通信电路实验报告材料
通信线路实验报告

一、实验目的1. 理解通信线路的基本原理和组成。
2. 掌握通信线路的安装、调试和维护方法。
3. 培养实际操作能力,提高通信线路的故障排查和处理能力。
二、实验原理通信线路是信息传输的基础设施,主要包括有线通信线路和无线通信线路。
本实验以有线通信线路为例,主要涉及双绞线、同轴电缆和光纤等。
1. 双绞线:由两根绝缘铜线绞合而成,具有良好的抗干扰性能,常用于电话线路和低速数据传输。
2. 同轴电缆:由一根中心的导体、绝缘层、金属屏蔽层和外护套组成,适用于高速数据传输和电视信号传输。
3. 光纤:利用光的全反射原理进行信息传输,具有高速、大容量、抗干扰能力强等优点。
三、实验仪器与设备1. 双绞线:一对2. 同轴电缆:一根3. 光纤:一根4. 测试仪:一台5. 工具:剥线钳、剪刀、压线钳等四、实验步骤1. 双绞线实验(1)将双绞线一端剥去约2厘米的绝缘层,露出铜线。
(2)将铜线按照T568A或T568B标准进行排列。
(3)使用压线钳将双绞线端子压接在RJ45接口上。
(4)将另一端的双绞线按照相同的标准压接在RJ45接口上。
(5)使用测试仪测试双绞线的连通性。
2. 同轴电缆实验(1)将同轴电缆一端剥去约5厘米的绝缘层,露出导体和金属屏蔽层。
(2)将导体和金属屏蔽层按照要求连接到相应的接口上。
(3)将另一端的同轴电缆按照相同的方法连接到接口上。
(4)使用测试仪测试同轴电缆的连通性。
3. 光纤实验(1)将光纤一端剥去约1厘米的绝缘层,露出光纤。
(2)使用光纤熔接机将光纤熔接在一起。
(3)将熔接好的光纤端面进行清洁。
(4)将光纤端面连接到相应的接口上。
(5)使用测试仪测试光纤的连通性。
五、实验结果与分析1. 双绞线实验结果:测试仪显示双绞线连通性良好,符合实验要求。
2. 同轴电缆实验结果:测试仪显示同轴电缆连通性良好,符合实验要求。
3. 光纤实验结果:测试仪显示光纤连通性良好,符合实验要求。
六、实验结论通过本次实验,我们掌握了通信线路的基本原理、安装、调试和维护方法。
通信电子线路实验报告

通信电子线路实验报告一、调频解调电路实验实验内容:1.将拨动开关JP8置于1、2之间,接通“调频信号的解调电路”的直流电压。
2.用信号源产生一个FM信号,参数为:载波频率f c=6.5MHz,调制频偏Freq DIV=0.5MHz,调制信号频率fΩ=10kHz。
3.将FM信号加到P18端,将拨动开关JP3置于1、2之间(把音频输出与功放输入相连接),拨动开关JP9置于1、2之间,用示波器观察P19的波形。
4.调节FM信号的各个参数,观察P19波形的变化。
二、高频小信号谐振放大器一、实验内容1.将拨动开关JP11 置于1~2之间,接通“小信号谐振放大器”的直流电压+12V;2.小信号谐振放大器静态工作点的调整:调节电位器W1,使BG1 集电极电流Ic1约为1.5mA左右(通过测量P3 点的电压来确定电流IC1);3.从P1端接入6.5MHZ的正弦信号,幅度约为50mV 左右;4.用示波器观察比较P2端的波形,应有不失真的放大波形;5.选IST-B“频率键控”(18号)功能,并设始频为5.0MHZ,频率间隔为100KHz,按IST-B 键盘光标键,随着信号频率的变化,应能观察到P2 信号输出波形从小到大,再从大到小的变化。
并记录谐振点的频率。
6.选IST-B“频响测试”(13 号)功能,并设置参数:始频为5.5MHZ,频率间隔为100KHZ,N=20,S=1ms。
P1为输入点,P2为输出点,P2点接示波器探头(X10档),做一次频响测试,并记录测试结果。
(P1、P2 点各有一个测量孔,用于插接IST-B 的探头)7.P2点接示波器探头(X1档)步骤同六再做一次频响测试,并记录测试结果。
8.将拨动开关JP1 置于2、3 使谐振回路并接电阻R8 重复实验6。
比较接与不接R8两种情况下频响曲线有何区别。
二、实验结果及分析1、实验中幅度-频率数据记录:2、实验中用IST -B “频响测试”功能测得的频响波形如下:3、实验结果分析通过MATLAB ,利用采样点频率及对应的电压值描绘出频响曲线图,如下分析:(1)从图中我们可以看出:小信号谐振放大器在谐振频率两侧呈现的是衰减的趋势,由于谐振回路中电感品质因数Q 有限,因此频响并不关于谐振点呈现重中心对称的结论。
通信实验报告范文

通信实验报告范文实验报告:通信实验引言:通信技术在现代社会中起着至关重要的作用。
无论是人与人之间的交流,还是不同设备之间的互联,通信技术都是必不可少的。
本次实验旨在通过搭建一个简单的通信系统,探究通信原理以及了解一些常用的通信设备。
实验目的:1.了解通信的基本原理和概念。
2.学习通信设备的基本使用方法。
3.探究不同通信设备之间的数据传输速率。
实验材料和仪器:1.两台电脑2.一个路由器3.一根以太网线4.一根网线直连线实验步骤:1.首先,将一台电脑与路由器连接,通过以太网线将电脑的网卡和路由器的LAN口连接起来。
确保连接正常。
2.然后,在另一台电脑上连接路由器的WAN口,同样使用以太网线连接。
3.确认两台电脑和路由器的连接正常后,打开电脑上的网络设置,将两台电脑设置为同一局域网。
4.接下来,进行通信测试。
在一台电脑上打开终端程序,并通过ping命令向另一台电脑发送数据包。
观察数据包的传输速率和延迟情况。
5.进行下一步实验之前,先断开路由器与第二台电脑的连接,然后使用直连线将两台电脑的网卡连接起来。
6.重复第4步的测试,观察直连线下数据包的传输速率和延迟情况。
实验结果:在第4步的测试中,通过路由器连接的两台电脑之间的数据传输速率较高,延迟较低。
而在第6步的测试中,通过直连线连接的两台电脑之间的数据传输速率较低,延迟较高。
可以说明路由器在数据传输中起到了很重要的作用,它可以提高数据传输的速率和稳定性。
讨论和结论:本次实验通过搭建一个简单的通信系统,对通信原理进行了实际的验证。
路由器的加入可以提高数据传输速率和稳定性,使两台电脑之间的通信更加高效。
而直连线则不能提供相同的效果,数据传输速率较低,延迟较高。
因此,在实际网络中,人们更倾向于使用路由器进行数据传输。
实验中可能存在的误差:1.实验中使用的设备和网络环境可能会对实际结果产生一定的影响。
2.实验中的数据传输速率和延迟可能受到网络负载和其他因素的影响。
通信电子线路实验报告

中南大学《通信电子线路》实验报告学院信息科学与工程学院题目调制与解调实验学号专业班级姓名指导教师实验一振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。
2.研究已调波与调制信号及载波信号的关系。
3.掌握调幅系数测量与计算的方法。
4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。
二、实验内容:1.调测模拟乘法器MC1496正常工作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑止载波的双边带调幅波。
三、基本原理幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。
变化的周期与调制信号周期相同。
即振幅变化与调制信号的振幅成正比。
通常称高频信号为载波信号。
本实验中载波是由晶体振荡产生的10MHZ高频信号。
1KHZ的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。
D、V7、V8为差动放大器V5与V6的恒流源。
进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。
图2-1 MC1496内部电路图用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。
器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。
通信电路实验报告

实验十一包络检波及同步检波实验一、实验目的1、进一步了解调幅波的原理, 掌握调幅波的解调方法。
2、掌握二极管峰值包络检波的原理。
3、掌握包络检波器的主要质量指标, 检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。
4、掌握用集成电路实现同步检波的方法。
二、实验内容1、完成普通调幅波的解调。
2、观察抑制载波的双边带调幅波的解调。
3、观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。
三、实验仪器1、信号源模块1块2、频率计模块1块3、4 号板1块4、双踪示波器1台5、万用表1块三、实验原理检波过程是一个解调过程,它与调制过程正好相反。
检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。
还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。
假如输入信号是高频等幅信号,则输出就是直流电压。
这是检波器的一种特殊情况,在测量仪器中应用比较多。
例如某些高频伏特计的探头,就是采用这种检波原理。
若输入信号是调幅波,则输出就是原调制信号。
这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。
从频谱来看,检波就是将调幅信号频谱由高频搬移到低频。
检波过程也是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。
常用的检波方法有包络检波和同步检波两种。
全载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。
而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。
1、二极管包络检波的工作原理当输入信号较大 (大于 0.5 伏)时,利用二极管单向导电特性对振幅调制信号的解调,称为大信号检波。
检波的物理过程如下:在高频信号电压的正半周时,二极管正向导通并对电容器 C 充电,由于二极管的正向导通电阻很小,所以充电电流 iD 很大,使电容器上的电压 VC 很快就接近高频电压的峰值。
通信电路实训报告

一、实训目的本次通信电路实训旨在通过实际操作,使学生深入了解通信电路的基本原理、组成及工作过程,提高学生对通信电路的动手能力、分析问题和解决问题的能力,为今后从事通信领域工作打下坚实基础。
二、实训内容1. 实训设备(1)示波器(2)信号发生器(3)频率计(4)万用表(5)通信电路实验板2. 实训项目(1)基本放大电路(2)振荡电路(3)调制与解调电路(4)滤波电路(5)通信系统模拟实验三、实训过程1. 基本放大电路(1)了解放大电路的基本组成,包括输入电路、放大电路、输出电路和偏置电路。
(2)通过实验,掌握放大电路的工作原理,学会使用示波器观察放大电路的输入输出波形。
(3)学会调整放大电路的参数,使放大电路达到最佳工作状态。
2. 振荡电路(1)了解振荡电路的基本组成,包括振荡器、放大器和反馈网络。
(2)通过实验,掌握振荡电路的工作原理,学会使用示波器观察振荡电路的输出波形。
(3)学会调整振荡电路的参数,使振荡电路产生稳定、纯净的信号。
3. 调制与解调电路(1)了解调制与解调电路的基本组成,包括调制器、解调器和信道。
(2)通过实验,掌握调制与解调电路的工作原理,学会使用示波器观察调制与解调过程。
(3)学会调整调制与解调电路的参数,实现信号的准确传输。
4. 滤波电路(1)了解滤波电路的基本组成,包括低通、高通、带通和带阻滤波器。
(2)通过实验,掌握滤波电路的工作原理,学会使用示波器观察滤波电路的滤波效果。
(3)学会调整滤波电路的参数,实现信号的滤波需求。
5. 通信系统模拟实验(1)了解通信系统的基本组成,包括信源、信道、信宿和编码解码器。
(2)通过实验,模拟通信系统的工作过程,学会使用示波器观察信号在通信系统中的传输过程。
(3)学会分析通信系统中存在的问题,并提出解决方案。
四、实训心得1. 通过本次实训,我对通信电路的基本原理、组成及工作过程有了更深入的了解。
2. 实验过程中,我学会了使用示波器、信号发生器、频率计和万用表等实验设备,提高了自己的动手能力。
通信电子电路高频实验报告

实验一高频小信号谐振放大器一、实验目的1.高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。
2.了解高频小信号的质量指标和谐振放大器的性能。
3.掌握L,C参数对谐振频率的影响。
4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放大器的频率。
二、预习要求1.复习高频小信号放大器的功用。
答:高频小信号放大器主要用于放大高频小信号, 属于窄带放大器。
由于采用谐振回路作负载,解决了放大倍数、通频带宽、阻抗匹配等问题,高频小信号放大器又称为小信号放谐振放大器。
就放大过程而言,电路中的晶体管工作在小信号放大区域中,非线性失真很小。
一方面可以对窄带信号实现不失真放大,另一方面又对带外信号滤除, 有选频作用。
2.高频小信号放大器,按有源器件分可分为:_以分立元件为主的集中选频放大器__,_以集成元件为主的集中选频放大器_;按频带宽度可分为:_窄带放大器_,宽带放大器。
三、实验内容1.参照电路原理图1-1连线。
,计算回路电容和回路2.图1-1为一单调谐回路中频放大器,已知工作频率f电感。
图1-1 小信号谐振放大器1.在选用三极管时要查晶体管手册,使参数合理。
2.观察瞬态分析的波形输出及频谱分析是否合理。
3.在pspice中设定:参数,AC=100mV、V OFF =0V,Vampl=300mV,freq=10MegHz。
V2参数CD=12V。
V1在AC Sweep中设定参数:①在AC Sweep Type中选 Decade。
②在Sweep Parameters 中选pts/Decade为20、Stort Fred为10k、End Fred为500MEG。
、Lntervat为10。
③AC Sweep Type中选 Output Voltoge为V(A)、1/V为V1四、实验报告1.根据输入信号的幅度和频率,测出输出信号的幅度和频率,完成表1-12.画出输入信号和输出信号的波形;(根据图形输出)仿真图如下:3.分析单调谐回路谐振放大器的质量指标:(1)测量电压增益;=60Au=UoUi(2)测量放大器的通频带;谐振回路的通频带:BW=fH-fL =0.02MHz实验二三点式振荡器一、实验目的1.熟悉三点式振荡器的工作原理及电路构成。
通信电子电路实验报告

一、实验目的1. 了解通信电子电路的基本组成和工作原理。
2. 掌握通信电子电路的基本实验技能和操作方法。
3. 培养分析问题和解决问题的能力。
二、实验仪器与设备1. 信号发生器2. 示波器3. 数字万用表4. 通信电子电路实验板5. 连接线三、实验原理通信电子电路是现代通信系统中的核心组成部分,其主要功能是将信号进行调制、放大、解调等处理,以实现信号的传输。
本实验主要涉及以下通信电子电路:1. 模拟调制解调电路:将模拟信号进行调制和解调,实现信号的传输。
2. 数字调制解调电路:将数字信号进行调制和解调,实现信号的传输。
3. 放大电路:对信号进行放大,提高信号的传输质量。
四、实验内容1. 模拟调制解调电路实验(1)实验目的:掌握模拟调制解调电路的原理和操作方法。
(2)实验步骤:① 按照实验电路图连接实验板。
② 将信号发生器输出的信号接入调制电路的输入端。
③ 使用示波器观察调制电路的输出波形。
④ 改变调制电路的参数,观察输出波形的变化。
⑤ 将调制电路的输出信号接入解调电路的输入端。
⑥ 使用示波器观察解调电路的输出波形。
⑦ 改变解调电路的参数,观察输出波形的变化。
2. 数字调制解调电路实验(1)实验目的:掌握数字调制解调电路的原理和操作方法。
(2)实验步骤:① 按照实验电路图连接实验板。
② 将信号发生器输出的信号接入调制电路的输入端。
③ 使用示波器观察调制电路的输出波形。
④ 改变调制电路的参数,观察输出波形的变化。
⑤ 将调制电路的输出信号接入解调电路的输入端。
⑥ 使用示波器观察解调电路的输出波形。
⑦ 改变解调电路的参数,观察输出波形的变化。
3. 放大电路实验(1)实验目的:掌握放大电路的原理和操作方法。
(2)实验步骤:① 按照实验电路图连接实验板。
② 将信号发生器输出的信号接入放大电路的输入端。
③ 使用示波器观察放大电路的输出波形。
④ 改变放大电路的参数,观察输出波形的变化。
⑤ 使用数字万用表测量放大电路的增益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一次实验报告实验一高频小信号放大器一、实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
2、熟悉谐振回路的调谐方法及测试方法。
3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
二、实验容(1)单调谐高频小信号放大器仿真图1.1 单调谐高频小信号放大器(2)双调谐高频小信号放大器(a)(b)图1.2 双调谐高频小信号放大器三、实验结果(1)单调谐高频小信号放大器仿真1、仿真电路图2、根据电路中选频网络参数值,计算该电路的谐振频率ωp。
ωp ==2.94Mrad/s fp 467kHz由于三极管的电容会对谐振回路造成影响,因此我适当增大了谐振回路中的电容值(减小电感),ωp的误差减小,仿真中实际fp464kHz3、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。
A v0 = = 11.08 db4、利用软件中的波特图仪观察通频带,并计算矩形系数。
f0.7 : 446kHz~481kHz f0.1 : 327kHz~657kHz矩形系数约为:9.45、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。
通频带:446kHz~481kHz 带宽:35kHZ6、 在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。
二次谐波:加入四次谐波f 0(KHz ) 65 75 165 265 365 465106516652265286534654065U 0(mv )0.01290.01550.04040.08580.21501.2740.05260.03010.02160.01730.01440.0126A V (db)-28.89-27.38-19.06-12.60-4.89411.43-16.46-21.36-24.22-26.22-27.73-28.93加入六次谐波结论分析:在输入端加入了2、4、6次谐波后,经过谐振回路的选频网络后,输入端没有失真,仍然是基波频率的正弦波,增益没有发生变化。
(2)双调谐高频小信号放大器1、仿真电路图2、通过示波器观察输入输出波形,并计算出电压增益A v0。
A v0 = = 43.5 db3、利用软件中的波特图仪观察通频带,并计算矩形系数。
f0.7 : 1.575MHz~1.602MHz f0.1 : 1.480MHZ~1.721MHz通频带为:1.515MHz~1.602MHz 带宽87kHz矩形系数为:= 2.77实验二高频功率放大器一、实验目的1、掌握高频功率放大器的电路组成与基本工作原理。
2、熟悉谐振回路的调谐方法及测试方法。
3、掌握高频功率放大器各项主要技术指标意义及测试技能。
二、实验容图2.1 高频功率放大器一、原理仿真1、搭建Multisim电路图(Q1选用元件Transistors中的BJT_NPN_VIRTUAL )。
2、设输入信号的振幅为0.7V ,利用瞬态分析对高频功率放大器进行分析设置。
要设置起始时间与终止时间,和输出变量。
(提示:单击simulate 菜单中中analyses 选项下的transient analysis...命令,在弹出的对话框中设置。
在设置起始时间与终止时间不能过大,影响仿真速度。
例如设起始时间为0.03s ,终止时间设置为0.030005s 。
在output variables 页中设置输出节点变量时选择vv3#branch 即可) 3、 将输入信号的振幅修改为1V ,用同样的设置,观察ic 的波形。
4、根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L 。
根据各个电压值,计算此时的导通角θc 。
5、要求将输入信号V1的振幅调至1.414V 。
注意:此时要改基极的反向偏置电压V2=1V ,使功率管工作在临界状态。
同时为了提高选频能力,修改R1=30K Ω。
6、 正确连接示波器后,单击“仿真”按钮,观察输入与输出的波形。
7、读出输出电压的值并根据电路所给参数值,计算输出功率P 0,P D ,ηC 。
∑==R I V I P m c cm m c 21102121 0C cc D I V P = Dc P P 0=η二、外部特性1、 调谐特性,将负载选频网络中的电容C1修改为可变电容(400pF ),在电路中的输出端加一直流电流表。
当回路谐振时,记下电流表的读数,修改可变电容百分比,使回路处于失谐状态,通过示波器观察输出波形,并记下此时电流表的读数;2、将电容调为90%时,观察波形。
3、负载特性,将负载R1改为电位器(60k),在输出端并联一万用表。
根据原理中电路图知道,当R1=30k,单击仿真,记下读数U01,修改电位器的百分比为70%,重新仿真,记下电压表的读数U02。
修改电位器的百分比为30%,重新仿真,记下电压表的读数U03。
比较数据,说明当前电路各处于什么工作状态?4、当电位器的百分比为30%时,通过瞬态分析方法,观察ic的波形。
5、振幅特性,在原理图中的输出端修改R1=30KΩ并连接上一直流电流表。
将原理图中的输入信号振幅分别修改为1.06V,0.5V,并记下两次的电流表的值,比较数据的变化,说明原因。
6、倍频特性,将原理图中的信号源频率改为500KHz,谐振网络元件参数不变,使电路成为2倍频器,观察并记录输入与输出波形,并与第2个实验结果比较,说明什么问题?通过傅里叶分析,观察结果。
(提示:在单击Simulate菜单中中Analyses选项下的Fourier Analysis...命令,在弹出的对话框中设置。
在Analysis Parameters标签页中的Fundamental frequency中设置基波频率与信号源频率相同,Number Of Harmonics 中设置包括基波在的谐波总数,Stop time for sampling 中设置停止取样时间,通常为毫秒级。
在Output variables页中设置输出节点变量)。
三、实验结果(1)原理仿真1、仿真电路图2、设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析。
3、将输入信号的振幅修改为1V,用同样的设置,观察ic的波形。
4、根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数QL。
根据各个电压值,计算此时的导通角θc。
ω0== 6.3Mrad/sQL = = 0.0378Vbz=0.714V Vbb=0.1V Vbm=1V θc35.5。
5、要求将输入信号V1的振幅调至1.414V。
注意:此时要改基极的反向偏置电压V2=1V,使功率管工作在临界状态。
同时为了提高选频能力,修改R1=30KΩ。
6、正确连接示波器后,单击“仿真”按钮,观察输入与输出的波形。
7、 读出输出电压的值并根据电路所给参数值,计算输出功率P0,PD ,ηC 。
∑==R I V I P m c cm m c 21102121 0C cc D I V P = Dc P P 0=ηP0=1.099mW PD=2.22mW ηC=DP P 0=49.5% (2)外部特性1、 调谐特性,将负载选频网络中的电容C1修改为可变电容(400pF ),在电路中的输出端加一直流电流表。
当回路谐振时,记下电流表的读数,修改可变电容百分比,使回路处于失谐状态,通过示波器观察输出波形,并记下此时电流表的读数;2、将电容调为90%时,观察波形。
3、 负载特性,将负载R1改为电位器(60k ),在输出端并联一万用表。
根据原理中电路图知道,当R1=30k ,单击仿真,记下读数U01,修改电位器的百分比为70%,重新仿真,记下电压表的读数U02。
修改电位器的百分比为30%,重新仿真,记下电压表的读数U03。
比较三个数据,说明当前电路各处于什么工作状态?R1(百分比)50% 70% 30% U 03.003mV3.586mV2.079mV分别是处于临界状态,过压,欠压状态4、当电位器的百分比为30%时,通过瞬态分析方法,观察ic的波形。
5、振幅特性,在原理图中的输出端修改R1=30KΩ并连接上一直流电流表。
将原理图中的输入信号振幅分别修改为1.06V,0.5V,并记下两次的电流表的值,比较数据的变化,说明原因。
V1(V) 0.7 1.06 0.5I c0 1.776uA 231.2uA 1.776uA当V1超过1V时,流通角θc 将超过90°,则不再工作于丙类,电流会变大(不再是脉冲电流)。
6、倍频特性,将原理图中的信号源频率改为500KHz,谐振网络元件参数不变,使电路成为2倍频器,观察并记录输入与输出波形,并与第2个实验结果比较,说明什么问题?通过傅里叶分析,观察结果。
(提示:在单击Simulate菜单中中Analyses选项下的Fourier Analysis...命令,在弹出的对话框中设置。
在Analysis Parameters标签页中的Fundamental frequency中设置基波频率与信号源频率相同,Number Of Harmonics 中设置包括基波在的谐波总数,Stop time for sampling 中设置停止取样时间,通常为毫秒级。
在Output variables 页中设置输出节点变量)。
实验心得这次通过实验对课本知识有了更深的了解,开始有的波形、数据不对,有一些比较细致的原理问题还是不太清楚,听老师讲解了,以及和旁边同学的讨论,才把实验真正搞明白。
所以,做实验时不能存在侥幸心理,要脚踏实地,即便是很小的知识点也要弄懂,不要让它成为自己的盲点。