高中数学竞赛切比雪夫(Chebyshev)多项式知识整理

合集下载

切比雪夫多项式的应用

切比雪夫多项式的应用

4 3.5 3 2.5 2
←f(x)
1.5 1 0.5
→L3(x)
0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
对于连续函数 g ( x) = x 20 , e x , sin(5πx), e − x sin(2πx) ,分别绘出 n = 10,13,20,21 次拉格朗日 插值多项式 Ln ( x) 的图像和原函数的图像如图 1-4 所示
>> k=0:1:10; >> X=cos((2*k+1)*pi/22); >> %求出 10 次切比雪夫多项式的零点 syms x >> F=inline('x.^20'); >> %要插值的原函数 f(x)=x.^20 >> t=linspace(-1,1,100000); >> yt=F(t); y=F(X); yi=interp1(X,y,t,'language'); plot(t,yt,'r--',t,yi,'k-')
k=0:1:20; X=cos((2*k+1)*pi/42); syms x >> F=inline('sin(5*pi*x)'); %要插值的原函数 f(x)=sin(5*pi*x) t=linspace(-1,1,100000); yt=F(t); y=F(X); yi=interp1(X,y,t,'language'); plot(t,yt,'r--',t,yi,'k-')
Rn ( x ) =
1 f ( n +1) (ξ x )ω n ( x) (n + 1)!

一类齐次对称多项式上的切比雪夫不等式

一类齐次对称多项式上的切比雪夫不等式

一类齐次对称多项式上的切比雪夫不等式切比雪夫不等式(Chebyshev Inequality)是一类关于齐次对称多项式(homogeneous symmetric polynomials)的重要不等式,主要用于统计学中研究均值和极差之间的关系,估算样本变量偏离均值的程度,从而推断概率分布性质。

本文将具体介绍切比雪夫不等式在一类齐次对称多项式上的应用及其表示和证明,同时也举例说明如何使用切比雪夫不等式来判断一组数据平均和标准差的大小之间的关系。

一、定义切比雪夫不等式(Chebyshev Inequality)是一类名为齐次对称多项式(homogeneous symmetric polynomials)的重要不等式,定义是:对于任意离散随机变量X,有P{| X - E(X) | ≥ a} ≤ [E(X^2) - E[X]^2]/a^2 ,其中a≥0 ,E(X)表示X的期望,E(X^2)表示X的期望值二次方,故满足切比雪夫不等式的必要条件是X是一个离散随机变量,其期望值可以计算二、应用切比雪夫不等式实际上可以表达均值和极差之间的关系,可用于评估样本变量偏离均值的程度。

它可以用来估算概率分布的形状,从而判断一组数据或分布的特性。

具体来说,大量数据中有百分之九十九的数据位于均值的一个极差以内,即P{| X - E(X) | ≤ 1.96σ}= 0.99 ,其中σ是X的标准差,且如果大于这个极差,那么这些数据就很少被应用在实际数据分析中。

三、表示和证明我们来看切比雪夫不等式(Chebyshev Inequality)的表示式和证明:(1)对于任意离散随机变量X,有P{|X- E(X)|≥a}≤[E(X^2)-E[X]^2]/a^2(2)证明:根据一般性不等式,有P{|X-E(X)| ≥ a}=1-P{|X-E(X)| <a},又根据加法原理,有1-P{|X-E(X)|<a}= 1-[P{ -a<X-E(X)<a}] ≥1-[P(-a<X-E(X)<0]+P(0<X-E(X)<a)]定义: f(X)=X-E(X) ,既有(2)1-[P(-a<f(X)<0)+P(0<f(X)<a)]=1-[P(-a<X-E(X)<0)+P(0<X-E(X)<a)] ≥1-[∫_{-a}^{0}f(X)dX+∫_{0}^{a}f(X)dX]根据偏微分变换积分公式和变量变换,有上式右边积分等于[E(X^2)-E[X]^2]/a^2至此,我们就得出了切比雪夫不等式的数学表达式为: P{|X-E(X)|≥a}≤[E(X^2)-E[X]^2]/a^2, 其中a≥0四、示例考虑等概率定义在[-1,1]区间内的随机变量X,其期望为E(X)=0,标准差为σ=1, X的^2 次幂的期望为:E(X^2)=∫_{-1}^{1}X^2dX=2/3 。

切比雪夫多项式-详细-Chebyshev polynomials

切比雪夫多项式-详细-Chebyshev polynomials

切比雪夫多项式是与棣美弗定理有关,以递归方式定义的一系列正交多项式序列。

通常,第一类切比雪夫多项式以符号Tn表示,第二类切比雪夫多项式用Un表示。

切比雪夫多项式Tn 或Un 代表n 阶多项式。

切比雪夫多项式在逼近理论中有重要的应用。

这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值。

相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近。

在微分方程的研究中,数学家提出切比雪夫微分方程和相应地,第一类和第二类切比雪夫多项式分别为这两个方程的解。

这些方程是斯图姆-刘维尔微分方程的特殊情形.定义:第一类切比雪夫多项式由以下递推关系确定也可以用母函数表示第二类切比雪夫多项式由以下递推关系给出此时母函数为从三角函数定义:第一类切比雪夫多项式由以下三角恒等式确定其中n = 0, 1, 2, 3, .... . 是关于的n次多项式,这个事实可以这么看:是:的实部(参见棣美弗公式),而从左边二项展开式可以看出实部中出现含的项中,都是偶数次的,从而可以表示成的幂。

用显式来表示尽管能经常碰到上面的表达式但如果借助于复函数cos(z), cosh(z)以及他们的反函数,则有类似,第二类切比雪夫多项式满足以佩尔方程定义:切比雪夫多项式可被定义为佩尔方程在多项式环R[x] 上的解(e.g., 见Demeyer (2007), p.70). 因此它们的表达式可通过解佩尔方程而得出:归递公式两类切比雪夫多项式可由以下双重递归关系式中直接得出:T0(x) = 1 U − 1(x) = 1 Tn + 1(x) = xTn(x) − (1 − x2)Un − 1(x) Un(x) = xUn − 1(x) + Tn(x) 证明的方式是在下列三角关系式中用x 代替xTn(x) − (1 − x2)Un(x)正交性Tn 和Un 都是区间[−1,1] 上的正交多项式系.第一类切比雪夫多项式带权即:可先令x= cos(θ) 利用Tn (cos(θ))=cos(nθ)便可证明.类似地,第二类切比雪夫多项式带权即:其正交化后形成的随机变量是Wigner 半圆分布).基本性质对每个非负整数n,Tn(x) 和Un(x) 都为n次多项式。

切比雪夫多项式的三角函数表示

切比雪夫多项式的三角函数表示

切比雪夫多项式的三角函数表示切比雪夫多项式是一类重要的数学函数,它可以通过三角函数来表示。

在本文中,我们将介绍切比雪夫多项式的定义、性质以及如何使用三角函数来表示它。

让我们来了解一下切比雪夫多项式的定义。

切比雪夫多项式是由切比雪夫多项式方程所定义的一组多项式。

切比雪夫多项式方程可以表示为T_n(x) = cos(n\arccos(x)),其中n是多项式的阶数,x是自变量。

切比雪夫多项式是一个在区间[-1, 1]上定义的函数,它具有一些特殊的性质。

切比雪夫多项式具有递推关系,即T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x),其中T_0(x) = 1,T_1(x) = x。

这个递推关系可以用来计算高阶切比雪夫多项式。

切比雪夫多项式的性质非常丰富。

首先,切比雪夫多项式是一个奇函数,即T_n(-x) = -T_n(x)。

其次,切比雪夫多项式在区间[-1, 1]上具有n个不同的实根,这些实根被称为切比雪夫节点,可以用来进行数值计算和插值。

现在让我们来看一下如何使用三角函数来表示切比雪夫多项式。

我们知道,三角函数是一个周期函数,可以用来表示周期性的现象。

而切比雪夫多项式是一个在区间[-1, 1]上定义的函数,因此可以通过三角函数来表示。

具体来说,我们可以使用余弦函数来表示切比雪夫多项式。

根据切比雪夫多项式的定义,可以将cos(n\arccos(x))展开为cos(n\theta),其中\theta = \arccos(x)。

然后,利用三角函数的和差化积公式,可以将cos(n\theta)表示为余弦函数的线性组合。

例如,切比雪夫多项式T_2(x) = 2x^2 - 1可以表示为cos(2\arccos(x)) = 2\cos^2(\arccos(x)) - 1。

进一步化简,可以得到T_2(x) = 2\cos^2(\arccos(x)) - 1 = 2x^2 - 1。

这就是切比雪夫多项式T_2(x)的三角函数表示形式。

切比雪夫多项式离散对数基于的困难问题

切比雪夫多项式离散对数基于的困难问题

切比雪夫多项式离散对数基于的困难问题简介在计算机科学领域,离散对数问题是一种重要的数学问题。

它在许多密码学算法和安全通信协议中扮演着关键角色。

切比雪夫多项式离散对数基于的困难问题是对离散对数问题的一种特殊形式,它与切比雪夫多项式相关。

本文将深入探讨这个困难问题的定义、应用和解决方法。

二级标题什么是离散对数问题?离散对数问题是在一个有限域上计算离散对数的问题。

离散对数是指当给定一个圆上的一个点和一个生成元时,找到一个整数x,使得该生成元的x次方等于给定点。

离散对数问题在密码学中起着重要的作用,常用于公钥密码体制中的Diffie-Hellman密钥交换算法和椭圆曲线密码系统中。

二级标题什么是切比雪夫多项式离散对数基于的困难问题?切比雪夫多项式离散对数基于的困难问题是对传统离散对数问题的扩展和变形。

它是基于切比雪夫多项式的离散对数问题。

切比雪夫多项式是一类特殊的多项式,具有许多独特的性质和应用,它在数学、物理学和计算机科学等领域中发挥着重要的作用。

三级标题切比雪夫多项式的定义和性质1. 切比雪夫多项式的定义切比雪夫多项式是在区间[-1,1]上的一组多项式函数。

第n个切比雪夫多项式定义为Tn(x)=cos(n*acos(x)),其中cos(x)是余弦函数,acos(x)是反余弦函数。

2. 切比雪夫多项式的性质•切比雪夫多项式是定义在区间[-1,1]上的正交多项式。

•切比雪夫多项式具有递归关系,即Tn(x)=2x*T(n-1)(x)-T(n-2)(x)。

•切比雪夫多项式的根是cos((2k+1)π/(2n)),其中k=0,1,2,…,n-1。

•切比雪夫多项式在区间[-1,1]上具有最小最大模值,即Tn(x)=-1的最小解为x=-1,Tn(x)=1的最大解为x=1。

三级标题切比雪夫多项式离散对数基于的困难问题的应用1. 密码学中的应用切比雪夫多项式离散对数基于的困难问题在密码学中具有重要的应用。

它可以用于构建安全的公钥密码体制和加密算法。

高中数学竞赛切比雪夫(Chebyshev)多项式知识整理-教学文档

高中数学竞赛切比雪夫(Chebyshev)多项式知识整理-教学文档

方法一:余弦倍角公式是由余弦的幂整系数线性组合来表示倍角的余弦.这样就产生余弦的n 倍角能否用余弦的幂次的整系数线性组合表示等问题.通过研究,发现cos n α都是关于2cos α的首项系数为1的、次数等于α的倍数的、系数符号正负相间的整系数多项式,还进一步得到cos n α的一些性质.应用此性质,可以得到一些求和公式及解决许多数学问题.进一步研究,发现此多项式可以转化为切比雪夫多项式.在初等数学中,三角函数是一个十分有用的工具,余弦cos n α是众所周知的偶函数,它的倍角公式如:2cos 22cos 1αα=- ,(1)3cos34cos 3cos ααα=-. (2)它们都是由余弦cos α的幂整系数线性组合来表倍角的余弦.这样就自然产生了余弦的n 倍角能否用余弦cos α的幂次的整系数线性组合表示问题,稍作计算可以得42cos 48cos 8cos 1ααα=-+ ,(3)53cos516cos 20cos 5cos αααα=-+ .(4)观察公式(1—4),可以发现.如果公式两端同乘以2,则公式右边都是关于2cos α的首系数为1的、次数等于公式左边α的倍数的、系数符号正负相间的整系数多项式.由此猜测2cos n α也具有这一性质,下面用数学归纳法加以证明.猜想2,02cos (1)(2cos )m n m n m m n a αα-==-∑,(;n N m N +∈∈) (5)(5)式可改写为:n/312112cos (2cos )(1)(2cos )ent n mm n m n m m n n C mααα----==+-∑ ,(9) (9)式称为n 倍角余弦公式.12424cos 2(cos )(cos )(cos )n n n n n n n αααααα-----=-++…,其中i α为正整数. 因为余弦cos α在[]0,απ∈上单调,对应值为1降到1-,即cos α[]1,1∈-,[]0,απ∈ .因此存在反函数,若令cos x α=,则arccos x α=,[]1,1x ∈-,[]0,απ∈.因此,在余弦n 倍角公式中令arccos x α=,[]0,απ∈,[]1,1x ∈-,则倍角公式为于是cos(arccos )n x 首项系数为12n -的多项式,各项系数是整数,符号依次变化,x 的幂依次递减2次,若递减到最后,幂次为负,则该项取零.若记cos(arccos )n x =()n T x ,则()n T x 满足,12()2()()n n n T x xT x T x --=-,()n T x 称为切比雪夫多项式.从递推关系可以得到:第一类切比雪夫多项式有许多良好的性质,例如:1.(cos )cos(),,n T n R n N θθθ=∈∈.(分析:令cos x θ=,arccos x θ=) 2.()(1)()n n n T x T x -=-,,x C n N ∈∈.这表明()n T x 当n 为奇(偶)数时是奇(偶)函数.3.()1,,1n T x x R x ≤∈≤.4.21(0)0m T +=,2(0)(1),m m T m N =-∈.5.函数列{}()n T x 的生成函数为(分析:生成函数又叫母函数,在数学中,某个序列的母函数是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息.使用母函数解决问题的方法称为母函数方法.母函数的思想就是把离散数列和幂级数一一对应起来,把离散数列间的相互结合关系对应成为幂级数间的运算关系,最后由幂级数形式来确定离散数列的构造.母函数是解决组合计数问题的有效工具之一,其思想方法是把组合问题的加法法则和幂级数的乘幂的相加对应起来.)6.函数列{}()n T x 满足2阶递推关系(分析:由三角恒等式cos(1)cos(1)2cos cos n n n θθθθ++-=)最小偏差切比雪夫在1857年提出这样一个问题:在最高项系数为1的n 次多项式中,寻求在区间[]1,1-上与零的偏差最小的多项式.换句话说,就是寻求[]1,1n x C ∈-在1n H -中的最佳一致逼近多项式1()n P x *-,这里定理 在区间[]1,1-上所有最高项系数为1的多项式中,与零的偏差最小,其偏差为112n -. ()n U x 称为第n 个第二类切比雪夫多项式,前7个第二类切比雪夫多项式为: 第二类切比雪夫多项式也有许多良好的性质,例如:1.()(1)(),,n n n U x U x x C n N -=-∈∈.即当以为奇(偶)数时是奇(偶)函数. 2.21(0)0m U +=,2(0)(1)m m U =-,(1)1n U n =+,(1)(1)(1)n n U n -=-+,m N ∈.3.函数列{}()n U x 的生成函数为4.()1,,1n U x n x R x ≤+∈≤.5.函数列{}()n U x 满足2阶递推关系两类切比雪夫多项式的关系定理1设()n T x 和()n U x 分别为第一类和第二类切比雪夫多项式,0n ≥为整数,则证明 由两类切比雪夫多项式的定义得而则比较式在子两边n t 项的系数,即有4切比雪夫多项式的应用4.1切比雪夫多项式插值切比雪夫多项式在逼近理论中有重要的应用.这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值.相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近. 切比雪夫多项式插值法:定理:设01,,x x …,n x 为区间[],a b 上1n +个互不相同的点,[]1(),n f x C a b +∈,则对任何[],x a b ∈,存在[]01,,,x n x x x ξ∈,使得拉格朗日插值余()()()n R x f x L x =-,满足其中插值多项式的余项极小化:要使拉格朗日插值多项式()n L x 尽量逼近()f x ,就要使余项()n R x 尽量小.在 ()n R x 中,()f x 是固定的,而 x ξ又是未知数,所以要减小()n R x ,只有恰当选择节点集,使得在插值区间内余项的最大值为极小值.为了应用切比雪夫多项式,首先应将插值区间[],a b ,通过简单变换归一化到区间[−1,1],做变换()12k k z b a x b a =-++⎡⎤⎣⎦ 所以插值节点应取为()121cos 222k k z b a b a n π+⎡⎤=-++⎢⎥+⎣⎦. 其中0,1,2,,1k n =-,所以下面我们只需要讨论区间[−1,1]上的函数的切比雪夫插值法: 当取定第一类切比雪夫点21cos ,0,1,2,,22k k x k n n π+==+后,令()1111max n n x M f x ++-≤≤=,则有()()11max 1max (1)!2(1)!n n n n x R x M M n n ++=≤++∏,故切比雪夫插值法可以使得余项的最大值极小化,得到较佳逼近多项式.。

切比雪夫多项式定理

切比雪夫多项式定理

切比雪夫多项式定理切比雪夫多项式定理(Chebyshev Polynomial Theorem)是一个数学定理,由俄国数学家切比雪夫(Pafnuty Chebyshev)首先提出。

它是关于多项式的定理,描述了多项式在有界域内的行为。

该定理可以用来证明许多关于多项式的性质,也可以用来解决许多多项式问题。

定理的形式如下:给定函数f(x)在区间[a,b]上单调,其中a<b,假设函数f(x)具有n次可导的连续导数,并且f(x)的n-1次导数在[a,b]上单调。

如果f(x)可以由n 次切比雪夫多项式Pn(x)表示,则有:f(x)=Pn(x)+Rn(x)其中,Pn(x)是n次切比雪夫多项式,Rn(x)是n次余项,称为切比雪夫多项式定理。

从定理可以看出,如果f(x)在[a,b]上可以由n次切比雪夫多项式表示,那么f(x)可以被分解为两部分,一部分是切比雪夫多项式Pn(x),另一部分是余项Rn(x)。

该定理的重要性在于它提供了一种精确的方法来表示函数f(x)的行为,而不必使用近似解法。

此外,该定理也显示了函数f(x)的收敛性,即当n越大时,Pn(x)越接近f(x),Rn(x)越小。

根据切比雪夫多项式定理,可以得出一些有用的结论,如:(1)在[a,b]上,所有可导的函数f(x)都可以表示为一组切比雪夫多项式的和;(2)在[a,b]上,函数f(x)的收敛性,即当n越大时,Pn(x)越接近f(x),Rn(x)越小;(3)在[a,b]上,f(x)的最大值和最小值可以由切比雪夫多项式的绝对值来确定,即f max=max{|Pn(x)|}, f min=min{|Pn(x)|}(4)在[a,b]上,有f'(x)=P'n(x)+R'n(x)其中,P'n(x)是n次切比雪夫多项式的导数,R'n(x)是n次余项的导数。

切比雪夫多项式定理的应用非常广泛,在许多领域都有着广泛的应用,如量子力学、量子物理、量子化学、量子计算机、光电子学、电磁学、可编程逻辑控制器、信号处理、机器人学、计算机图形学、计算几何学、数值分析、系统工程、模式识别等等。

用切比雪夫多项式求三角函数对称式之值

用切比雪夫多项式求三角函数对称式之值

切比雪夫多项式是一种用于求解三角函数的公式。

它可以用来求解三角函数的对称式,它可以在给定精度要求的情况下,计算出三角函数值的最佳结果。

切比雪夫多项式是一种基于多项式的求解方法,它可以用来求解三角函数的对称式,以求出三角函数的最佳结果。

它的基本原理是:将三角函数的对称式用切比雪夫多项式表示,然后再利用拟合的多项式来计算三角函数的值。

例如,当我们想要求解cos(x)的对称式时,可以用切比雪夫多项式来实现:cos(x)= 1-x^2/2!+x^4/4!-x^6/6!+x^8/8!-...这里,x^2/2!表示x的2次方除以2的阶乘,x^4/4!表示x的4次方除以4的阶乘,以此类推。

此外,切比雪夫多项式还可以用来求解sin(x)的对称式:sin(x)= x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-...以上两个公式就是用切比雪夫多项式求解三角函数的对称式的实例。

切比雪夫多项式在求解三角函数的对称式时具有较高的精度,因此它在计算三角函数值时是非常有用的。

此外,由于它是基于多项式的方法,因此它可以在任意精度要求的情况下,计算出三角函数的值。

“智者千虑,必有一失”,这句名言表明,即使是最精确的计算方法也可能会出现误差。

因此,切比雪夫多项式在求解三角函数时,也存在着一定的精度误差,因此只有在精度要求不是非常高的情况下,才能够得到准确的结果。

“非淡泊无以明志,非宁静无以致远”,这句名言告诉我们,只有经过淡泊的思考和宁静的思考,才能够达到理想的目标。

因此,在使用切比雪夫多项式求解三角函数时,需要对精度要求进行认真的思考,以确保能够得到准确的结果。

总之,切比雪夫多项式是一种用于求解三角函数的公式,它可以用来求解三角函数的对称式,它可以在给定精度要求的情况下,计算出三角函数值的最佳结果,但是要注意精度的要求,以保证能够得到准确的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方法一:余弦倍角公式是由余弦的幂整系数线性组合来表示倍角的余弦.这样就产生余弦的n 倍角能否用余弦的幂次的整系数线性组合表示等问题.通过研究,发现cos n α都是关于2cos α的首项系数为1的、次数等于α的倍数的、系数符号正负相间的整系数多项式,还进一步得到cos n α的一些性质.应用此性质,可以得到一些求和公式及解决许多数学问题.进一步研究,发现此多项式可以转化为
切比雪夫多项式.
在初等数学中,三角函数是一个十分有用的工具,余弦cos n α是众所周知的偶函数,它的倍角公式如:
2cos 22cos 1αα=- ,(1)
3cos34cos 3cos ααα=-. (2)
它们都是由余弦cos α的幂整系数线性组合来表倍角的余弦.这样就自然产生了余弦的n 倍角能否用余弦cos α的幂次的整系数线性组合表示问题,稍作计算可以得
42cos 48cos 8cos 1ααα=-+ ,(3)
53cos516cos 20cos 5cos αααα=-+ .(4)
观察公式(1—4),可以发现.如果公式两端同乘以2,则公式右边都是关于2cos α的首系数为1的、次数等于公式左边α的倍数的、系数符号正负相间的整系数多项式.由此猜测2cos n α也具有这一性质,下面用数学归纳法加以证明. 猜想
2,02cos (1)(2cos )m n m n m m n a αα-==-∑,(;n N m N +
∈∈) (5)
(5)式可改写为:
n/3
12112cos (2cos )(1)(2cos )ent n m m n m n m m n n C m
ααα----==+-∑ ,(9) (9)式称为n 倍角余弦公式.
12424cos 2(cos )(cos )(cos )n n n n n n n αααααα-----=-++…,其中i α为正整数. 因为余弦cos α在[]0,απ∈上单调,对应值为1降到1-,即cos α[]1,1∈-,[]0,απ∈ .因此存在反函数,若令cos x α=,则arccos x α=,[]1,1x ∈-,[]0,απ∈.因此,在余弦n 倍角公式中令arccos x α=,[]0,απ∈,[]1,1x ∈-,则倍角公式为
于是cos(arccos )n x 首项系数为12n -的多项式,各项系数是整数,符号依次变化,x 的幂依次递减2次,若递减到最后,幂次为负,则该项取零.
若记cos(arccos )n x =()n T x ,则()n T x 满足,12()2()()n n n T x xT x T x --=-,()n T x 称为切比雪夫多项式.从递推关系可以得到:
第一类切比雪夫多项式有许多良好的性质,例如:
1.(cos )cos(),,n T n R n N θθθ=∈∈.(分析:令cos x θ=,arccos x θ=) 2.()(1)()n n n T x T x -=-,,x C n N ∈∈.
这表明()n T x 当n 为奇(偶)数时是奇(偶)函数.
3.()1,,1n T x x R x ≤∈≤.
4.21(0)0m T +=,2(0)(1),m m T m N =-∈.
5.函数列{}()n T x 的生成函数为
(分析:生成函数又叫母函数,在数学中,某个序列的母函数是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息.使用母函数解决问题的方法称为母函数方法.母函数的思想就是把离散数列和幂级数一一对应起来,把离散数列间的相互结合关系对应成为幂级数间的运算关系,最后由幂级数形式来确定离散数列的构造.母函数是解决组合计数问题的有效工具之一,其思想方法是把组合问题的加法法则和幂级数的乘幂的相加对应起来.)
6.函数列{}()n T x 满足2阶递推关系
(分析:由三角恒等式cos(1)cos(1)2cos cos n n n θθθθ++-=)
最小偏差
切比雪夫在1857年提出这样一个问题:在最高项系数为1的n 次多项式
中,寻求在区间[]1,1-上与零的偏差最小的多项式.换句话说,就是寻求[]1,1n x C ∈-在1n H -中的最佳一致逼近多项式1()n P x *-,这里
定理 在区间[]1,1-上所有最高项系数为1的多项式中, 与零的偏差最小,其偏差为112
n -. ()n U x 称为第n 个第二类切比雪夫多项式,前7个第二类切比雪夫多项式为: 第二类切比雪夫多项式也有许多良好的性质,例如:
1.()(1)(),,n n n U x U x x C n N -=-∈∈.即当以为奇(偶)数时是奇(偶)函数. 2.21(0)0m U +=,2(0)(1)m m U =-,(1)1n U n =+,(1)(1)(1)n n U n -=-+,m N ∈.
3.函数列{}()n U x 的生成函数为
4.()1,,1n U x n x R x ≤+∈≤.
5.函数列{}()n U x 满足2阶递推关系
两类切比雪夫多项式的关系
定理1设()n T x 和()n U x 分别为第一类和第二类切比雪夫多项式,0n ≥为整数,则
证明 由两类切比雪夫多项式的定义得


比较式在子两边n t 项的系数,即有
4切比雪夫多项式的应用
4.1切比雪夫多项式插值
切比雪夫多项式在逼近理论中有重要的应用.这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值.相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近. 切比雪夫多项式插值法:
定理:设01,,x x …,n x 为区间[],a b 上1n +个互不相同的点,[]1(),n f x C a b +∈,
则对任何[],x a b ∈,存在[]01,,,x n x x x ξ∈L ,使得拉格朗日插值余
()()()n R x f x L x =-,
满足
其中
插值多项式的余项极小化:
要使拉格朗日插值多项式()n L x 尽量逼近()f x ,就要使余项()n R x 尽量小.在 ()n R x 中,()f x 是固定的,而 x ξ又是未知数,所以要减小()n R x ,只有恰当选择节点集,使得在插值区间内余项的最大值为极小值.为了应用切比雪夫多项式,首先应将插值区间[],a b ,通过简单变换归一化到区间[−1,1],做变换()12k k z b a x b a =-++⎡⎤⎣⎦ 所以插值节点应取为()121cos 222k k z b a b a n π+⎡⎤=-++⎢⎥+⎣⎦. 其中0,1,2,,1k n =-L ,所以下面我们只需要讨论区间[−1,1]上的函数的切比雪夫插值法: 当取定第一类切比雪夫点21cos ,0,1,2,,22
k k x k n n π+==+L 后, 令()1111max n n x M f x ++-≤≤=,则有()()11max 1max (1)!2(1)!
n n n n x R x M M n n ++=≤++∏,故切比雪夫插值法可以使得余项的最大值极小化,得到较佳逼近多项式.。

相关文档
最新文档