、D、E为顶点的四边形是平行四边形.第4题第5题第6题5.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y 的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.6.如图,已知A(1,0)、C(0,1)、B(m,0)且m>1,在平面内求一点P,使得以A、B、C、P为顶点的四边形是平行四边形,则点P的坐标为.7.已知点A(4,0),B(0,﹣2),C(a,a)及点D是一个平行四边形的四个顶点,则线段CD长的最小值为.8.(1)在图1,2,3中,给出平行四边形ABCD的顶点A,B,D的坐标(如图),图1,2,3中的顶点C的坐标分别是,,;(2)在图4中,若平行四边形ABCD的顶点A,B,D的坐标分别为(4,1)、(3,4)、(6,4),则顶点C的坐标为;(3)在图4中,平行四边形ABCD顶点坐标分别为A(a,b)、B(c,d)、C(m,n)、D(e,f),则其横坐标a,c,m,e之间的等量关系为;纵坐标b,d,n,f之间的等量关系为.9.如图,矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是(6,8),将矩形OABC沿直线BD折叠,使得点C恰好落在对角线OB上的点E处,折痕所在直线与y 轴、x轴分别交于点D、F.(1)请直接写出线段BO的长;(2)求折痕所在直线BD的解析式;(3)若点M在直线y=﹣x上,则在直线BD上是否存在点P,使以C、D、M、P为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点P的坐标;否则,请说明理由.二、矩形存在性问题10.在平面直角坐标系中,已知点A(0,0),B(2,﹣2),C(4,0),D(2,2),则以这四个点为顶点的四边形ABCD是()A.矩形B.菱形C.梯形D.正方形11.如图1,在四边形ABCD中,AB∥CD,∥BCD=90°,AB=AD=10cm,BC=8cm.点P 从点A出发,以每秒3cm的速度沿线段AB方向向B运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时出发,当点P运动到点B 时,P、Q同时运动停止,设运动时间为t秒.(1)求CD的长;(2)当t为何值时,四边形PBQD为平行四边形?(3)在运动过程中,是否存在四边形BCQP是矩形?若存在,请求出t的值;若不存在,请说明理由.12.平行四边形AOBC在平面直角坐标系中的位置如图(1).(1)写出点C的坐标;(2)在图(1)中,连接AB,OC得到图(2),求AB与OC的交点M点的坐标;(3)将图(2)中的线段BC向两方延长得到图(3),若点D,E为直线BC上不与B,C重合的动点,是否存在这样的D,E点,使得四边形OADE为矩形?若存在,请在图中画出矩形,并求出矩形OADE的面积和点D,E的坐标,若不存在,请说明理由.三、菱形存在性问题13.在直角坐标系中,A,B,C,D四个点的坐标依次为(﹣1,0),(x,y),(﹣1,5),(﹣5,z),若这四个点构成的四边形是菱形,则满足条件的z的值有()A.1个B.3个C.4个D.5个14.如图1,直线l1:y=﹣x+3与坐标轴分别交于点A,B,与直线l2:y=x交于点C.(1)求A,B两点的坐标;(2)求∥BOC的面积;(3)如图2,若有一条垂直于x轴的直线l以每秒1个单位的速度从点A出发沿射线AO 方向作匀速滑动,分别交直线l1,l2及x轴于点M,N和Q.设运动时间为t(s),连接CQ.∥当OA=3MN时,求t的值;∥试探究在坐标平面内是否存在点P,使得以O、Q、C、P为顶点的四边形构成菱形?若存在,请直接写出t的值;若不存在,请说明理由.参考答案1.根据题意得:D点的纵坐标一定是3;又由C点相对于B点横坐标移动了1﹣(﹣5)=6,故可得点D横坐标为﹣1+6=5,即顶点D的坐标为(5,3).2.由题意知:点A与点C、点B与点D关于原点对称,∥点A,B的坐标分别为(﹣1,3),(1,2),∥点C,D的坐标分别是(1,﹣3),(﹣1,﹣2),3.有3个点.4.解:∥B(﹣3,0),C(9,0),∥OB=3,OC=9,∥BC=OB+OC=12,∥E是BC的中点,∥BE=CE=BC=6,分为两种情况:∥当P在E的左边时,∥AD=PE=5,CE=6,∥BP=12﹣6﹣5=1;∥当P在E的右边时,∥AD=EP=5,∥BP=BE+EP=6+5=11;即当BP为1或11时,以点P、A、D、E为顶点的四边形为平行四边形;故答案为:1或11.5.如图,∥当BC为对角线时,易求M1(3,2);∥当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);∥当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).6.根据题意得:OA=OC=1,OB=m,∥AB=m﹣1,分三种情况:如图所示,∥以BC为对角线时,点P的坐标为(m﹣1,1);∥以AC为对角线时,点P的坐标为(1﹣m,1);∥以AB为对角线时,点P的坐标为(m+1,1);综上所述:点P的坐标为(m﹣1,1)或(1﹣m,1)或(m+1,﹣1);故答案为:(m﹣1,1)或(1﹣m,1)或(m+1,﹣1).7.如图,由题意得:点C在直线y=x上,∥如果AB、CD为对角线,AB与CD交于点F,当FC∥直线y=x时,CD最小,易知直线AB为y=x﹣2,∥AF=FB,∥点F坐标为(2,﹣1),∥CF∥直线y=x,设直线CF为y=﹣x+b′,F(2,﹣1)代入得b′=1,∥直线CF为y=﹣x+1,由,解得:,∥点C坐标(,).∥CD=2CF=2×=3.∥如果CD是平行四边形的边,则CD=AB==2>3,∥CD的最小值为3.故答案为:3.8.(1)利用平行四边形的性质:对边平行且相等,得出图1,2,3中顶点C的坐标分别是:(5,2)、(e+c,d),(c+e﹣a,d).故答案为:(5,2)(e+c,d),(c+e﹣a,d).(2)若平行四边形ABCD的顶点A,B,D的坐标分别为(4,1)、(3,4)、(6,4),则顶点C的坐标为(5,7);故答案为:(5,7);(3)如图4中,分别过点A,B,C,D作x轴的垂线,垂足分别为A1,B1,C1,D1,分别过A,D作AE∥BB1于E,DF∥CC1于点F.在平行四边形ABCD中,CD=BA,又∥BB1∥CC1,∥∥EBA+∥ABC+∥BCF=∥ABC+∥BCF+∥FCD=180°.∥∥EBA=∥FCD.在∥BEA∥∥CFD中,,∥∥BEA∥∥CFD(AAS),∥AE=DF=a﹣c,BE=CF=d﹣b.设C(x,y).由e﹣x=a﹣c,得x=e+c﹣a.由y﹣f=d﹣b,得y=f+d﹣b.∥C(e+c﹣a,f+d﹣b),∥m=e+c﹣a,n=f+d﹣b,∥m+a=e+c,n+b=d+f.故答案为:m+a=e+c,n+b=d+f.9.解:(1)∥矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是(6,8),∥OA=6,AB=8,∥OAB=90°,∥OB==10,即线段BO的长是10;(2)设点D的坐标为(0,d),则OD=d,CD=8﹣d,∥BC=6,CD=DE,OB=10,,∥,得d=5,即点D的坐标为(0,5),设折痕所在直线BD的解析式为y=kx+b,∥点D(0,5),点B(6,8)在直线BD上,∥,得,即折痕所在直线BD的解析式是y=0.5x+5;(3)在直线BD上存在点P,使以C、D、M、P为顶点的四边形是平行四边形,点P的坐标为(﹣2,4)或(﹣8,1);理由:∥点C(0,8),点D(0,5),∥OC=8,OD=5,∥CD=3,∥以C、D、M、P为顶点的四边形是平行四边形,点M在直线y=﹣x上,点P在直线BD上,∥CD=MP,CD∥MP,或CD为平行四边形的对角线,当CD=MP,CD∥MP时,设点M的坐标为(m,﹣0.5m),则P的坐标为(m,0.5m+5),则|(0.5m+5)﹣(﹣0.5m)|=3,解得,m1=﹣2,m2=﹣8,当m=﹣2时,点P的坐标为(﹣2,4),当m=﹣8时,点P的坐标为(﹣8,1),当CD为平行四边形的对角线时,则点C和点D中点的坐标为(0,6.5),设点M的坐标为(m,﹣0.5m),则点P的坐标为(﹣m,13+0.5m),∥点P在直线BD上,直线BD的解析式是y=0.5x+5,∥13+0.5m=﹣0.5m+5,得m=﹣8,∥点P的坐标为(8,9),由上可得,点P的坐标为(﹣2,4)、(﹣8,1)或(8,9).10.D11.解:(1)过点A作AM∥CD于M,根据勾股定理,AD=10,AM=BC=8,∥DM==6,∥CD=16;(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图1,由题知:BP=10﹣3t,DQ=2t ∥10﹣3t=2t,解得t=2;(3)在运动过程中,不存在四边形BCQP是矩形,理由如下:∥AB∥CD,∥BCD=90°,∥∥C=90°,若要四边形BCQP是矩形,则当PB=CQ时即10﹣3t=16﹣2t,解得:t=﹣6<0,∥不存在.12.解:(1)∥四边形OACB是平行四边形,∥AC=OB,∥A(1,3)、B(4,0),∥C(5,3);(2)如图(2),设AB所在的直线的解析式为y=kx+b,∥直线AB经过点A(1,3)、B(4,0),∥,∥AB所在直线的解析式为y=﹣4x+4,由于OC所在直线的表达式为y=x,联立方程解得:即M的坐标是(2.5,1.5);(3)存在这样的D、E,使得四边形AOED是矩形.分别过点A、O作AD∥BC于点D,OE∥BC于点E,过E、D分别作x轴的垂线,垂足分别为F、G,∥四边形AOBC是平行四边形,∥AO∥BC,∥AD∥AO,∥四边形AOED是矩形,且与平行四边形AOBC面积相等,∥平行四边形AOBC的面积为12,∥矩形AOED的面积为12,由勾股定理知AO=,∥OE=,EB=,∥EF===1.2,OF===3.6,∥点E的坐标为(3.6,﹣1.2),∥点D的坐标为(4.6,1.8).13.如图,∥A(﹣1,0),C(﹣1,5),∥AC∥x轴,且AC=5﹣0=5,过点D(﹣5,z)作作x轴的垂线,则z的数值就在直线x=﹣5上,;∥A、B、C、D四个点构成的四边形是菱形,∥当DC=DA,z有1个值,当DC=AC,则42+(5﹣z)2=52,z有两个值,当AD=AC,则42+z2=52,则z有两个值,综上所知,符合条件的z的值有5个.故选:D.14.解:(1)对于直线y=﹣x+3,令x=0得到y=3,令y=0,得到x=6,A(6,0)B(0,3).(2)由,解得,∥C(2,2),∥S∥OBC=×3×2=3(3)∥∥M(6﹣t,﹣(6﹣t)+3),N(6﹣t,6﹣t),∥MN=|﹣(6﹣t)+3﹣(6﹣t)|=|t﹣6|,∥OA=3MN,∥6=3|t﹣6|,解得t=或∥如图3中,由题意OC=2,当OC为菱形的边时,可得Q1(﹣2,0),Q2(2,0),Q4(4,0);当OC为菱形的对角线时,Q3(2,0),∥t=(6+2)s或(6﹣2)s或2s或4s时,以O、Q、C、P为顶点的四边形构成菱形.。
(完整版)矩形存在性问题

(完整版)矩形存在性问题
矩形是一种常见的几何形状,但在某些情况下,其存在性可能
会受到一些问题的影响。
本文将探讨与矩形存在性相关的一些问题。
1. 不存在完美的矩形
在现实世界中,找到一个完美的矩形是很困难的。
尽管矩形的
定义是具有四个直角的四边形,但在实际情况中,我们很难找到具
备完美直角、边长相等的矩形。
这是因为制造或绘制矩形时可能会
出现一些误差或不完美的情况。
2. 变形矩形
矩形的存在性还受到其变形程度的影响。
当一个矩形的四个角
不再是直角或者它的四边不是等长时,我们称之为变形矩形。
变形
矩形可能会在某些情况下具备特定的性质,但根据定义,它已经脱
离了严格的矩形形状。
3. 特殊情况下的矩形存在性
在一些特殊情况下,矩形的存在性可能会受到限制。
例如,当
四个顶点被限制在一个平面上或者在一条直线上时,将无法构成一
个矩形。
这些限制可能是由具体问题的条件而引发的,所以在解决
问题时需要特别注意。
4. 结论
总的来说,矩形存在性问题是一个常见但也是复杂的几何问题。
由于现实世界的限制以及矩形的特性定义,我们可能无法找到完美
的矩形。
变形矩形和特殊情况下的限制也进一步增加了找到一个合
适的矩形的难度。
在解决矩形存在性问题时,我们应该考虑到以上
因素,并根据具体情况采取相应的措施。