(最新整理)八年级数学尖子生培优竞赛专题辅导专题03菱形
初中数学《菱形中折叠、动点、旋转、最值、新定义》题型及答案解析

解题技巧专题:菱形中折叠、动点、旋转、最值、新定义型问题目录【考点一利用菱形的性质与判定解决折叠问题】 1【考点二利用菱形的性质与判定解决动点与函数图象问题】 5【考点三利用菱形的性质与判定解决旋转问题】 10【考点四利用菱形的性质与判定解决最值问题】 16【考点五利用菱形的性质与判定解决新定义型问题】 21【典型例题】【考点一利用菱形的性质与判定解决折叠问题】1.(2024九年级下·江苏南京·专题练习)如图,在菱形ABCD中,点E,F分别在AB,BC上,沿EF翻折后,点B落在边CD上的G处,若EG⊥CD,BE=4,DG=3,则AE的长为.【变式训练】2.(2024·广东东莞·二模)如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D= 80°,则∠BCF的度数是.3.(23-24八年级下·江苏无锡·期中)如图,在菱形ABCD中,AB=8,∠A=120°,M是CD上,DM=3,N是点AB上一动点,四边形CMNB沿直线MN翻折,点C对应点为E,当AE最小时,AN=.4.(23-24八年级下·河北邢台·期中)如图,在菱形纸片ABCD中,∠A=60°.(1)∠C=°.(2)点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C ,且DC 是AB的垂直平分线,则∠DEC的大小为°.5.(2024·云南曲靖·二模)如图,已知在△ABC中,∠ACB=90°,过点C作CD⊥AB于点D,点E为AC上一点,连接BE,交CD于点G,△BFE是△BCE沿BE折叠所得,且点C的对应点F恰好落在AB上,连接FG.(1)求证:四边形CEFG为菱形;(2)若AC=8,BC=6,求DG的长.【考点二利用菱形的性质与判定解决动点与函数图象问题】6.(2024·北京朝阳·二模)如图1,在菱形ABCD 中,∠B =60°,P 是菱形内部一点,动点M 从顶点B 出发,沿线段BP 运动到点P ,再沿线段P A 运动到顶点A ,停止运动.设点M 运动的路程为x ,MA MC=y ,表示y 与x 的函数关系的图象如图2所示,则菱形ABCD 的边长是()A.43B.4C.23D.2【变式训练】7.(2024·广东深圳·三模)如图(1),点P 为菱形ABCD 对角线AC 上一动点,点E 为边CD 上一定点,连接PB ,PE ,BE .图(2)是点P 从点A 匀速运动到点C 时,△PBE 的面积y 随AP 的长度x 变化的关系图象(当点P 在BE 上时,令y =0),则菱形ABCD 的边长为()A.5B.6C.23D.258.(23-24九年级下·山东淄博·期中)如图1,点P 从菱形ABCD 的顶点A 出发,沿A →C →B 以1cm/s 的速度匀速运动到点B ,点P 运动时△P AD 的面积y cm 2 随时间x (s )变化的关系如图2,则a 的值为()A.254B.253C.9D.1929.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.5D.2210.(23-24八年级下·江苏苏州·阶段练习)在菱形ABCD 中,∠ABC =60°,P 是直线BD 上一动点,以AP 为边向右侧作等边△APE ,(A 、P ,E 按逆时针排列),点E 的位置随点P 的位置变化而变化.(1)如图1,当点P 在线段BD 上,且点E 在菱形ABCD 内部或边上时,连接CE ,则BP 与CE 的数量关系是,BC 与CE 的位置关系是;(2)①如图2,当点P 在线段BD 上,且点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;②在①的条件下,连接BE ,若AB =2,∠APD =75°,直接写出BE 的长;(3)当点P 在直线BD 上时,其他条件不变,连接BE .若AB =23,BE =219,请直接写出△APE 的面积.【考点三利用菱形的性质与判定解决旋转问题】11.(2024·河南·三模)如图,菱形OABC 的顶点O (0,0),A (-1,0),∠B =60°,若菱形OABC 绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,那么点C 2024的坐标是()A.32,12B.12,-32C.-32,-12D.-12,32【变式训练】12.(2024九年级·全国·竞赛)在菱形ABCD 中,∠ABC =120°,边长为2cm ,现将菱形ABCD 绕其外一点O影部分的面积为cm2.13.如图①,菱形ABCD和菱形AEFG有公共顶点A,点E,G分别落在边AB,AD上,连接DF,BF.(1)求证:DF=BF;(2)将菱形AEFG绕点A按逆时针方向旋转.设旋转角∠BAE=α0°≤α≤180°,且AB=6,AE= 3,∠DAB=∠GAE=60°.①如图②,当α=90°时,则线段DF的长度是多少?②连接BD,当△DFB为直角三角形时,则旋转角α的度数为多少度?14.(23-24八年级下·湖北武汉·期中)在菱形ABCD和菱形BEFG中,∠ABC=∠EBG=60°,AB=6,BE=2.(1)如图1,若点E、G分别在边AB、BC上,点F在菱形ABCD内部,连接DF,直接写出DF的长度为;(2)如图2,把菱形BEFG绕点B顺时针旋转α°(0<α<360),连接DF、CG,判断DF与CG的数量关系,并给出证明;(3)如图3,①把菱形BEFG继续绕点B顺时针旋转,连接GD,O为DG的中点,连接CO、EO,试探究CO与EO的关系;②直接写出菱形BEFG绕B点旋转过程中CO的取值范围.【考点四利用菱形的性质与判定解决最值问题】15.(23-24八年级下·重庆沙坪坝·期中)如图,菱形ABCD的周长为8,∠DAC=30°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【变式训练】16.(2024九年级下·全国·专题练习)如图,在菱形ABCD中,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH.若∠B=45°,BC=23,则GH的最小值是.17.(23-24八年级下·安徽合肥·期末)菱形ABCD中,∠B=60°,E是BC中点,连接AE,DE,点F是DE上一动点,G为AF中点,连接CG.(1)∠BAE=;(2)若AB=2,则CG的最小值为.18.(2024八年级下·全国·专题练习)如图,菱形ABCD中,AB=4,∠ABC=60°,点P为AD边上任意一点(不包括端点),连结AC,过点P作PQ∥AC,交边CD于点Q,点R线段AC上的一点.(1)若点R为菱形ABCD对角线的交点,PQ为△ACD的中位线,求PR+QR的值;(2)当PR+QR的值最小时,请确定点R的位置,并求出PR+QR的最小值;(3)当PR+QR的值最小,且PR+QR+PQ的值最小时,在备用图中作出此时点P,Q的位置,写作法并写出PR+QR+PQ的最小值.【考点五利用菱形的性质与判定解决新定义型问题】19.(22-23八年级下·江苏苏州·期末)定义:如果三角形有两个内角的差为90°,那么称这样的三角形为“准直角三角形”.(1)已知△ABC是“准直角三角形”,∠C>90°,若∠A=40°,则∠B=°.(2)如图,在菱形ABCD中,∠B>90°,AB=5,连接AC,若△ABC正好为一个准直角三角形,求菱形ABCD的面积.【变式训练】20.(23-24九年级下·山东威海·期中)【理解新定义】若一个四边形具备一组对角互补和一组邻边相等,则称该四边形为“补等四边形”.如正方形和筝形,它们都具备这样的特征,所以称为补等四边形.【解决新问题】(1)如图Ⅰ,点E,F分别在菱形ABCD的边CD,AD上,CE=DF,∠A=60°.四边形BEDF是否为补等四边形?(填“是”或“否”)(2)如图Ⅱ,在△ABC中,∠B>90°.∠ACB的平分线和边AB的中垂线交于点D,中垂线交边AC于点G,连接DA,DB.四边形ADBC是否为补等四边形?若是,进行证明;若不是,说明理由.21.(22-23八年级下·浙江宁波·期末)我们定义:以已知菱形的对角线为边且有一条边与已知菱形的一条边共线的新菱形称为已知菱形的伴随菱形.如图1,在菱形ABCD中,连接AC,在AD的延长线上取点E 使得AC=AE,以CA、AE为边作菱形CAEF,我们称菱形CAEF是菱形ABCD的“伴随菱形”.(1)如图2,在菱形ABCD中,连接AC,在BC的延长线上作CA=CF,作∠ACF的平分线CE交AD的延长线于点E,连接FE.求证:四边形AEPC为菱形ABCD的“伴随菱形”.(2)①如图3,菱形AEFC为菱形ABCD的“伴随菱形”,过C作CH垂直AE于点H,对角线AC、BD相交于点O.连接EO若EO=2CH,试判断ED与BD的数量关系并加以证明.②在①的条件下请直接写出CHED的值.22.(22-23八年级下·安徽合肥·期末)定义:在三角形中,若有两条中线互相垂直,则称该三角形为中垂三角形.(1)如图(a),△ABC是中垂三角形,BD,AE分别是AC,BC边上的中线,且BD⊥AE于点O,若∠BAE=45°,求证:△ABC是等腰三角形.(2)如图(b),在中垂三角形ABC中,AE,BD分别是边BC,AC上的中线,且AE⊥BD于点O,求证:AC2+BC2=5AB2.(3)如图(c),四边形ABCD是菱形,对角线AC,BD交于点O,点M,N分别是OA,OD的中点,连接BM,CN并延长,交于点E.求证:△BCE是中垂三角形;解题技巧专题:菱形中折叠、动点、旋转、最值、新定义型问题目录【考点一利用菱形的性质与判定解决折叠问题】 1【考点二利用菱形的性质与判定解决动点与函数图象问题】 5【考点三利用菱形的性质与判定解决旋转问题】 10【考点四利用菱形的性质与判定解决最值问题】 16【考点五利用菱形的性质与判定解决新定义型问题】 21【典型例题】【考点一利用菱形的性质与判定解决折叠问题】1.(2024九年级下·江苏南京·专题练习)如图,在菱形ABCD 中,点E ,F 分别在AB ,BC 上,沿EF 翻折后,点B 落在边CD 上的G 处,若EG ⊥CD ,BE =4,DG =3,则AE 的长为.【答案】914【分析】此题重点考查菱形的性质、轴对称的性质、平行四边形的判定与性质、勾股定理等知识,正确地作出所需要的辅助线是解题的关键.作BH ⊥CD 交DC 的延长线于点H ,因为EG ⊥CD ,所以BH ∥EG ,由四边形ABCD 是菱形,得AB ∥CD ,AB =BC =CD ,则四边形BEGH 是平行四边形,所以GH =BE =4,由折叠得GE =BE =4,则BH =GE =4,所以DH =DG +GH =3+4=7,由勾股定理得42+7-AB 2=AB 2,求得AB =6514,所以AE =AB -BE =6514-4=914,于是得到问题的答案.【详解】解:作BH ⊥CD 交DC 的延长线于点H ,则∠H =90°,∵EG ⊥CD ,∴BH ∥EG ,∵四边形ABCD 是菱形,∴AB ∥CD ,AB =BC =CD ,∴BE ∥GH ,∴四边形BEGH 是平行四边形,∴GH =BE =4,由折叠得GE =BE =4,∵DG =3,∴DH =DG +GH =3+4=7,∵BH 2+CH 2=BC 2,CH =7-CD =7-AB ,∴42+7-AB 2=AB 2,解得AB =6514,∴AE =AB -BE =6514-4=914,故答案为:914.【变式训练】2.(2024·广东东莞·二模)如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠BCF 的度数是.【答案】80°/80度【分析】此题考查了菱形的性质,折叠的性质,等边对等角和平行线的性质,首先根据平行的性质得到BC =CD ,由折叠得BC =CF ,然后求出CF =CD ,然后根据等边对等角和平行线的性质求解即可.【详解】∵四边形ABCD 是菱形∴BC =CD由折叠可得,BC =CF∴CF =CD∴∠CFD =∠D =80°∵四边形ABCD 是菱形∴AD ∥BC∴∠BCF =∠DFC =80°.故答案为:80°.3.(23-24八年级下·江苏无锡·期中)如图,在菱形ABCD 中,AB =8,∠A =120°,M 是CD 上,DM =3,N 是点AB 上一动点,四边形CMNB 沿直线MN 翻折,点C 对应点为E ,当AE 最小时,AN =.【答案】7【分析】本题考查了菱形的性质,折叠的性质,勾股定理等知识,解决本题的关键是确定点E在AM上时,AE的值最小.作AH⊥CD于H,如图,根据菱形的性质可求得AH=32AD=83,DH=CH=8,在Rt△AHM中,利用勾股定理计算出AM=7,再根据两点间线段最短得到当点E在AM上时,AE的值最小,然后证明AN=AM即可.【详解】解:作AH⊥CD于H,如图,∵菱形ABCD的边AB=8,∠A=120°,∴AD=AB=CD=8,AB∥CD,∴∠D=180°-∠BAD=60°,∴∠DAH=30°,∴DH=12AD=4,AH=AD2-DH2=43,∵DM=3,∴HM=1,MC=CD-DM=5,在Rt△AHM中,AM=AH2+HM2=7,∵四边形CMNB沿直线MN翻折,点C对应点为E,,∴ME=MC=10,∵AE+ME≥AM,∴AE≥AM-ME,∴当点E在AM上时,AE的值最小,由折叠的性质得∠AMN=∠CMN,而AB∥CD,∴∠ANM=∠CMN,∴∠AMN=∠ANM,∴AN=AM=7.故答案为:7.4.(23-24八年级下·河北邢台·期中)如图,在菱形纸片ABCD中,∠A=60°.(1)∠C=°.(2)点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C ,且DC 是AB的垂直平分线,则∠DEC的大小为°.【答案】6075【分析】本题考查菱形的性质,垂直平分线的定义.(1)直接根据菱形的对角相等即可求解;(2)如图,由垂直平分线的定义得到∠1=90°,从而∠ADC =30°,由菱形的性质得到∠CDC =∠1=90°,从而由折叠有∠CDE=∠C DE=12∠CDC =45°,因此∠ADE=75°,再根据菱形的对边平行即可求解.【详解】解:(1)∵四边形ABCD是菱形,∴∠C=∠A=60°.故答案为:60(2)如图,∵C D 是AB 的垂直平分线,∴∠1=90°,∴∠ADC =90°-∠A =90°-60°=30°,∵在菱形ABCD 中,AB ∥CD ,∴∠CDC =∠1=90°,由折叠可得∠CDE =∠C DE =12∠CDC =12×90°=45°,∴∠ADE =∠ADC +∠C DE =30°+45°=75°,∵在菱形ABCD 中,AD ∥BC ,∴∠DEC =∠ADE =75°.故答案为:755.(2024·云南曲靖·二模)如图,已知在△ABC 中,∠ACB =90°,过点C 作CD ⊥AB 于点D ,点E 为AC 上一点,连接BE ,交CD 于点G ,△BFE 是△BCE 沿BE 折叠所得,且点C 的对应点F 恰好落在AB 上,连接FG .(1)求证:四边形CEFG 为菱形;(2)若AC =8,BC =6,求DG 的长.【答案】(1)见解析(2)GD =1.8.【分析】(1)推出CG =EF ,CG ∥EF ,进而推出四边形CEFG 是平行四边形,并根据EC =EF 证得四边形CEFG 是菱形;(2)首先利用勾股定理求出AB ,设CG =x ,然后用x 表示出AE 和EF ,再在Rt △AEF 中,利用勾股定理构建方程,求出x ,进一步计算即可求解.【详解】(1)证明:∵CD ⊥AB ,△BFE 是△BCE 沿BE 折叠所得,∴∠BFE =∠BCE =90°,∠CEG =∠FEG ,EC =EF ,∴CD ∥EF ,∴∠CGE =∠FEG ,∴∠CGE =∠CEG ,∴CE =CG ,∴CG =EF ,∵CG ∥EF ,∴四边形CEFG 是平行四边形,∵EC =EF ,∴平行四边形CEFG 是菱形;(2)解:∵AC =8,BC =6,∠ACB =90°,22∵四边形CEFG 是菱形,∴EF =FG =CE =CG =x ,∴AE =8-x ,∵△BFE 是△BCE 沿BE 折叠所得,∴BF =BC =6,∴AF =AB -BF =10-6=4,∵在Rt △AEF 中,EF 2+AF 2=AE 2,∴x 2+42=8-x 2,解得:x =3,即CG =3.∵CD ⊥AB ,∴S △ABC =12AC ×BC =12AB ×CD ,∴CD =4.8,∴GD =4.8-3=1.8.【点睛】本题考查了平行线的性质,角平分线的性质,等腰三角形的判定,平行四边形的判定,菱形的判定和性质以及勾股定理的应用,灵活运用各性质进行推理论证是解题的关键.【考点二利用菱形的性质与判定解决动点与函数图象问题】6.(2024·北京朝阳·二模)如图1,在菱形ABCD 中,∠B =60°,P 是菱形内部一点,动点M 从顶点B 出发,沿线段BP 运动到点P ,再沿线段P A 运动到顶点A ,停止运动.设点M 运动的路程为x ,MA MC=y ,表示y 与x 的函数关系的图象如图2所示,则菱形ABCD 的边长是()A.43B.4C.23D.2【答案】C【分析】首先根据题意作图,然后由图象判断出点P 在对角线BD 上,BP =4,BP +AP =6,设AO =x ,则AB =2AO =2x ,利用勾股定理求解即可.【详解】如图所示,由图象可得,当x 从0到4时,MA MC=y =1∴MA =MC∵四边形ABCD 是菱形∴点P 在对角线BD 上∴由图象可得,BP =4,BP +AP =6∵在菱形ABCD 中,∠B =60°,∴∠ABD =30°,AC ⊥BD∴设AO =x ,则AB =2AO =2x∴PO =BP -BO =4-3x∴BO =AB 2-AO 2=3x∴在Rt △APO 中,AP 2=AO 2+PO 2∴22=x 2+4-3x 2解得x =3,负值舍去∴AB =2x =23∴菱形ABCD 的边长是23.故选:C .【点睛】此题考查了动点函数图象问题,菱形的性质,勾股定理,含30°角直角三角形的性质等知识,解题的关键是根据图象正确分析出点P 在对角线BD 上.【变式训练】7.(2024·广东深圳·三模)如图(1),点P 为菱形ABCD 对角线AC 上一动点,点E 为边CD 上一定点,连接PB ,PE ,BE .图(2)是点P 从点A 匀速运动到点C 时,△PBE 的面积y 随AP 的长度x 变化的关系图象(当点P 在BE 上时,令y =0),则菱形ABCD 的边长为()A.5B.6C.23D.25【答案】A 【分析】根据图象可知,当x =0时,即点P 与点A 重合,此时S △ABE =12,进而求出菱形的面积,当x =8时,此时点P 与点C 重合,即AC =8,连接BD ,利用菱形的性质,求出边长,即可得出结果.本题考查菱形的性质和动点的函数图象.熟练掌握菱形的性质,从函数图象中有效的获取信息,是解题的关键.【详解】解:由图象可知:当x =0时,即点P 与点A 重合,此时S △ABE =12,∴S 菱形ABCD =2S △ABE =24,当x =8时,此时点P 与点C 重合,即AC =8,连接BD ,交AC 于点O ,则:BD ⊥AC ,OA =OC =4,OB =OD ,∴S 菱形ABCD =12AC ⋅BD =24,∴BD =6,∴OB =OD =3,∴AB =OA 2+OB 2=5,∴菱形ABCD 的边长为5;故选A .8.(23-24九年级下·山东淄博·期中)如图1,点P 从菱形ABCD 的顶点A 出发,沿A →C →B 以1cm/s 的速度匀速运动到点B ,点P 运动时△P AD 的面积y cm 2 随时间x (s )变化的关系如图2,则a 的值为()A.254B.253C.9D.192【答案】B【分析】本题主要考查了菱形的性质,勾股定理,动点问题的函数图象,过点C 作CE ⊥AD ,根据函数图象求出菱形的边长为a ,再根据图像的三角形的面积可得CE =8,再利用菱形的性质和勾股定理列方程可求a 即可.【详解】解:如图所示,过点C 作CE ⊥AD 于E ,∵在菱形ABCD 中,AD ∥BC ,AD =BC ,∴当点P 在边BC 上运动时,y 的值不变,∴AD =BC =10+a -10=a ,即菱形的边长是a ,∴12⋅AD ⋅CE =4a ,即CE =8.当点P 在AC 上运动时,y 逐渐增大,∴AC =10,∴AE =AC 2-CE 2=102-82=6.在Rt △DCE 中,DC =a ,DE =a -6,CE =8,∴a 2=82+a -6 2,解得a =253.故选:B .9.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.5D.22【答案】C 【分析】结合图象,得到当x =0时,PO =AO =4,当点P 运动到点B 时,PO =BO =2,根据菱形的性质,得∠AOB =∠BOC =90°,继而得到AB =BC =OA 2+OB 2=25,当点P 运动到BC 中点时,PO 的长为12BC=5,解得即可.本题考查了菱形的性质,图象信息题,勾股定理,直角三角形的性质,熟练掌握菱形的性质,勾股定理,直角三角形的性质是解题的关键.【详解】结合图象,得到当x=0时,PO=AO=4,当点P运动到点B时,PO=BO=2,根据菱形的性质,得∠AOB=∠BOC=90°,故AB=BC=OA2+OB2=25,当点P运动到BC中点时,PO的长为12BC=5,故选C.10.(23-24八年级下·江苏苏州·阶段练习)在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边△APE,(A、P,E按逆时针排列),点E的位置随点P的位置变化而变化.(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是,BC与CE的位置关系是;(2)①如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;②在①的条件下,连接BE,若AB=2,∠APD=75°,直接写出BE的长;(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=23,BE=219,请直接写出△APE的面积.【答案】(1)BP=CE,CE⊥BC;(2)①仍然成立,见解析;②20-83(3)73或313【分析】(1)连接AC,根据菱形的性质和等边三角形的性质证明△BAP≌△CAE即可证得结论;(2)①(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;②根据已知得出DP=AD,进而根据①可得BP=CE,根据CE⊥BC,勾股定理,即可求解;(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论.【详解】(1)解:如图1,连接AC,延长CE交AD于点H,∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°;∴AP=AE,∠P AE=60°,∴∠BAP=∠CAE=60°-∠P AC,∴△BAP≌△CAE SAS,∴BP=CE;∵四边形ABCD是菱形,∴∠ABP=1∠ABC=30°,2∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案为:BP=CE,CE⊥BC;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠P AE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE SAS,∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD;∴(1)中的结论:BP=CE,CE⊥AD仍然成立;②如图所示,∵△ABP≌△ACE SAS,∴CE=BP,∵∠APD=75°,∠ADB=30°∴∠DAP=75°=∠APD,∴DA=DP=2,∵BD=2BO=23AO=3AB=23∴BP=CE=BD-DP=23-2∵CE⊥AD,AD∥BC∴CE⊥BC∴BE=BC2+CE2=22+23-22=20-83故答案为:20-83.(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EF⊥AP于F,∵四边形ABCD是菱形,∵∠ABC =60°,AB =23,∴∠ABO =30°,∴AO =12AB =3,OB =3AO =3,∴BD =6,由(2)知CE ⊥AD ,∵AD ∥BC ,∴CE ⊥BC ,∵BE =219,BC =AB =23,∴CE =(219)2-(23)2=8,由(2)知BP =CE =8,∴DP =2,∴OP =5,∴AP =OA 2+OP 2=(3)2+52=27,∵△APE 是等边三角形,∴S △AEP =34×27 2=73,如图4中,当点P 在DB 的延长线上时,同法可得AP =OA 2+OP 2=(3)2+112=231,∴S △AEP =34×231 2=313.【点睛】此题考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来.【考点三利用菱形的性质与判定解决旋转问题】11.(2024·河南·三模)如图,菱形OABC 的顶点O (0,0),A (-1,0),∠B =60°,若菱形OABC 绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,那么点C 2024的坐标是()A.32,12B.12,-32C.-32,-12D.-12,32【答案】D 【分析】本题考查了旋转的性质、菱形的性质,含30°直角三角形的性质,勾股定理,坐标与图形,根据题意得到旋转的规律是解题的关键.根据题意得到点C 2024与点C 重合,在菱形中算出C 点坐标,即可解答.【详解】解:作CD ⊥OA 于D ,则∠CDO =90°,∵四边形OABC 是菱形,O 0,0 ,A -1,0 ,∴∠AOC =∠B =60°,OC =OA =1∴∠OCD =30°∴OD =12OC =12,CD =3OD =32∴点C 的坐标为-12,32,若菱形绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,则菱形OABC 绕点O 连续旋转2024次,旋转4次为一周,旋转2024次为2024÷4=506(周),∴绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024与菱形OABC 重合,∴点C 2024与C 重合,∴点C 2024的坐标为-12,32,故选:D .【变式训练】12.(2024九年级·全国·竞赛)在菱形ABCD 中,∠ABC =120°,边长为2cm ,现将菱形ABCD 绕其外一点O按顺时针方向分别旋转90°、180°、270°后,得到如图的图形,每相邻两个菱形有一个顶点重合,则图中阴影部分的面积为cm 2.【答案】12-43【分析】连接AC 、OB ,交点为点E ,则OB 为AC 的中垂线,S △AOD =12×AE ×OD =12×3×3-1 =3-32cm 2 ,计算即可.【详解】如图,连接AC 、OB ,交点为点E ,则OB 为AC 的中垂线,∴点D 在OB 上,由已知条件易得BE =DE =12AB =1cm ,AE =OE =3cm ,∴OD =3-1cm ,∴S =1×AE ×OD =1×3×3-1 =3-3cm 2 ,∴所求面积为8×3-32=12-43cm2.故答案为:12-43.13.如图①,菱形ABCD和菱形AEFG有公共顶点A,点E,G分别落在边AB,AD上,连接DF,BF.(1)求证:DF=BF;(2)将菱形AEFG绕点A按逆时针方向旋转.设旋转角∠BAE=α0°≤α≤180°,且AB=6,AE= 3,∠DAB=∠GAE=60°.①如图②,当α=90°时,则线段DF的长度是多少?②连接BD,当△DFB为直角三角形时,则旋转角α的度数为多少度?【答案】(1)证明见解析(2)①33;②30°或90°【分析】(1)连接AF,根据菱形的性质,可得到△GAF≅△EAF,从而得到∠GAF=∠EAF,进而得到△DAF ≅△BAF,即可求证;(2)①连接AF,EG,BD,AC,BD与AC交于点O,AF交EG于点P,根据旋转的性质和菱形的性质可得AF∥OD,△ABD和△AEG是等边三角形,从而得到AF=OD,进而得到四边形AODF是平行四边形,即可求解;②分两种情况讨论:∠BDF=90°和∠BFD=90°,利用矩形的性质、等边三角形的判定与性质求解即可得.【详解】(1)证明:连接AF,∵四边形AEFG是菱形,∴AE=EF=FG=GA,在△GAF和△EAF中,AG=AEGF=EFAF=AF,∴△GAF≅△EAF SSS,∵四边形ABCD 是菱形,∴AD =AB ,在△DAF 和△BAF 中,AD =AB∠DAF =∠BAF AF =AF,∴△DAF ≅△BAF SAS ,∴DF =BF .(2)解:①如图,连接AF ,EG ,BD ,AC ,BD 与AC 交于点O ,AF 交EG 于点P ,由(1)得当菱形AEFG 没有旋转时,AC 平分∠BAD ,AF 平分∠EAG ,∴此时点A 、F 、C 三点共线,∴当菱形AEFG 绕点A 按逆时针方向旋转时,∠FAC =α,∴当α=90°时,∠FAC =∠BAE =90°,在菱形ABCD 中,AB =AD ,OD =12BD ,OA =12AC ,BD ⊥AC ,∠DAO =12∠BAD =30°,∴∠AOD =90°∴∠DOA +∠FAC =180°,∴AF ∥OD ,在菱形AEFG 中,∠EAF =12∠EAG =30°,AE =AG ,AP =12AF ,PE =12EG ,∵∠DAB =∠GAE =60°.∴△ABD 和△AEG 是等边三角形,∴BD =AB =6,EG =AE =3,∴OD =3,EP =32,∴AP =AE 2-EP 2=32,OA =AD 2-OD 2=33∴AF =3,∴AF =OD ,∴四边形AODF 是平行四边形,∴DF =OA =33;②由①得四边形AODF 是平行四边形,∵∠FAC =90°,∴四边形AODF 是矩形,∴∠BDF =90°,即△DFB 为直角三角形,∴此时旋转角α的度数为90°;如图,当点F 在AD 上时,由①得AF =3,∴AF=DF,∵△ABD为等边三角形,∴BF⊥AD,即∠BFD=90°,∴此时△DFB为直角三角形,∵∠EAF=1∠EAG=30°,2∴∠BAE=∠BAD-∠EAF=30°,即此时旋转角α的度数为30°;综上所述,当△DFB为直角三角形时,旋转角α的度数为30°或90°.【点睛】本题主要考查了菱形的性质,图形旋转的性质,等边三角形的判定和性质,勾股定理等知识,熟练掌握菱形的性质,图形旋转的性质,等边三角形的判定和性质,勾股定理等知识,并利用分类讨论思想解答是解题的关键.14.(23-24八年级下·湖北武汉·期中)在菱形ABCD和菱形BEFG中,∠ABC=∠EBG=60°,AB=6,BE=2.(1)如图1,若点E、G分别在边AB、BC上,点F在菱形ABCD内部,连接DF,直接写出DF的长度为;(2)如图2,把菱形BEFG绕点B顺时针旋转α°(0<α<360),连接DF、CG,判断DF与CG的数量关系,并给出证明;(3)如图3,①把菱形BEFG继续绕点B顺时针旋转,连接GD,O为DG的中点,连接CO、EO,试探究CO与EO的关系;②直接写出菱形BEFG绕B点旋转过程中CO的取值范围.【答案】(1)43(2)FD=3CG,证明见解析(3)OE=3OC,2≤OC≤4【分析】(1)连接AC,EG,BF,DB,AC,BD交于点O,EG,BF交于点H,根据菱形的性质,证明B,F,D三点共线,求出BD,BF的长,用BD-BF即可求出DF的长度;(2)过点D作DM∥FG,过点G作GM∥DF,过点C作CN⊥MG,得到四边形DMGF为平行四边形,证明△CDM≌△CBG,得到CM=CG,∠DCM=∠BCG,进而求出∠MCG=∠BCG+∠BCM=∠DCM+∠BCM=∠DCB=120°,利用等腰三角形的性质结合30度角的直角三角形的性质,即可得出结论;(3)①延长CO至点H,使OC=OH,连接AC,AH,HE,HG,延长BA,交CH于点Q,先证明△DOC≌△GOH,推出四边形AHGB为平行四边形,再证明△HAC≌△EBC,推出△CHE为等边三角形,利用等边三角形的性质和含30度角的直角三角形的性质,即可得出结论;②三角形的三边关系,求出CE的范围,进而求出OC的范围即可.【详解】(1)解:连接AC,EG,BF,DB,AC,BD交于点O,EG,BF交于点H,∵菱形ABCD ,菱形EBGF ,∴∠ABD =∠CBF =12∠ABC =30°,∠EBF =∠GBF =12∠EBG =30°,AC ⊥BD ,EG ⊥BF ,BD =2OB ,BF =2HB ,∵点E 、G 分别在边AB 、BC 上,∴∠ABD =∠ABF =30°,∴B ,F ,D 三点共线,∵BE =2,∠EBF =30°,∴HE =12BE =1,BH =3HE =3,∴BF =2BH =23,同理:BD =2OB =23OA =2×32AB =63,∴DF =BD -BF =43;故答案为:43;(2)FD =3CG ,证明如下:过点D 作DM ∥FG ,过点G 作GM ∥DF ,过点C 作CN ⊥MG ,则:四边形DMGF 为平行四边形,∴DF =MG ,DM =GF ,∵菱形ABCD ,菱形EBGF ,∠ABC =∠EBG =60°,∴AD ∥BC ,BE ∥GF ,∠ADB =∠ABC =∠EBG =60°,CD =BC ,BG =GF =DM∴BE ∥DM ,∠1=∠2,∠DCB =180°-∠ADC =120°,∴∠3=∠DMN ,∵∠1=∠ADM +∠DMN ,∠2=∠3+∠CBE∴∠ADM =∠CBE ,∴∠CDA +∠ADM =∠CBE +∠EBG ,即:∠CDM =∠CBG ,又∵CD =BC ,BG =DM ,∴△CDM ≌△CBG ,∴CM =CG ,∠DCM =∠BCG ,∴∠MCG =∠BCG +∠BCM =∠DCM +∠BCM =∠DCB =120°,∴∠CMG =∠CGM =12180°-120° =30°,∵CN ⊥MG ,∴DF =MG =2NG ,CN =12CG ,∴NG=CG2-CN2=3CG,2∴DF=3CG;(3)①延长CO至点H,使OC=OH,连接AC,AH,HE,HG,延长BA,交CH于点Q,∵O是DG的中点,∴OD=OG,又∵∠DOC=∠HOG,∴△DOC≌△GOH,∴GH=CD,∠OCD=∠OHG,∴CD∥HG,∵菱形ABCD,∴AB∥CD,AD∥BC,AB=BC=CD=DA,∠ADC=∠ABC=60°,∴AB∥HG,GH=CD=AB,△ABC为等边三角形,∴四边形AHGB为平行四边形,∠BAC=∠ACB=60°,AC=AB=BC,∴AH∥BG,AH=BG,∠CAQ=180°-∠CAB=120°,∴∠HAQ=∠ABG,∵BG=BE,∴AH=BE,∵∠CBE=∠ABC+∠ABG+∠EBG=120°+∠ABG,∠HAC=∠HAQ+∠CAQ=∠HAQ+120°,∴∠CBE=∠HAC,又∵AH=BE,AC=BC,∴△HAC≌△EBC,∴CH=CE,∠HCA=∠ECB,∴∠HCE=∠HCA+∠ACE=∠BCE+∠ACE=∠ACB=60°,∴△CHE为等边三角形,∵OC=OH,∠HEC=60°,∴OE⊥OC,∠CEO=30°,∴OC=1CE,2∴OE=3OC;②∵BC=AB=6,BE=2,∴BC-BE≤CE≤BC+BE,即:4≤CE≤8,∵OC=1CE,2∴2≤OC≤4.【点睛】本题考查菱形的性质,平行四边形的判定和性质,等腰三角形的判定和性质,等边三角形的判定和性质,含30度角的直角三角形,勾股定理,三角形的三边关系等知识点,综合性强,难度大,属于压轴题,熟练掌握相关知识点,添加辅助线构造特殊图形和全等三角形,是解题的关键.【考点四利用菱形的性质与判定解决最值问题】15.(23-24八年级下·重庆沙坪坝·期中)如图,菱形ABCD的周长为8,∠DAC=30°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【答案】3【分析】此题考查轴对称确定最短路线问题,菱形的性质,等边三角形的判定与性质连接BD ,DE ,根据菱形的性质可得,△ABD 是等边三角形,再证明△ADP ≌△ABP ,可得PD =PB ,从而得到PE +PB 的最小值为DE 的长,再由E 是AB 的中点,可得DE ⊥AB ,AE =12AB =1,然后根据勾股定理可得DE =3,即可求解.【详解】解:如图,连接BD ,DE ,∵四边形ABCD 是菱形,周长为8,∠DAC =30°,∴∠DAB =2∠DAC =60°,∠DAP =∠BAP ,AB =AD =2,∴△ABD 是等边三角形,在△ADP 和△ABP 中,∵AP =AP ,∠DAP =∠BAP ,AB =AD ,∴△ADP ≌△ABP ,∴PD =PB ,∴PE +PB =PE +PD ≥DE ,即PE +PB 的最小值为DE 的长,∵E 是AB 的中点,∴DE ⊥AB ,AE =12AB =1,∴DE =AD 2-AE 2=3,即PE +PB 的最小值为3.故答案为:3.【变式训练】16.(2024九年级下·全国·专题练习)如图,在菱形ABCD 中,E ,F 分别是边CD ,BC 上的动点,连接AE ,EF ,G ,H 分别为AE ,EF 的中点,连接GH .若∠B =45°,BC =23,则GH 的最小值是.【答案】62【分析】连接AF ,利用三角形中位线定理,可知GH =12AF ,当AF ⊥BC 时,AF 最小,求出AF 最小值即可求出.【详解】解:连接AF ,如图,∵四边形ABCD 是菱形,∵G ,H 分别为AE ,EF 的中点,∴GH 是△AEF 的中位线,∴GH =12AF ,当AF ⊥BC 时,则∠AFB =90°,AF 最小,GH 得到最小值,∵∠B =45°,∴△ABF 是等腰直角三角形,∴AF 2+BF 2=AB 2,即2AF 2=AB 2,∴AF =6,∴GH =62,故答案为:62.【点睛】本题考查了菱形的性质、三角形的中位线定理、等腰直角三角形的判定与性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.17.(23-24八年级下·安徽合肥·期末)菱形ABCD 中,∠B =60°,E 是BC 中点,连接AE ,DE ,点F 是DE 上一动点,G 为AF 中点,连接CG .(1)∠BAE =;(2)若AB =2,则CG 的最小值为.【答案】30°2217【分析】(1)连接AC ,证明△ABC 为等边三角形,三线合一,即可得出结果;(2)取AD 的中点I ,AE 的中点H ,连接HG ,IG ,CH ,CI ,根据三角形的中位线定理,推出点G 在IH 上运动,当CG ⊥HG 时,CG 最小,进行求解即可.【详解】解:(1)连接AC ,∵菱形ABCD ,∴AB =BC ,∵∠B =60°,∴△ABC 为等边三角形,∴∠BAC =60°,∵E 是BC 中点,∴AE 平分∠BAC ,∴∠BAE =12∠BAC =30°;故答案为:30°;(2)取AD 的中点I ,AE 的中点H ,连接HG ,IG ,CH ,CI则:IG ∥DF ,HG ∥DF ,∴I ,G ,H 三点共线,。
八年级人教版菱形的判定市公开课获奖课件省名师示范课获奖课件

想一想
• 假如一种四边形是一种平行四
边形,则只要再有什么条件就
能够鉴定它是一种菱形?根据
什么?
A
D
根据定义得:
有一组邻边相等旳平行四边形叫做菱形.
B
C
在 ABCD中, AB AD
ABCD是菱形.
还有什么措施吗?
自学指导
• 自学内容:99页 • 自课时间:4分钟 • 自学要求:
1、矩形还有哪些鉴定措施?怎样证明? 2 、例3
A
∴OA=OC 又∵ AC ⊥ BD;
B
O
D
∴BA=BC
(线段垂直平分线上旳点到线段两 个端点旳距离相等)
C
∴ ABCD是菱形 (有一组邻边相等旳平行四边形叫做菱形).
数学语言 ∵四边形ABCD是平行四边形; AC ⊥ BD;
∴ □ ABCD是菱形
画一画
先画两条等长旳线段AB、AD,然后分别以B、 D为圆心,AB为半径画弧,得到两弧旳交点C, 连接BC、CD,就得到了一种四边形,猜一猜, 这是什么四边形?
分析: 四边形AFCE是菱形
AE=EC=CF=FA
A
ED
1
O
B
23
F
C
AE=EC AF=CF
AE=AF
EF 垂直平分AC
∠1= ∠2
∠1= ∠3
∠2= ∠3
ห้องสมุดไป่ตู้AE∥FC
AF=CF EF ⊥AC
四边形ABCD 是平行四边形
C
F
G
A
B
D
E
已知,如图, ∠ ABC中, ∠ ACB= 900,BF平分
∠ ABC,CD垂直于AB于D,和BF交于点G ,
部编数学八年级下册菱形的判定专项提升训练(重难点培优)【拔尖特训】2023年培优含答案

【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题18.3菱形的判定专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•杜尔伯特县期中)菱形的周长为12,一个内角为60°,则较短的对角线长为( )A.2B.3C.1D.【分析】根据已知可得较短的对角线与两邻边组成等边三角形,则菱形较短的对角线长=菱形的边长,根据周长可求得菱形的边长从而较短的对角线也就求得了.【解答】解:由已知得,较短的对角线与两邻边组成等边三角形,则菱形较短的对角线长=菱形的边长=12÷4=3,故选:B.2.(2022春•南岗区校级期中)如图,菱形ABCD的两条对角线长分别为AC=9和BD=6,那么菱形ABCD 的面积为( )A.4B.30C.54D.27【分析】直接根据菱形面积等于两条对角线的长度乘积的一半进行计算即可.【解答】解:∵四边形ABCD是菱形,∴菱形ABCD的面积=BD•AC=×6×9=27,故选:D.3.(2022春•墨玉县期末)如图,菱形ABCD中,AC=8.BD=6.则菱形的面积为( )A.20B.40C.28D.24【分析】根据菱形的面积等于对角线乘积的一半可得答案.【解答】解:菱形的面积为6×8÷2=24,故选:D.4.(2022春•南召县期末)四边形具有不稳定性,小明将一个菱形ABCD转动,使它形状改变,当转动到使∠B=60°时(如图),测得AC=2;当转动到使∠B=120°时,AC的值为( )A.2B.C.D.【分析】根据有一个角是60°的等腰三角形是等边三角形可得菱形的边长为2,再根据菱形的性质以及勾股定理解答即可.【解答】解:因为菱形ABCD,∠B=60°时,测得AC=2,所以△ABC是等边三角形,所以菱形的边长为2,当转动到使∠B=120°时,如图所示:因为AC⊥BD,∠ABC=120°,所以∠ABO=60°,所以∠OAB=30°,所以,所以,所以AC=2AO=.故选:B.5.(2022春•博兴县期末)如图,菱形ABCD的对角线AC、BD相交于点O,DE⊥AB于点E,若AB=5,DE=4,则在下列结论中正确的是( )A.DB=5B.AE=4C.BE=2D.OA=3【分析】根据菱形的性质可知AB=AD,AO=OC,OD=OB,由于DE⊥AB于点E,所以在Rt△AED中,利用勾股定理可以求出AE,进而求出BE、BD,再在Rt△AOB中求出OA即可作出判断.【解答】解:∵四边形ABCD是菱形,∴AB=AD,AO=OC,OD=OB,∵AB=5,∴AD=5,∵DE⊥AB于点E,DE=4在Rt△AED中,根据勾股定理得,AE==3,故B错误;∴BE=AB﹣AE=5﹣3=2,故C正确;在Rt△BDE中,根据勾股定理得,BD=,故A错误;∴OB=BD=,在Rt△AOB中,根据勾股定理得,OA=,故D错误.故选:C.6.(2022春•承德县期末)如图,在平面直角坐标系中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是( )A.(0,﹣8)B.(0,﹣5)C.(﹣5,0)D.(0,﹣6)【分析】在Rt△ODC中,利用勾股定理求出OC即可解决问题.【解答】解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,OC=,∴C(0,﹣5).故选:B.7.(2022春•丰泽区校级月考)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,OH=2,若菱形ABCD的面积为12,则AB的长为( )A.10B.4C.D.6【分析】由菱形的性质得OA=OC,OB=OD,AC⊥BD,再求出BD=4,则OB=2,然后由菱形面积求出AC=6,则OA=3,即可解决问题.【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=2,∴BD=4,∴OB=2,∵菱形ABCD的面积=AC•BD=AC×4=12,∴AC=6,∴OA=3,在Rt△AOB中,由勾股定理得:AB===,故选:C.8.(2022秋•合川区校级月考)如图,在菱形ABCD中,M.N分别在AB,CD上,且AM=CN,MN与AC 交于点O,连接BC若∠DAC=28°,则∠OBC的度数为( )A.28°B.52°C.62°D.72°【分析】根据菱形的性质以及AM=CN,再由ASA可得△AMO≌△CNO,得AO=CO,然后证BO⊥AC,继而可求得∠OBC的度数【解答】解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选:C.9.(2022秋•胶州市校级月考)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④,其中正确的结论有( )A.①②③B.①②④C.①③④D.②③④【分析】根据菱形的性质和∠A=60°,可知△ABD是等边三角形,△BDC是等边三角形,根据等边三角形的性质可得∠BFD=∠DEB=90°,∠GDB=∠GBD=30°,即可判断①选项;根据SSS可证△CDG ≌△CBG,根据全等三角形的性质可得∠DGC=∠BGC=60°,再根据含30°角的直角三角形的性质可判断②选项;根据△GBC为直角三角形,可知CG>BC,进一步可知CG≠BD,即可判断③选项;根据勾股定理可得DE=AB,再根据三角形面积的求法即可判断④选项.【解答】解:在菱形ABCD中,AB=BC=CD=AD,∵∠A=60°,∴∠BCD=∠A=60°,∴△ABD是等边三角形,△BDC是等边三角形,∴∠ADB=∠ABD=60°,∠CDB=∠CBD=60°,∵E,F分别是AB,AD的中点,∴∠BFD=∠DEB=90°,∴∠GDB=∠GBD=30°,∴∠GDC=∠GBC=90°,DG=BG,∴∠BGD=180°﹣30°﹣30°=120°,故①选项正确;在△CDG和△CBG中,,∴△CDG≌△CBG(SSS),∴∠DGC=∠BGC=60°,∴∠GCD=30°,∴CG=2GD,∵DG=BG,∴CG=DG+BG,故②选项正确;∵△GBC为直角三角形,∴CG>BC,∴CG≠BD,∴△BDF与△CGB不全等,故③选项错误;∵BE=AB,BD=AB,∠DEB=90°,根据勾股定理,得DE=AB,==,∴S△ABD故④选项正确,故正确的有①②④,故选:B.10.(2022春•新抚区期末)如图,点P是菱形ABCD的对角线AC延长线上一点,过点P分别作AD,DC延长线的垂线,垂足分别为点E,F.若∠B=120°,AB=,则PE﹣PF的值为( )A.2B.3C.4D.6【分析】连接BD交AC于O,由菱形的性质和勾股定理得OA=3,则AC=6,再由含30°角的直角三角形的性质得PF=CP,则PE﹣PF=(AP﹣CP)=AC,即可得出答案.【解答】解:连接BD交AC于O,如图所示:∵四边形ABCD是菱形,∠ABC=120°,AB=2,∴∠BAD=∠BCD=180°﹣120°=60°,∠DAC=∠DCA=∠BAD=×60°=30°,AD=AB=2,BD⊥AC,在Rt△AOD中,OD=AD=×=,∴OA===3,∴AC=2OA=2×3=6,Rt△APE中,∠DAC=30°,∴PE=AP,在Rt△CPF中,∠PCF=∠DCA=30°,∴PF=CP,∴PE﹣PF=AP﹣CP=(AP﹣CP)=AC=×6=3,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•牡丹区校级月考)如图,菱形ABCD的对角线相交于点O,若AC=24,AB=13,则菱形ABCD 的面积是 120 .【分析】由菱形的性质得AC⊥BD,OA=OC=AC=12,OB=OD=BD,再由勾股定理求出OB,得出BD的长,即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=12,OB=OD=BD,∴∠AOB=90°,∴OB===5,∴BD=2OB=10,∴菱形ABCD的面积=AC•BD=×24×10=120,故答案为:120.12.(2022秋•东明县校级月考)已知菱形的两条对角线长为10cm和24cm,那么这个菱形的周长为 52cm ,面积为 120cm2 .【分析】由菱形的性质得AC⊥BD,OA=OC=AC=12(cm),OB=OD=BD,再由勾股定理求出OB,得出BD的长,即可解决问题.【解答】解:如图,∵四边形ABCD是菱形,AC=24cm,BD=10cm,∴AB=BC=CD=AD,AC⊥BD,OA=OC=AC=12(cm),OB=OD=BD=5(cm),∴S=AC•BD=×24×10=120(cm2),∠AOB=90°,菱形ABCD∴AB===13(cm),∴菱形ABCD的周长=4AB=4×13=52(cm),故答案为:52cm,120cm2.13.(2022春•杭州期中)如图,菱形ABCD中,AC,BD相交于O,DE⊥BC于E,连接OE,若∠BAD=40°,则∠ODE的度数为 20° .【分析】根据菱形的性质得出∠DAO=BAD=20°,AC⊥BD,DO=BO,AD∥BC,求出DE⊥AD,根据垂直的定义求出∠ADE=90°,∠DEB=90°,求出∠ADO,∠ODE的度数,根据直角三角形斜边上的中线的性质得出OD=OE,求出∠ODE=∠OED即可.【解答】解:∵四边形ABCD是菱形,∠BAD=40°,∴∠DAO=BAD=20°,AC⊥BD,DO=BO,AD∥BC,∴∠DOA=90°,∴∠ADO=90°﹣∠DAO=70°,∵AD∥BC,DE⊥BC,∴DE⊥AD,∴∠ADE=90°,∴∠ODE=∠ADE﹣∠ADO=20°,∵DE⊥BC,∴∠DEB=90°,∵DO=BO,∴OE=BD=OD,∴∠OED=∠ODE=20°,故答案为:20°.14.(2022春•吴中区校级期中)如图,在菱形ABCD中,AB=2,∠A=120°,E,F分别是边AB和CD 上的点,EF⊥CD于点F,则线段EF的长度为 .【分析】连接AC,BD,根据菱形的性质和等边三角形的性质得出AC,进而得出BD,利用菱形的面积解答即可.【解答】解:连接AC,BD,相交于O,∵四边形ABCD是菱形,AB=2,∠A=120°,∴AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2,BO=,∴BD=2,∴菱形ABCD的面积=,∴EF=,故答案为:.15.(2022春•集美区校级期中)如图,在菱形ABCD中,∠B=60°,AB=a,点E,F分别是边AB,AD 上的动点,且AE+AF=a,则△CEF面积的最小值为 .【分析】由在边长为a的菱形ABCD中,易得△ABC、△CAD都是边长为a的正三角形,继而证得△ACE ≌△DCF,继而证得△CEF是正三角形,继而可得当动点E运动到点B或点A时,CE的值最大,当CE ⊥AB,即E为AB的中点时,EF的值最小,△CEF面积的最小值最小.【解答】解:连接AC、CE、CF,如图所示:∵四边形ABCD是边长为a的菱形,∠B=60°,∴△ABC、△CAD都是边长为a的正三角形,∴AB=BC=CD=AC=AD,∠CAE=∠ACB=∠ACD=∠CDF=60°,∵AE+AF=a,∴AE=a﹣AF=AD﹣AF=DE,在△ACE和△DCF中,,∴△ACE≌△DCF(SAS),∴∠ACE=∠DCF,∴∠ACE+∠ACF=∠DCF+∠ACF,∴∠ECF=∠ACD=60°,∴△CEF是正三角形,∴EF=CE=CF,当动点E运动到点B或点A时,CE的最大值为a,当CE⊥AB,即E为BD的中点时,CE的最小值为a,∵EF=CE,∴EF的最小值为a,∴△CEF面积的最小值为:,故答案为:.16.(2022•温江区校级自主招生)如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为 6.5 .【分析】由菱形的性质得出OA=OC=5,OB=OD=12,AC⊥BD,根据勾股定理求出AD=13,由直角三角形斜边上的中线等于斜边的一半求出OE=6.5,证出四边形EFOG是矩形,得到EO=GF即可得出答案.【解答】解:连接OE,∵四边形ABCD是菱形,∴OA=OC=5,OB=OD=12,AC⊥BD,在Rt△AOD中,AD==13,又∵E是边AD的中点,∴OE=AD=6.5,∵EF⊥BD,EG⊥AC,AC⊥BD,∴∠EFO=90°,∠EGO=90°,∠GOF=90°,∴四边形EFOG为矩形,∴FG=OE=6.5.故答案为:6.5.17.(2022春•南岗区校级期中)如图,在边长为5的菱形ABCD中,∠BAD=60°,点E、点F分别在AD、CD上,且∠EBF=60°,连接EF,若AE=2,则EF的长度为 .【分析】连接BD,过E点作EH⊥AB于H点,如图,先根据菱形的性质得到AB=AD=5,AB∥CD,则可判断△ABD为等边三角形,所以BD=AB,∠ABD=60°,再证明∠ABE=∠DBF,∠FDB=∠EAB,则可判断△BDF≌△BAE,所以BF=BE,于是可证明△BEF为等边三角形得到EF=BE,接着利用含30度角的直角三角形三边的关系得到AH=1,EH=,然后利用勾股定理计算出BE,从而得到EF的长.【解答】解:连接BD,过E点作EH⊥AB于H点,如图,∵四边形ABCD为菱形,∴AB=AD=5,AB∥CD,∵∠BAD=60°,∴△ABD为等边三角形,∴BD=AB,∠ABD=60°,∵∠EBF=60°,∴∠ABD﹣∠EBD=∠EBF﹣∠EBD,即∠ABE=∠DBF,∵CD∥AB,∴∠FDB=∠ABD=60°,∴∠FDB=∠EAB,在△BDF和△BAE中,,∴△BDF≌△BAE(ASA),∴BF=BE,而∠EBF=60°,∴△BEF为等边三角形,∴EF=BE,在Rt△AEH中,∵∠A=60°,∴AH=AE=1,∴EH=AH=,在Rt△BEH中,∵EH=,BH=BA﹣AH=5﹣1=4,∴BE==,∴EF=BE=.故答案为:.18.(2022春•鼓楼区校级期中)如图,在菱形ABCD中,AB=6,∠ABC=120°,点E在边BC上(不与端点重合),AE交BD于点F,以EF为边向外作等边△EFG,连接CF,BG,现给出以下结论:①∠EAB=30°;②△ABF≌△CBF;③直线AB与直线DC的距离是9;④BF+BG=BE.其中正确的是 ②③④ (写出所有正确结论的序号).【分析】连接AC,先证明△ABD和△CBD都是等边三角形,再证明△ADC≌△ABC,则∠CAD=∠CAB =30°,假设∠EAB=30°,则∠EAB=∠CAB,所以点E与点C重合,这与已知条件相矛盾,所以∠EAB≠30°,可判断①错误;由AB=CB,∠ABF=∠CBF,BF=BF根据全等三角形的判定定理“SAS”可证明△ABF≌△CBF,可判断②正确;作DI⊥AB于点I,则∠AID=90°,所以∠ADI=30°,则AI=×6=3,可根据勾股定理求得DI=9,可判断③正确;在BC上截取BH=BF,连接FH,则△BFH是等边三角形,而△EFG是等边三角形,可证明△BFG≌△HFE,得BG=HE,所以BF+BG=BH+HE=BE,可判断④正确.【解答】解:如图,连接AC,∵四边形ABCD是菱形,∠ABC=120°,AB=6,∴AD=AB=CD=CB=6,AD∥BC,AB∥CD,∴∠DAB=∠DCB=180°﹣∠ABC=60°,∴△ABD和△CBD都是等边三角形,∴∠ABF=∠CBF=60°,在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠CAD=∠CAB=∠DAB=30°,假设∠EAB=30°,则∠EAB=∠CAB,∴AE与AC重合,点E与点C重合,与已知条件相矛盾,∴假设不成立,即∠EAB≠30°,故①错误;在△ABF和△CBF中,,∴△ABF≌△CBF(SAS),故②正确;作DI⊥AB于点I,则∠AID=90°,∵∠DAI=60°,∴∠ADI=30°,∴AI=AD=×6=3,∴DI===9,∴直线AB与直线DC的距离是9,故③正确;在BC上截取BH=BF,连接FH,则△BFH是等边三角形,∵△EFG是等边三角形,∴FB=FH,FG=FE,∠BFH=∠GFE=60°,∴∠BFG=∠HFE=60°﹣∠GFH,在△BFG和△HFE中,,∴△BFG≌△HFE(SAS),∴BG=HE,∴BF+BG=BH+HE=BE,故④正确,故答案为:②③④.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022秋•薛城区月考)如图,已知A,F,C,D四点在同一条直线上,AF=CD,AB∥ED,且AB=ED.(1)求证:△ABC≌△DEF.(2)如果四边形EFBC是菱形,已知EF=3,DE=4,∠DEF=90°,求AF的长度.【分析】(1)根据SAS即可证明△ABC≌△DEF;(2)解直角三角形求出DF、OE、OF的长,即可解决问题.【解答】(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC,即AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).(2)解:如图,连接EB交AD于O.在Rt△EFD中,∠DEF=90°,EF=3,DE=4,∴DF===5,∵四边形EFBC是菱形,∴OF=OC,BE⊥CF,∴EO===,∴OF=OC===,∴CF=2OF=,∴AF=CD=DF﹣FC=5﹣=.20.(2022春•姑苏区校级期中)如图,已知菱形ABCD的对角线AC、BD相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是平行四边形;(2)若∠E=60°,BD=8,求菱形ABCD的面积.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形;(2)欲求菱形ABCD的面积,求得AC、BD的长度即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=CD=BC,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形;(2)解:由(1)知,四边形BECD是平行四边形,则BD∥CE.∵∠E=60°,∴∠ABD=60°.∵四边形ABCD是菱形,∴AD=AB.∴△ABD是等边三角形.∴AB=BD=8.又∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=4.∴OA===4.∴AC=8.∴菱形ABCD的面积=AC•BD=×8×8=32.21.(2022•雨花区校级开学)如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.(1)求证:△ABE≌△ADF;(2)若AE=4,CF=2,求菱形的面积.【分析】(1)由菱形ABCD的四条边相等、对角相等的性质知AB=AD,∠B=∠D;然后根据已知条件“AE⊥BC,AF⊥CD”知∠AEB=∠AFD;最后由全等三角形的判定定理AAS证明△ABE≌△ADF;(2)由全等三角形△ABE≌△ADF的对应边相等知BE=DF,然后根据菱形的四条边相等求得AB=CD,设AB=CD=x,已知CF=2,则BE=DF=x﹣2,利用勾股定理即可求出菱形的边长,进而可以求菱形的面积.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD,在△ABE和△ADF中,,∴△ABE≌△ADF(AAS);(2)解:设菱形的边长为x,∵AB=CD=x,CF=2,∴DF=x﹣2,∵△ABE≌△ADF,∴BE=DF=x﹣2,在Rt△ABE中,根据勾股定理得,AE2+BE2=AB2,即42+(x﹣2)2=x2,解得x=5,∴菱形的边长是5,∴菱形的面积=BC•AE=5×4=20.22.(2022春•南浔区期末)如图,已知四边形ABCD是菱形,点E、F分别是边AB、BC的中点,连结DE、EF、DF.(1)求证:△DEF是等腰三角形;(2)若AD=10,EF=8,求菱形ABCD的面积.【分析】(1)根据菱形的性质得到∠A=∠C,AD=CD=AB=BC,根据全等三角形的性质即可得到结论;(2)连接AC,BD交于O,根据三角形中位线定理得到AC=16,根据菱形的性质得到AO=AC=8,AC⊥BD,根据勾股定理得到OB==6,根据菱形的面积公式即可得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴∠A=∠C,AD=CD=AB=BC,∵点E、F分别是边AB、BC的中点,∴AE=AB,CF=BC,∴AE=CF,∴△ADE≌△CDF(SAS),∴DE=DF,∴△DEF是等腰三角形;(2)解:连接AC,BD交于O,∵点E、F分别是边AB、BC的中点,∴EF是△ABC的中位线,∵EF=8,∴AC=16,∵四边形ABCD是菱形,∴AO=AC=8,AC⊥BD,∴OB==6,∴BD=12,∴菱形ABCD的面积=AC•BD=×16×12=96.23.(2022春•重庆期末)如图,在菱形ABCD中,∠C=60°,E是对角线BD上一点.(1)如图1,若E是线段BD的中点,且AB=6,求AE的长度;(2)如图2,F是线段AB延长线上一点,且DE=BF,连接AE,EF.求证:AE=EF.【分析】(1)由四边形ABCD是菱形,且∠DAB=60°,证明△ABD是等边三角形,根据E是线段BD 的中点,进而可以解决问题;(2)作EG∥AB交AD于点G,先证明△DGE是等边三角形,得DG=DE=GE,再证明△AGE≌△EBF,得AE=EF.【解答】(1)解:如图1,∵四边形ABCD是菱形,∴∠DAB=∠C=60°,AB=AD,∴△ABD是等边三角形,∴AD=BD=AB=6,∵E是线段BD的中点,∴BE=DE=3,∴AE=BE=3;(2)证明:如图2,作EG∥AB交AD于点G,∵△DAB是等边三角形,∴∠GDE=60°,∠DGE=∠DAB=60°,∠DEG=∠DBA=60°,∴△DGE是等边三角形,∴DG=DE=GE,∵BF=DE,∴GE=BF,∵AD=BD,∴AD﹣DG=BD﹣DE,∴AG=EB,∵∠AGE=180°﹣∠DGE=120°,∠EBF=180°﹣∠DBA=120°,∴∠AGE=∠EBF,在△AGE和△EBF中,,∴△AGE≌△EBF(SAS),∴AE=EF.24.(2022春•抚远市期末)在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边三角形APE,点E的位置随点P位置的变化而变化,连接CE.(1)如图①,当点E在菱形ABCD内部或边上时,求证:BD=CE+PD;(2)如图②、图③,请分别写出线段BD,CE,PD之间的数量关系,不需证明.【分析】(1)先判断出∠BAP=∠CAE,进而判断出△BAP≌△CAE,得出BP=CE,∠ABP=∠ACE=30°,再判断出∠CAH+∠ACH=90°,即可得出结论;(2)同(1)的方法即得出结论;【解答】(1)证明:如图1,连接AC,延长CE交AD于H,∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°,∴AB=AC,∠BAC=60°,∠CAH=60°,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∵∠BAC=∠PAE,∴∠BAP=∠CAE,∴△BAP≌△CAE(SAS),∴BP=CE,∵BD=BP+PD,∴BD=CE+PD;(2)解:如图2,BD=CE+PD,连接AC,AC与BD交于点O,∴△ABC,△ACD为等边三角形,在△ABP和△ACE中,AB=AC,AP=AE,又∵∠BAP=∠BAC+∠CAP=60°+∠CAP,∠CAE=∠EAP+∠CAP=60°+∠CAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∵BD=BP+PD,∴BD=CE+PD;如图3,BD=CE﹣PD,连接AC,AC与BD交于点O,∴△ABC,△ACD为等边三角形,在△ABP和△ACE中,AB=AC,AP=AE,又∵∠BAP=∠BAD+∠DAP=120°+∠DAP,∠CAE=∠CAD+∠DAP+∠PAE=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∵BD=BP﹣PD,∴BD=CE﹣PD.。
2022-2023学年初二数学第二学期培优专题08 菱形中的最值问题

2022-2023学年初二数学第二学期培优专题08 菱形中的最值问题【例题讲解】如图,菱形ABCD 的边长是6,∠A =60°,E 是AD 的中点,F 是AB 边上一个动点,EG =EF 且∠GEF =60°,则GB +GC 的最小值是_____ 解:连接BD ∵四边形ABCD 是菱形,∴AB =AD ,∵∠A =60°,∴△ABD 是等边三角形,∵E 是AD 的中点,∴BE ⊥AD ,取AB 与CD 的中点M ,N ,连接MN ,∴点B 关于MN 的对称点是E ,连接EC ,此时CE 的长就是GB +GC 的最小值;∵MN ∥AD ,∴HM =12AE ,∵HB ⊥HM ,AB =6,∠A =60°,∴MB =3,∠HMB =60°,∴HM =1.5,∴AE =3,∵∠AEB =∠MHB =90°,∴∠CBE =90°,在Rt △EBC 中,EB =33,BC =6,∴EC =37,故答案为37.【综合演练】1.如图,在边长为6的菱形ABCD 中,60DAB ∠=︒,E 为AB 的中点,F 是AC 上的一动点,则EF BF +的最小值为( )A .33B .6C .3D .322.如图,在菱形ABCD 中,∠ABC =60°,AB =1,E 为BC 的中点,则对角线BD 上的动点P 到E 、C 两点的距离之和的最小值为( )A .34B .33C .32D .123.如图,在菱形ABCD 中,AB=4,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为( )A .2B .23C .4D .23+24.如图,在菱形ABCD 中,120ABC ∠=︒,4AB =,E 、F 分别为AB 、BC 的中点,P 是AC 上的一个动点,则PE PF +的最小值是( )A .3B .33C .4D .435.如图,菱形ABCD 的边长为2,且∠DAB =60°,E 是BC 的中点,P 为BD 上一点且△PCE 的周长最小,则△PCE 的周长的最小值为( )A .31+B .71+C .231+D .271+6.如图,菱形ABCD 的边长为23,60DAB ︒∠=,点E 为BC 边的中点,点P 为对角线上一动点,则PB PE +的最小值为__________.7.如图,四边形ABCD 为菱形,以AD 为斜边的Rt AED △的面积为3,2DE =,点E ,C 在BD 的同侧,点P 是BD 上的一动点,则PE PC +的最小值是_____________.8.如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则△PMN周长的最小值是_______.AP+PD 9.如图,菱形ABCD的边长为6,∠B=120°.点P是对角线AC上一点(不与端点A重合),则12的最小值为_____.10.如图,菱形ABCD中,∠ABC=56°,点E,F分别在BD,AD上,当AE+EF的值最小时,则∠AEF=___度.11.如图,菱形ABCD的边长为4,∠ADC=120°,点E是AD上一动点(不与点A,D重合),点F是CD 上一动点,且AE+CF=4,则△BEF面积的最小值为______________.12.如图,在菱形ABCD 中,E ,F 分别是边CD ,BC 上的动点,连接AE ,EF ,G ,H 分别为AE ,EF 的中点,连接GH .若45B ∠=︒,23BC =,则GH 的最小值为___________.13.如图,菱形ABCD 中,60ABC ∠=︒,边长为3,P 是对角线BD 上的一个动点,则12BP PC +的最小值是______.14.如图,菱形ABCD 的边长为1,60ABC ∠=︒,点E 是边AB 上任意一点(端点除外),线段CE 的垂直平分线交BD ,CE 分别于点F ,C ,AE ,EF 的中点分别为M ,N .(1)求证:AF EF =;(2)求MN NG +的最小值.15.如图,菱形ABCD 的边长是6,∠A =60°,E 是AD 的中点,F 是AB 边上一个动点,EG =EF 且∠GEF =60°,则GB +GC 的最小值是_____答案与解析【例题讲解】如图,菱形ABCD 的边长是6,∠A =60°,E 是AD 的中点,F 是AB 边上一个动点,EG =EF 且∠GEF =60°,则GB +GC 的最小值是_____ 解:连接BD ∵四边形ABCD 是菱形,∴AB =AD ,∵∠A =60°,∴△ABD 是等边三角形,∵E 是AD 的中点,∴BE ⊥AD ,取AB 与CD 的中点M ,N ,连接MN ,∴点B 关于MN 的对称点是E ,连接EC ,此时CE 的长就是GB +GC 的最小值;∵MN ∥AD ,∴HM =12AE ,∵HB ⊥HM ,AB =6,∠A =60°,∴MB =3,∠HMB =60°,∴HM =1.5,∴AE =3,∵∠AEB =∠MHB =90°,∴∠CBE =90°,在Rt △EBC 中,EB =33,BC =6,∴EC =37,故答案为37.【综合演练】1.如图,在边长为6的菱形ABCD 中,60DAB ∠=︒,E 为AB 的中点,F 是AC 上的一动点,则EF BF +的最小值为( )A .33B .6C .3D .32【答案】A【分析】根据菱形的对角线互相垂直平分,点B 关于AC 的对称点是点D ,连接ED ,EF +BF 最小值等于ED 的长,然后解直角三角形即可求解.【解答】解:如图,连接BD ,∵菱形ABCD中,∠DAB=60°,∴△ABD是等边三角形,∵在菱形ABCD中,AC与BD互相垂直平分,∴点B、D关于AC对称,如图,连接ED,则ED的长就是所求的EF+BF的最小值,∵E为AB的中点,∠DAB=60°,∴DE⊥AB,∴ED=22226333AD AE-=-=,∴EF+BF的最小值为33.故选:A.【点评】本题主要考查了菱形的性质和解直角三角形,关键是判断出ED的长就是所求的EF+BF的最小值.2.如图,在菱形ABCD中,∠ABC=60°,AB=1,E为BC的中点,则对角线BD上的动点P到E、C两点的距离之和的最小值为()A3B3C 3D.12【答案】C【分析】根据菱形的性质,得知A、C关于BD对称,根据轴对称的性质,将PE+PC转化为PE+ AP,再根据两点之间线段最短得知AE为PE+PC的最小值,进而求AE的值即可得出答案.【解答】解:∵四边形ABCD为菱形,∴A、C关于BD对称,∴连AE交BD于P,则PE+PC=PE+AP=AE,根据两点之间线段最短,AE 的长即为PE +PC 的最小值.∵∠ABC =60°,AB=BC∴△ABC 为等边三角形,又∵BE =CE 12BC =, ∴AE ⊥BC ,11,2AB BE == ∴AE =22AB BE -=32. 故选:C . 【点评】本题主要考查最短距离问题,掌握勾股定理,等边三角形的性质及菱形的对称性是解题的关键.3.如图,在菱形ABCD 中,AB=4,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为( )A .2B .23C .4D .23+2【答案】B【解答】解:作点P 关于BD 的对称点P′,作P′Q ⊥CD 交BD 于K ,交CD 于Q ,∵AB=4,∠A=120°,∴点P′到CD 的距离为4×32=23, ∴PK+QK 的最小值为23,故选B .【点评】本题考查轴对称-最短路线问题;菱形的性质. 4.如图,在菱形ABCD 中,120ABC ∠=︒,4AB =,E 、F 分别为AB 、BC 的中点,P 是AC 上的一个动点,则PE PF +的最小值是( )A .3B .33C .4D .43 【答案】C【分析】作E 点关于AC 的对称点点G ,连接GF 交AC 于点P ,连接PE ,当P 、G 、F 三点共线时,PE +PF 有最小值,最小值为GF ,求出GF 即可.【解答】解:作E 点关于AC 的对称点点G ,连接GF 交AC 于点P ,连接PE ,连接PE ,由对称性可得PG =PE ,AG =AE ,∴PE +PF =PG +PF ⩾GF ,当P 、G 、F 三点共线时,PE +PF 有最小值,∵点E 是AB 的中点,∴点G 是AD 的中点,1=2AG AD ∴, ∵F 是BC 的中点,1=2BF BC ∴, 又∵四边形ABCD 是菱形,∴AG BF ∥,AD =BC ,=AG BF ∴,∴四边形ABFG 是平行四边形,∴GF =AB =4,∴PE +PF 的最小值为4,故选:C .【点评】本题考查了轴对称求最短距离,熟练掌握轴对称求最短距离的方法,菱形的性质是解题的关键.5.如图,菱形ABCD的边长为2,且∠DAB=60°,E是BC的中点,P为BD上一点且△PCE的周长最小,则△PCE的周长的最小值为()A.31+B.71+C.231+D.271+【答案】B【分析】由菱形的性质可得点A与点C关于BD对称,则△PCE的周长=PC+PE+CE=AE+CE,此时△PCE的周长最小,过点E作EG⊥AB交AB延长线于点G,由∠BAD=60°,可求∠EBG=60°,则BG=12,EG=32,在Rt△AEG中,求出AE=2213(2)()722++=,则△PCE的周长=AE+CE=7+1,即为所求.【解答】解:∵菱形ABCD,∴点A与点C关于BD对称,连接AE交BD于点P,连接PC,则PE+PC=P A+PC=AE,∴△PCE的周长=PC+PE+CE=AE+CE,此时△PCE的周长最小,∵E是BC的中点,菱形ABCD的边长为2,∴BE=1,AB=2,过点E作EG⊥AB交AB延长线于点G,∵∠BAD=60°,∴∠ABC=120°,∴∠EBG=60°,∴BG=12,EG=32,在Rt△AEG中,AE2=AG2+EG2,∴AE =2213(2)()722++=, ∴△PCE 的周长=AE +CE =7+1,∴△PCE 的周长的最小值为7+1,故选:B .【点评】本题考查轴对称求最短距离,熟练掌握菱形的性质,将所求问题转化为求AE 的长是解题的关键. 6.如图,菱形ABCD 的边长为23,60DAB ︒∠=,点E 为BC 边的中点,点P 为对角线上一动点,则PB PE +的最小值为__________.【答案】3【分析】找出B 点关于AC 的对称点D ,连接DE 交AC 于P ,则DE 就是PB PE +的最小值,求出即可.【解答】解:连接BD ,交AC 于O ,连接DE 交AC 于P ,由菱形的对角线互相垂直平分,可得B 、D 关于AC 对称,则PD PB =,PE PB PE PD DE ∴+=+=,即DE 就是PE PB +的最小值.四边形ABCD 是菱形,60DCB DAB ∴∠=∠=︒,23DC BC ==,DCB ∴∆是等边三角形,3BE CE ==,DE AB ⊥∴(等腰三角形三线合一的性质). 在Rt DE B ∆中,2222(23)(3)3DE BD BE =-=-=.即PB PE +的最小值为3.故答案为3.【点评】本题主要考查轴对称—最短路线问题,菱形的性质,勾股定理等知识点,确定P点的位置是解答本题的关键.7.如图,四边形ABCD为菱形,以AD为斜边的Rt AED△的面积为3,2DE=,点E,C在BD的同侧,点P是BD上的一动点,则PE PC+的最小值是_____________.【答案】3【分析】根据菱形的轴对称性可得A、C关于BD对称,当A、P、E三点共线时,PE PC+的值最小为AE,再根据三角形的面积即可得出答案.【解答】解:∵四边形ABCD菱形,∴A、C关于BD对称,∵点E,C在BD的同侧,∴当A、P、E三点共线时,PE PC+的值最小,且最小值为AE;∵以AD为斜边的Rt AED△的面积为3,2DE=,∴1123 22⨯=⨯=AE DE AE,∴AE=3,∴PE PC+的最小值是3故答案为:3.【点评】本题考查了菱形的性质、最短问题、面积法等知识,解题的关键是利用轴对称解决最值问题,是中考常考题型.8.如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则△PMN周长的最小值是_______.【答案】9【分析】要求PM+PN的最小值,PM、PN不能直接求,可考虑通过作辅助线转化PN、PM的值,从而找出其最小值,即可求出△PMN 周长的最小值.【解答】解:如图:连接MN ,作ME ⊥AC 交AD 于E ,连接EN ,则EN 就是PM +PN 的最小值,∵菱形ABCD ,M 、N 分别是AB 、BC 的中点,∴BN =BM =AM ,MN=118422AC =⨯= ∵ME ⊥AC 交AD 于E ,∴AE =AM ,∴AE =BN ,AE ∥BN ,∴四边形ABNE 是平行四边形,∴EN =AB ,EN ∥AB ,而由题意可知,可得AB =()()226282÷+÷=5,∴EN =AB =5,∴PM +PN 的最小值为5.∵MN 不变,当PM +PN 的最小值时,△PMN 周长最小 ,∴△PMN 周长最小=9故答案为:9.【点评】本题考查菱形的性质、轴对称、平行四边形的判定及勾股定理等知识的综合应用.综合运用这些知识是解决本题的关键.9.如图,菱形ABCD 的边长为6,∠B =120°.点P 是对角线AC 上一点(不与端点A 重合),则12AP+PD 的最小值为_____.【分析】过点P作PE⊥AB于点E,过点D作DF⊥AB于点F,根据四边形ABCD是菱形,且∠B=120°,∠DAC=∠CAB=30°,可得PE=12AP,当点D,P,E三点共线且DE⊥AB时,PE+DP的值最小,最小值为DF的长,根据勾股定理即可求解.【解答】解:如图,过点P作PE⊥AB于点E,过点D作DF⊥AB于点F,∵四边形ABCD是菱形,且∠B=120°,∴∠DAC=∠CAB=30°,∴PE=12AP;∵∠DAF=60°,∴∠ADF=30°,∴AF=12AD=12×6=3;∴DF=33;∵12AP+PD=PE+PD,∴当点D,P,E三点共线且DE⊥AB时,PE+DP的值最小,最小值为DF的长,∴12AP+PD的最小值为33.故答案为:33.【点评】本题考查了菱形的性质,结合直角三角形、等边三角形的判定与性质知识点,准确判断最小值的判定.10.如图,菱形ABCD中,∠ABC=56°,点E,F分别在BD,AD上,当AE+EF的值最小时,则∠AEF=___度.【分析】连接AC,过点C作CF⊥AD,交BD于点E,交AD于点F,连接AE,根据菱形的性质和垂线段最短可得此时AE+EF的值最小,且最小值即为CF的长,然后根据等腰三角形的性质、直角三角形的性质和三角形外角的性质即可求出结论.【解答】解:连接AC,过点C作CF⊥AD,交BD于点E,交AD于点F,连接AE∵四边形ABCD为菱形,∠ABC=56°∴菱形ABCD是以BD所在直线为对称轴的轴对称图形,∠ADC=∠ABC=56°,DA=DC∴AE=CE,∠DAC=∠DCA=1(180°-∠ADC)=62°2∴此时AE+EF=CE+EF=CF,∠EAC=∠ECA根据垂线段最短可知:此时AE+EF的值最小,且最小值即为CF的长∵CF⊥AD∴∠AFC=90°∴∠ECA=90°-∠DAC=28°∴∠EAC=28°∴∠AEF=∠EAC+∠ECA=56°故答案为:56.【点评】此题考查的是菱形的性质、垂线段最短的应用、直角三角形的性质和等腰三角形的性质,掌握菱形的性质、垂线段最短、直角三角形的两个锐角互余和等边对等角是解决此题的关键.11.如图,菱形ABCD的边长为4,∠ADC=120°,点E是AD上一动点(不与点A,D重合),点F是CD 上一动点,且AE+CF=4,则△BEF面积的最小值为______________.【答案】33【分析】首先证明△BEF 是等边三角形,当BE ⊥AD 时面积最小.【解答】解:连接BD ,∵菱形ABCD 边长为4,∠ADC =120°,∴∠BAD =60°,∴△ABD 与△BCD 都为等边三角形,∴∠FDB =∠EAB =60°,∵AE +CF =4,而DF +CF =4,∴AE =DF ,∵AB =BD ,∴△BDF ≌△BAE (SAS ),∴BE =BF ,∠ABE =∠DBF ,∴∠EBF =∠ABD =60°,∴△BEF 是等边三角形,∴当BE ⊥AD 时,△BEF 的面积最小,在Rt △ABE 中,AE =12AB =2,由勾股定理得BE =23,同理可得等边△BEF 的边BE 上的高为32×23=3, △BEF 面积的最小值=33.故答案为:33.【点评】本题考查了菱形的性质、等边三角形的判定和性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.12.如图,在菱形ABCD 中,E ,F 分别是边CD ,BC 上的动点,连接AE ,EF ,G ,H 分别为AE ,EF 的中点,连接GH .若45B ∠=︒,23BC =GH 的最小值为___________.【答案】6 2【分析】连接AF,利用三角形中位线定理,可知GH =12AF,求出AF的最小值即可解决问题.【解答】连接AF,如图所示:∵四边形ABCD是菱形,AB= BC= 23∵G,H分别为AE,EF的中点,∴GH是△AEF的中位线,GH =12AF,当AF⊥BC时,AF最小,GH得到最小值,则∠AFB = 90°,∵∠B= 45°,∴△ABF是等腰直角三角形,∴AF=22AB=22×23=6,∴GH =6 2即GH的最小值为6 2故答案为:6 2【点评】本题考查了菱形的性质、三角形的中位线定理、等腰直角三角形的判定与性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.13.如图,菱形ABCD中,60ABC∠=︒,边长为3,P是对角线BD上的一个动点,则12BP PC+的最小值是______.【答案】332【分析】求两条线段之和的最小值问题,通常转化为两点之间的距离,在平面中,两点间的距离最短.【解答】解:如图所示:过点P 作PE AB ⊥交AB 于点E ,过点C 作CF AB ⊥交AB 于点F ,四边形ABCD 是菱形,60ABC ∠=︒,∴∠ABP =30°,12PE BP ∴=, 12BP PC PE PC ∴+=+, 由垂线段最短可知,PE PC +的最小值为CF 的长,33sin 3sin 602CF BC ABC ∴=⨯∠=⨯︒=, 即12BP PC +的最小值是:332, 故答案是:332. 【点评】本题考查了动点中的最短路径问题,解题的关键是:通过等量代换,转化为两点之间的距离. 14.如图,菱形ABCD 的边长为1,60ABC ∠=︒,点E 是边AB 上任意一点(端点除外),线段CE 的垂直平分线交BD ,CE 分别于点F ,C ,AE ,EF 的中点分别为M ,N .(1)求证:AF EF =;(2)求MN NG +的最小值. 【答案】(1)见解析(2)12【分析】(1)连接CF ,根据FG 垂直平分CE 和菱形的对称性即可得到CF EF =,CF AF =,从而求证结论;(2)利用M 和N 分别是AE 和EF 的中点,点G 为CE 的中点,即可得到1(2)AF F MN N C G +=+,当点F 与菱形ABCD 对角线交点O 重合时,AF CF +最小,此时MN NG +最小,结合已知推断ABC 为等边三角形,即可求解.(1)证明:连接CF ,FG 垂直平分CE ,CF EF ∴=,四边形ABCD 为菱形,A ∴和C 关于对角线BD 对称,CF AF ∴=,AF EF ∴=;(2)解:连接AC ,M 和N 分别是AE 和EF 的中点,点G 为CE 中点,11,22MN AF NG CF ∴==,即 1(2)AF F MN N C G +=+ 当点F 与菱形ABCD 对角线交点O 重合时,AF CF +最小,即此时MN NG +最小,菱形ABCD 边长为1,60ABC ∠=︒,ABC ∴为等边三角形,1AC AB ==,即MN NG +的最小值为12.【点评】本题考查了菱形的性质,中位线的性质、等边三角形性质的知识,关键在于熟悉各个知识点在本题的灵活运用.。
专题18.4菱形的判定专项提升训练(重难点培优)-【拔尖特训】2022-2023学年八年级数学下册尖

【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题18.4菱形的判定专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•宝山区校级月考)对角线()的平行四边形是菱形.A.互相垂直B.互相平分C.相等D.相交2.(2022春•江源区期中)下列条件中,能判断四边形是菱形的是()A.对角线相等的平行四边形B.对角线互相垂直且相等的四边形C.对角线互相平分且垂直的四边形D.对角线互相垂直的四边形3.(2022春•衡山县期末)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AD=CD C.AB=BC D.AC=BD4.(2022春•通榆县期末)▱ABCD中,AC,BD是两条对角线,如果添如一个条件,可推出▱ABCD是菱形,那么这个条件可以是()A.AB=CD B.AC=BD C.AC⊥BD D.AB⊥BD5.(2022春•青龙县期末)如图,以O为圆心,OA长为半径画弧别交OM、ON于A、B两点,再分别以为A、B为圆心,以OA长为半径画弧,两弧交于点C,分别连接AC、BC,则四边形OACB一定是()A.梯形B.菱形C.矩形D.正方形6.(2022•南京模拟)如图,ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:则关于甲、乙两人的作法,下列判断正确的为()A.仅甲正确B.仅乙正确C.甲、乙均正确D.甲、乙均错误7.(2021春•路北区期末)如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形8.(2022•五华区校级模拟)如图,AP是△ABC的角平分线,MN垂直平分AP,且交AP于点D,判断以下结论错误的是()A.MP∥AC B.AM=ANC.P A是∠MPN的平分线D.四边形AMPN是矩形9.(2022•大名县三模)如图,在▱ABCD中,E、F分别为边AD、BC的中点,点G、H在AC上,且AH =CG,若添加一个条件使四边形EGFH是菱形,则下列可以添加的条件是()A.AB=AD B.AB⊥AD C.AB=AC D.AB⊥AC10.(2022•上海模拟)如图,在Rt△ABC中,∠ACB=90°,平行四边形BCDE的顶点E在边AB上,联结CE、AD.添加一个条件,可以使四边形ADCE成为菱形的是()A.CE⊥AB B.CD⊥AD C.CD=CE D.AC=DE二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022•富拉尔基区三模)如图,在△ABC中,点D,E,F分别是边BC,CA,AB的中点,使四边形AFDE为菱形,应添加的条件是(添加一个条件即可).12.(2021秋•陈仓区期中)如图,AD∥BC,AB∥DC,AB=4,∠ADE=150°,那么∠A=时,四边形ABCD是菱形,且BD=.13.(2019春•陵城区期末)如图,在▱ABCD中,对角线AC,BD相交于点O,添加一个条件判定▱ABCD 是菱形,所添条件为(写出一个即可)14.(2015春•阳谷县期中)如图所示,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加一个条件,可以判定四边形BEDF是菱形.15.(2022春•同安区期中)如图,在Rt△ABF中,∠BAF=90°,∠B=30°,将Rt△ABF沿着BE方向平移到Rt△DEC的位置,此时点E恰为边BF的中点,若AE=2,则四边形AEFD的面积为.16.(2022•夏津县二模)如图,△ABC是边长为1的等边三角形,D,E为线段AC上两动点,且∠DBE=30°,过点D,E分别作AB,BC的平行线相交于点F,分别交BC,AB于点H,G.现有以下结论:①S△ABC=;②当点D与点C重合时,FH=;③AE+CD=DE;④当AE=CD时,四边形BHFG 为菱形.则其中正确的结论的序号是.17.(2022春•夏邑县期中)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=时,平行四边形CDEB为菱形.18.(2022•金水区校级模拟)如图,在▱ABCD中,∠D=30°,对角线AC=AD=3,点E,F分别为CD,AB边上的动点,且DE=BF.现将△ADE关于直线AE对称,点D的对应点记为D′,将△CBF关于直线CF对称,点B的对应点记为B′,当以点A,B',C,D'为顶点的四边形是菱形时,DE的长度为.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022•南京模拟)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)求证:∠BAC=∠DAC.(2)若AB∥CD,试证明四边形ABCD是菱形.20.(2018秋•宁德期末)利用所给的图形证明:一个顶点到它所对的两边距离相等的平行四边形是菱形.(写出已知、求证并加以证明)已知:求证:证明:21.(2022•武威模拟)如图,在四边形ABCD中,AB∥CD,点E是对角线AC上一点,∠ADC=∠ABC.(1)求证:四边形ABCD是平行四边形;(2)分别过点E,B作EF∥AB,BF∥AC,当∠FCE和∠DCE满足怎么样的数量关系时,四边形EFCD 是菱形?请说明理由.22.(2022春•郯城县期末)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,M是BD上任意一点,连接AM并延长至点N,使AM=MN,交BC于H,连接CN、BN.(1)求证:OM∥CN.(2)连接CM,若AD⊥AN,且AC=AB,求证:四边形BNCM是菱形.23.(2022春•巴东县期末)已知点E是平行四边形ABCD边CD上的一点(不与点C,D重合).(1)如图1,当点E运动到CD的中点时,连接AE、BE,若AE平分∠BAD,证明:CE=CB.(2)如图2,过点E作EF⊥DC交直线CB于点F,连接AF.若∠ABC=120°,BC=2.封AB=4.在线段CF上是否存在一点H.使得四边形AFHD为菱形?若存在,请求出ED,CH的长;若不存在,请简单地说明理由.24.(2022秋•鄄城县期中)如图,平行四边形ABCD的对角线AC,BD相交于点O,BD=12cm,AC=6cm,点E在线段BO上从点B出发以1cm/s的速度向点O运动,点F在线段OD上从点O出发以2cm/s的速度向点D运动.(1)若点E,F同时运动,设运动时间为ts,当t为何值时,四边形AECF是平行四边形?(2)在(1)的条件下,当AB为何值时,平行四边形AECF是菱形?。
初二数学培优讲义二十#菱形与矩形

第20讲 菱形与矩形考点·方法·破译1.理解并掌握菱形的定义、性质和判定方法,并运用它们进行计算与证明; 2.理解并掌握矩形的定义、性质和判定方法,并运用它们进行计算与证明; 3.理解“直角三角形斜边上的中线等于斜边的一半”并会应用.经典·考题·赏析【例1】(衢州)如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内.求证:P A =PQ .【解法指导】证明线段相等的方法有如下:⑴若在同一三角形中可利用等腰三角形的判定定理;⑵若在不同三角形中可利用全等三角形证明;⑶利用三角形中位线定理与直角三角形谢边上中线等于斜边一半证明;(4)利用特殊四边形的边与对角线的关系证明等.证明:∵四边形ABCD 为矩形,△PBC 、△QCD 都是等边三角形∴BA =CD =CQ ,∠PBA =30°,BP =CP ,∠DCP =∠BCQ =30°,∴∠PCQ =30° 在△ABP 和△QCP 中BA =CQ ,∠ABP =∠QCP ,BP =CP ∴△ABP ≌△QCP ,∴P A =PQ 【变式题组】 01.(荆州)如图,在矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 与F ,连接DE .求证:DF =DC .02.(荆州)如图,矩形ABCD 中,DP 平分∠ADC 交BC 于点P ,将一个直角三角板的直角顶点放在P 点处,且使它的一条直角边过A 点,另一条直角边交CD 于E .找出图中与P A 相等的线段.并说明理由.ABCD QPABCDEFABCED P03.如图,矩形ABCD 的对角线相交于O ,AE 平分∠BAD 交BC 于E ,∠CAE =15°,求∠BOE 的度数.【例2】已知:如图,在矩形ABCD 中,点E 在AD 边上,AE >DE ,BE =BC ,点O 是线段CE 的中点. ⑴试说明CE 平分∠BED ;⑵若AB =3,BC =5,求BO 的长;⑶在直线AD 上是否存在点F ,使得以B 、C 、E 、F 为顶点的四边形是菱形?如果存在,试画出点F 的位置,并作适当的说明;如果不存在,请说明理由. 【解】⑴∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠BCE =∠DEC .又∵BE =BC ,∴∠BCE =∠BEC .∴∠BEC =∠DEC ,∴CE 平分∠BED . ⑵在Rt △中,AB =3,BE =BC =5,∴AE =4. 在Rt △CDE 中,CD =3,DE =1,∴EC =10. 在Rt △BOC 中,BC =5,CO =102,∴BO =902=3102.(注:此处用面积法求BO 也可)⑶在直线AD 上存在点F ,使得以B 、C 、E 、F 为顶点的四边形是菱形. 延长ED 至F ,使得EF =BC ,此时四边形BCFE 是菱形.∵AE >DE ,∴BE >CE ,因此在EA 的延长线上不存在点F ,使得四边形BCEF 为菱形. 【变式题组】 01.(烟台)如图,在平面直角坐标系中,点O 为原点,菱形OABC的对角线OB 在x 轴上,顶点A 在反比例函数y =2x的图像上,菱形的面积为_________.错误!未指定书签。
【精编版】中考数学专题训练——菱形的判定和性质

中考专题训练——菱形的判定和性质1.如图,在△ABC中,BA=BC,BD平分∠ABC交AC于点D,点E在线段BD上,点F 在BD的延长线上,且DE=DF,连接AE,CE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BA⊥AF,AD=4,BC=4,求BD和AE的长.2.如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60°,∠ACB=45°,BD=2,试求BF的长.3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.4.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.5.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.6.在四边形ABCD中,AD∥BC,AC平分∠BAD,BD平分∠ABC.(1)如图1,求证:四边形ABCD是菱形;(2)如图2,过点D作DE⊥BD交BC延长线于点E,在不添加任何辅助线的情况下,请直接写出图中所有与△CDE面积相等的三角形(△CDE除外)7.已知:如图,在△ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C 作CF∥BA交PQ于点F,连接AF.(1)求证:四边形AECF是菱形;(2)若AD=3,AE=5,则求菱形AECF的面积.8.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=2,∠BCF=120°,求菱形BCFE的面积.9.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.10.如图,在△ABC中,AB=AC,E,D,F分别是边AB,BC,CA的中点.(1)求证:四边形AEDF是菱形;(2)若∠B=30°,AB=12,求四边形AEDF的面积.11.如图,在四边形ABCD中,AB∥DC,过对角线AC的中点O作EF⊥AC分别交边AB,CD于点E,F,连接CE,AF.(1)求证:四边形AECF是菱形;(2)若EF=6,AE=5,求四边形AECF的面积.12.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.13.如图,在▱ABCD中,CE平分∠BCD,交AD于点E,DF平分∠ADC,交BC于点F,CE与DF交于点P,连接EF,BP.(1)求证:四边形CDEF是菱形;(2)若AB=2,BC=3,∠A=120°,求BP的值.14.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.15.如图,△ABC中,∠ACB=90°,∠A=30°,CD为△ABC的中线,作CO⊥AB于O,点E在CO延长线上,DE=AD,连接BE、DE.(1)求证:四边形BCDE为菱形;(2)把△ABC分割成三个全等的三角形,需要两条分割线段,若AC=6,求两条分割线段长度的和.16.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE 与AC、AE分别交于点O、点E,联结EC.(1)求证:AD=EC;(2)若BC=2AD,AB=AO=m,求证:S四边形ADCE=m2.(其中S表示四边形ADCE 的面积)17.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过D作DE∥BC交AB 于点E,DF∥AB交BC于点F,连接EF.(1)求证:四边形BFDE是菱形;(2)若AB=8,AD=4,求BF的长.18.如图,等腰三角形ABC中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任取一点P(点A除外),过点P作EF∥AB,分别交AC,BC于点E和点F,作PQ∥AC,交AB于点Q,连接QE.(1)求证:四边形AEPQ为菱形;(2)当点P在何处时,菱形AEPQ的面积为四边形EFBQ面积的一半?19.已知:如图,四边形ABCD是平行四边形,分别以AB、AD为腰作等腰三角形△ABF 和等腰三角形△ADE,且顶角∠BAF=∠DAE,连结BD、EF相交于点G,BD与AF相交于点H.(1)求证:BD=EF;(2)若∠GHF=∠BFG,求证:四边形ABCD是菱形;(3)在(2)的条件下,当∠BAF=∠DAE=90°时,连结BE,若BF=4,求△BEF的面积.20.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说理由.参考答案:1.如图,在△ABC中,BA=BC,BD平分∠ABC交AC于点D,点E在线段BD上,点F 在BD的延长线上,且DE=DF,连接AE,CE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BA⊥AF,AD=4,BC=4,求BD和AE的长.【分析】(1)根据对角线互相平分且垂直即可证明四边形AECF是菱形;(2)根据等腰三角形的性质和勾股定理可得BD=8,设DE=x,则DF=x,所以AF2=AD2+DF2=16+x2,BF=BD+DF=8+x,然后利用勾股定理即可解决问题.【解答】(1)证明:∵BA=BC,BD平分∠ABC,∴BD⊥AC,AD=CD,∵DE=DF,∴四边形AECF是菱形;(2)解:AD⊥BD,AD=4,BA=BC=4,∴BD===8,设DE=x,则DF=x,∴AF2=AD2+DF2=16+x2,∵BF=BD+DF=8+x,∴AB2+AF2=BF2,∴(4)2+16+x2=(8+x)2,∴x=2,∴DE=DF=2,∴AE===2.∴BD和AE的长分别为8和2.2.如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60°,∠ACB=45°,BD=2,试求BF的长.【分析】(1)先根据垂直平分线的性质得:DE=CE,DF=FC,证明△CGE≌△CGF (ASA),根据对角线互相平分的四边形是平行四边形得:四边形DFCE是平行四边形,再由一组邻边相等的平行四边是菱形可得结论;(2)作辅助线,构建直角三角形,根据直角三角形30°的性质可得BH=1,由勾股定理得:DH=,根据△DHF是等腰直角三角形,可得DH=FH=,从而得结论.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,DG=CG∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CG,∴△CGE≌△CGF(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【分析】(1)首先根据题意画出图形,由E是AD的中点,AF∥BC,易证得△AFE≌△DBE,即可得AF=BD,又由在Rt△ABC中,∠BAC=90°,D是BC的中点,可得AD=BD=CD=AF,证得四边形ADCF是平行四边形,继而判定四边形ADCF是菱形;(2)首先连接DF,易得四边形ABDF是平行四边形,即可求得DF的长,然后由菱形的面积等于其对角线积的一半,求得答案.【解答】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.4.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【分析】(1)首先根据题意画出图形,由E是AD的中点,AF∥BC,易证得△AFE≌△DBE,即可得AF=BD,又由在Rt△ABC中,∠BAC=90°,D是BC的中点,可得AD =BD=CD=AF,证得四边形ADCF是平行四边形,继而判定四边形ADCF是菱形;(2)首先连接DF,易得四边形ABDF是平行四边形,即可求得DF的长,然后由菱形的面积等于其对角线积的一半,求得答案.【解答】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.5.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.【分析】(1)欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直;(2)根据勾股定理得到AC的长度,由含30度角的直角三角形的性质求得DE的长度,然后由菱形的面积公式:S=AC•DE进行解答.【解答】(1)证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,∴AD=DB=CD=6.∴AB=12,由勾股定理得.∵四边形DBCE是平行四边形,∴DE=BC=6.∴.6.在四边形ABCD中,AD∥BC,AC平分∠BAD,BD平分∠ABC.(1)如图1,求证:四边形ABCD是菱形;(2)如图2,过点D作DE⊥BD交BC延长线于点E,在不添加任何辅助线的情况下,请直接写出图中所有与△CDE面积相等的三角形(△CDE除外)【分析】(1)根据角平分线的定义可得∠ABD=∠CBD,据两直线平行,内错角相等可得∠ADB=∠CBD,然后求出∠ABD=∠ADB=∠CBD,再根据等角对等边可得AB=AD,再根据等腰三角形三线合一可得BO=DO,然后利用“角边角”证明△AOD和△COB全等,根据全等三角形对应边相等可得AD=BC,再根据对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,然后根据邻边相等的平行四边形是菱形证明即可;(2)根据等底等高的三角形的面积相等即可得到结论.【解答】(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∵AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB=∠CBD,∴AB=AD,设AC、BD相交于点O,又∵AC平分∠BAD,∴BO=DO,AC⊥BD,在△AOD和△COB中,,∴△AOD≌△COB(ASA),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)∵DE⊥BD,AC⊥BD,∴AC∥DE,∵AD∥CE,∴四边形ACED是平行四边形,∴BC=AD=CE,∴图中所有与△CDE面积相等的三角形有△BCD,△ABD,△ACD,△ABC.7.已知:如图,在△ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C 作CF∥BA交PQ于点F,连接AF.(1)求证:四边形AECF是菱形;(2)若AD=3,AE=5,则求菱形AECF的面积.【分析】(1)首先利用AAS证明△CDF≌△AED,进而得到AE=CF,于是得到四边形AECF是平行四边形,再根据对角线互相垂直的平行四边形是菱形即可得到结论;(2)首先利用勾股定理求出DE的长,再利用对角线乘积的一半求出菱形的面积.【解答】证明:(1)∵CF∥AB,∴∠DCF=∠DAE,∵PQ垂直平分AC,∴CD=AD,在△CDF和△AED中∵,∴△CDF≌△AED,∴AE=CF,∴四边形AECF是平行四边形,∵PQ垂平分AC,∴AE=CE,∴四边形AECF是菱形;(2)∵四边形AECF是菱形,∴△ADE是直角三角形,∵AD=3,AE=5,∴DE=4,∴AC=2AD=6,EF=2DE=8,∴菱形AECF的面积为AC•EF=24.8.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=2,∠BCF=120°,求菱形BCFE的面积.【分析】(1)根据邻边相等的平行四边形是菱形即可证明;(2)只要证明△ECF,△ECB都是等边三角形,可得S菱形BCFE=2•S△ECF;【解答】解:(1)∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE,∵EF=BEBE=2DE,∴EF=BC=BE,EF∥BC,∴四边形BCFE是平行四边形,∵BE=BC,∴四边形BCFE是菱形.(2)∵EF∥BC,∴∠F+∠BCF=180°,∵∠BCF=120°,∴∠F=60°,∵FE=FC=CB=EF,∴△ECF,△ECB都是等边三角形,∴S菱形BCFE=2•S△ECF=2××22=2.9.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.【分析】(1)利用全等三角形的性质证明AB=AD即可解决问题;(2)连接BD交AC于O,利用勾股定理求出对角线的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD∴AB=AD,∴四边形ABCD是菱形.(2)连接BD交AC于O.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,AO=3,∴BO===4,∴BD=2BO=8,∴S平行四边形ABCD=×AC×BD=24.10.如图,在△ABC中,AB=AC,E,D,F分别是边AB,BC,CA的中点.(1)求证:四边形AEDF是菱形;(2)若∠B=30°,AB=12,求四边形AEDF的面积.【分析】(1)首先根据三角形中位线定理可得DE∥AC,DF∥AB,ED=AC,DF=AB,进而可判定四边形AEDF是平行四边形,然后证明ED=DF即可;(2)连接AD、EF,利用直角三角形的性质和菱形面积公式解答即可.【解答】(1)证明:∵E,D,F分别是边AB,BC,AC的中点,∴DE∥AC,DF∥AB,ED=AC,DF=AB,∴四边形AEDF是平行四边形,∵AB=AC,∴ED=DF,∴四边形AEDF是菱形;(2)连接AD、EF,在△ABC中,AB=AC,∴BD=CD,AD⊥BC,在Rt△ABD中,∠B=30°,AB=12,∴AD=6,EF=BC=BD=,菱形AEDF的面积=.11.如图,在四边形ABCD中,AB∥DC,过对角线AC的中点O作EF⊥AC分别交边AB,CD于点E,F,连接CE,AF.(1)求证:四边形AECF是菱形;(2)若EF=6,AE=5,求四边形AECF的面积.【分析】(1)运用“对角线互相垂直平分的四边形是菱形”判定,已知EF⊥AC,AO=OC,只需要证明OE=OF即可,用全等三角形得出;(2)菱形的面积可以用对角线积的一半来表示,由已知条件,解直角三角形AOE可求AC、EF的长度.【解答】解:(1)证明:∵AB∥DC,∴∠1=∠2.在△CFO和△AEO中,,∴△CFO≌△AEO(ASA).∴OF=OE,又∵OA=OC,∴四边形AECF是平行四边形.∵EF⊥AC,∴四边形AECF是菱形;(2)解:∵四边形AECF是菱形,EF=6,∴OE=EF=4.在Rt△AEO中,∵tan∠OAE==,∴OA=5,∴AC=2AO=8,∴S菱形AECF=EF•AC=×6×8=24.12.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.【分析】(1)欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直;(2)根据勾股定理得到AC的长度,由含30度角的直角三角形的性质求得DE的长度,然后由菱形的面积公式:S=AC•DE进行解答.【解答】(1)证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,∴AD=DB=CD=6.∴AB=12,由勾股定理得AC=6.∵四边形DBCE是平行四边形,∴DE=BC=6.∴S菱形ADCE===18.13.如图,在▱ABCD中,CE平分∠BCD,交AD于点E,DF平分∠ADC,交BC于点F,CE与DF交于点P,连接EF,BP.(1)求证:四边形CDEF是菱形;(2)若AB=2,BC=3,∠A=120°,求BP的值.【分析】(1)利用平行四边形的性质和角平分线的定义可求得CF=CD=DE,可证得结论;(2)过P作PG⊥BC于G,在Rt△PGC中可求得PG和CG的长,则可求得BG的长,在Rt△BPG中,由勾股定理可求得BP的长.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠EDF=∠DFC,∵DF平分∠ADC,∴∠EDF=∠CDF,∴∠DFC=∠CDF,∴CD=CF,同理可得CD=DE,∴CF=DE,且CF∥DE,∴四边形CDEF为菱形;(2)解:如图,过P作PG⊥BC于G,∵AB=2,BC=3,∠A=120°,且四边形CDEF为菱形,∴CF=EF=CD=AB=2,∠ECF=∠BCD=∠A=60°,∴△CEF为等边三角形,∴CE=CF=2,∴PC=CE=1,∴CG=PC=,PG=PC=,∴BG=BC﹣CG=3﹣=,在Rt△BPG中,由勾股定理可得BP===,即BP的值为.14.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC =AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(y)2+(x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面积S=xy=.15.如图,△ABC中,∠ACB=90°,∠A=30°,CD为△ABC的中线,作CO⊥AB于O,点E在CO延长线上,DE=AD,连接BE、DE.(1)求证:四边形BCDE为菱形;(2)把△ABC分割成三个全等的三角形,需要两条分割线段,若AC=6,求两条分割线段长度的和.【分析】(1)容易证三角形BCD为等边三角形,又DE=AD=BD,再证三角形DBE为等边三角形四边相等的四边形BCDE为菱形.(2)画出图形,证出BM+MN=AM+MC=AC=6即可.【解答】(1)证明:∵∠ACB=90°,∠A=30°,CD为△ABC的中线,∴BC=AB,CD=AB=AD,∴∠ACD=∠A=30°,∴∠BDC=30°+30°=60°,∴△BCD是等边三角形,∵CO⊥AB,∴OD=OB,∴DE=BE,∵DE=AD,∴CD=BC=DE=BE,∴四边形BCDE为菱形;(2)解:作∠ABC的平分线交AC于N,再作MN⊥AB于N,如图所示:则MN=MC=BM,∠ABM=∠A=30°,∴AM=BM,∵AC=6,∴BM+MN=AM+MC=AC=6;即两条分割线段长度的和为6.16.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE 与AC、AE分别交于点O、点E,联结EC.(1)求证:AD=EC;(2)若BC=2AD,AB=AO=m,求证:S四边形ADCE=m2.(其中S表示四边形ADCE 的面积)【分析】(1)由AE∥BC,DE∥AB,可证得四边形ABDE为平行四边形,又由AD是边BC上的中线,可得AE=CD,即可证得四边形ADCE是平行四边形,继而证得结论;(2)由BC=2AD,易得四边形ADCE是菱形,继而求得S四边形ADCE=m2.【解答】证明:(1)∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵BD=CD,∴AE=CD,∴四边形ADCE是平行四边形,∴AD=CE;(2)∵BC=2AD,BC=2CD,∴AD=CD,∵四边形ADCE是平行四边形,∴四边形ADCE是菱形,∵DE=AB=m,AC=2AO=2m,∴S四边形ADCE=AC•DE=m2.17.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过D作DE∥BC交AB 于点E,DF∥AB交BC于点F,连接EF.(1)求证:四边形BFDE是菱形;(2)若AB=8,AD=4,求BF的长.【分析】(1)易证四边形BFDE是平行四边形,再结合已知条件证明邻边EB=ED即可得到平行四边形BFDE是菱形;(2)设BF=x,所以可得DE=BE=x,AE=8﹣x,在Rt△ADE中,由勾股定理可得AE2=DE2+AD2,求出x的值即可.【解答】(1)证明:∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形.∵BD平分∠ABC,∴∠ABD=∠CBD.∵DE∥BC,∴∠CBD=∠EDB.∴∠ABD=∠EDB.∴EB=ED.∴平行四边形BFDE是菱形;(2)解:∵ED∥BF,∠C=90°,∴∠ADE=90°.设BF=x,∴DE=BE=x.∴AE=8﹣x.在Rt△ADE中,AE2=DE2+AD2∴(8﹣x)2=x2+42解得x=3,∴BF=3.18.如图,等腰三角形ABC中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任取一点P(点A除外),过点P作EF∥AB,分别交AC,BC于点E和点F,作PQ∥AC,交AB于点Q,连接QE.(1)求证:四边形AEPQ为菱形;(2)当点P在何处时,菱形AEPQ的面积为四边形EFBQ面积的一半?【分析】(1)先证出四边形AEPQ为平行四边形,关键是找一组邻边相等,由AD平分∠BAC和PE∥AQ可证∠EAP=∠EP A,得出AE=EP,即可得出结论;(2)S菱形AEPQ=EP•h,S平行四边形EFBQ=EF•h,若菱形AEPQ的面积为四边形EFBQ面积的一半,则EP=EF,因此P为EF中点时,S菱形AEPQ=S四边形EFBQ.【解答】(1)证明:∵EF∥AB,PQ∥AC,∴四边形AEPQ为平行四边形,∴∠BAD=∠EP A,∵AB=AC,AD平分∠CAB,∴∠CAD=∠BAD,∴∠CAD=∠EP A,∴EA=EP,∴四边形AEPQ为菱形.(2)解:P为EF中点,即AP=AD时,S菱形AEPQ=S四边形EFBQ∵四边形AEPQ为菱形,∴AD⊥EQ,∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴EQ∥BC,又∵EF∥AB,∴四边形EFBQ为平行四边形.作EN⊥AB于N,如图所示:则S菱形AEPQ=EP•EN=EF•EN=S四边形EFBQ.19.已知:如图,四边形ABCD是平行四边形,分别以AB、AD为腰作等腰三角形△ABF 和等腰三角形△ADE,且顶角∠BAF=∠DAE,连结BD、EF相交于点G,BD与AF相交于点H.(1)求证:BD=EF;(2)若∠GHF=∠BFG,求证:四边形ABCD是菱形;(3)在(2)的条件下,当∠BAF=∠DAE=90°时,连结BE,若BF=4,求△BEF的面积.【分析】(1)证明∠BAD=∠F AE,根据全等三角形的判定推出△BAD≌△F AE,即可得出答案;(2)求出∠ABD=∠GBF,证明AB=AD,即可证出四边形ABCD是菱形;(3)延长EA交BC于M,得EM⊥AD,求出EM=AE+AM=2+2,再根据面积公式即可求出.【解答】(1)证明:∵∠BAF=∠DAE,∴∠BAF+∠F AD=∠DAE+∠F AD,即∠BAD=∠F AE,∵AB=AF,AD=AE,∴△BAD≌△F AE(SAS),∴BD=EF.(2)∵∠GHF=∠BFG,∴∠GFH=∠GBF,由(1)可知∠GFH=∠ABD,∴∠ABD=∠GBF,∵AD∥BC,∴∠ADB=∠GBF,∴∠ABD=∠ADB,∴AB=AD,∴四边形ABCD是菱形;(3)延长EA交BC于M,∵∠DAE=90°.∴EM⊥AD,∵四边形ABCD是菱形,∴AD∥BC,∴EM⊥BF,∵AB=AF,BF=4,∴BM=FM=2,∵∠BAF=90°,∴,∴,∴,∴EM=AE+AM=2+2,∴==4.20.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说理由.【分析】(1)先判断出△ABC≌△ADC得到∠BAF=∠DAC,再判断出△ABF≌△ADF 得出∠AFB=∠AFD,最后进行简单的推算即可;(2)先由平行得到角相等,用等量代换得出∠DAC=∠ACD,最后判断出四边相等;(3)由(2)得到判断出△BCF≌△DCF,结合BE⊥CD即可.【解答】证明:(1)在△ABC和△ADC中,,∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFB=∠AFD,∵∠CFE=∠AFB,∴∠AFD=∠CFE,∴∠BAF=∠DAC,∠AFD=∠CFE;(2)∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)当BE⊥CD时,∠EFD=∠BCD,理由:∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.。
八年级数学尖子生培优竞赛专题辅导专题03菱形

专题03菱形专题解读】菱形既是轴对称图形,可以把菱形看成是由等腰三角形沿底边翻折而成:菱形又是中心对称图形,可以看成是由直角三角形以直角顶点为对称中心旋转180°而成,所以在处理菱形类问题时,等腰三角形和直角三角形的图形特征往往是我们尝试的突破口。
思维索引例1. (1)如图1,菱形ABCD和菱形BEFG的边长分别是5和2, ZA=60° ,连结DF,则DF的长为__________(2)如图2是由6个形状大小完全相同菱形组成的网格,若菱形的边长为1, 一个内角(Z0)为60° ,A ABC的各顶点都在格点上,则BC边上的高为___________(3)如图3,在菱形ABCD中,对角线AC与BD相交于点0, AC二8, BD二6, 0E丄AD于点E,交BC于点F,则EF的长为 __________ .(4)如图4, F是萎形ABCD的边AD的中点,AC与BF相交于E, EG丄AB于G,已知Z1=Z2,则下列结论:①AE二BE:②BF丄AD:③AC二2BF:④CE二BF+BG•其中正确的结论是(图4)(郎)2 例2•将矩形OABC如图所示放置在第一象限,点B的坐标为(3, 4), —次函数y=—x+b的图象3与边OC、AB分别交于点D、E,并且满足0D二BE,点M是线段DE上的一个动点。
(1)求b的值:(2)设点N是x轴上方平而内的一点,以0、D、M. N为顶点的四边形是萎形,求点N的坐标。
交0D于点F•若AB=2, ZABC二60°,则AE的长为D. 2y!2素养提升1 •如图,在菱形ABCD中,ZBCD二110°,AB的垂直平分线交对角线AC于点F, E为垂足,连接DF,则ZCDF等于A. 15°B. 25°C. 45°D. 55°2•如图,菱形ABCD的对角线相交于点0,过点D作DE〃AC,且DE二丄AC,连接CE、0E,连接AE,2B. V5DUE3. 如图,菱形ABCD 中,ZABC 二60° , AB 二4,对角线AC. BD 交于点0, E 是线段BO 上一动点,F 是射线DC 上一动点,若ZAEF 二120° ,则线段EF 的长度的整数值的个数有( ) A.1个 B.2个 C.3个 D.4个4. 如图,将三角形纸片ABC 沿DE 折叠,使点A 落在BC 边上的点F 处,且DE 〃BC,下列结论: ①ABDF 是等腰三角形:②DE 二丄BC :③四边形ADFE 是菱形;④ZBDF+ZFEC 二2ZA, 2其中一定正确的结论是( )A.①③④B.②③④C.①②④D.①②③5. 如图,A 、B 两点的坐标分别为(6, 0)、(0, 6),连结AB.点P 从点A 出发,沿AB 方向以每秒迈 个单位的速度向终点B 运动;同时动点Q 从点B 出发沿B0方向以每秒1个单位的速度向终点0运动,将 △PQO 沿B0翻折,记点P 的对应点为点C,若四边形QPOC 为菱形,则点C 的坐标为 _____________ ・6•我们规圧:将一个平而图形分成而积相等的两部分的直线叫做该平而图形的“等积线”,等积线被 这个平面图形截得的线段叫做该图形的“等枳线段”(例如三角形的中线就是三角形的等积线段).已知 菱形的边长为4.且有一个内角为60°,设它的等积线段长为叫则m 的取值范围是 _________________・A (第3题〉 (第5题)(第7题) (第8题)7•如图,在平而直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,ZAOC二60° ,若将菱形OABC绕点0顺时针旋转75° ,得到四边形OABC ,则点B的对应点3的坐标为8•如图,在菱形ABCD中,AB二BD,点E、F分别在BC、CD上,且BE二CF,连接BF. DE交于点延长ED到H使DH=BM,连接AM, AH,则以下四个结论:©AABD^ADCE;②ZBMD二120° :③△AMH 是等边三角形:④S“昨AM'其中正确结论的是________ (填写序号).9.在如图直角坐标系内,四边形AOBC是边长为2的菱形,E为边0B的中点,连结AE与对角线0C交于点D,且ZBCO二ZEAO,求点D坐标.10.如图,在ZkABC中,ZABC二90° , BD为AC的中线,过点C作CE丄BD于点E,过点才作BD的平行线, 交CE的延长线于点F,在AF的延长线上截取FG二BD,连接BC、DF.若CF二6, AC二AF+2,求四边形BDFG的周长.11•如图1,矩形OABC的两条边OA、0C分别在y轴和x轴上,已知点A (0, 3)、点C (-4, 0).(1)若把矩形OABC沿直线DE折叠,使点C落在点A处,直线DE与OC、AC、AB的交点分别为D、F、E,请根据题意画出图形,并求折痕DE的长;(2)若点P在x轴上,在平面内是否存在点Q,使以P、D、E、Q为顶点的四边形是菱形?若存在,则请求出点Q的坐标;若不存在,请说明理由:(3)如图2,若M为AC边上的一动点,在0A上取一点N (0, 1),将矩形OABC绕点0顺时针旋转一周,在族转的过程中,M的对应点为、L,请直接写出NNL的最大值和最小值.(图1)12•如图,直线li:y=- —x+b分别与x轴、y轴交于A、B两点,与直线b:y=kx-6交于点C (4, 2).2(1)点A坐标为(_____ ) , B为( _____ ):(2)在线段BC上有一点E,过点E作y轴的平行线交直线h于点F,设点E的横坐标为m,当m 为何值时,四边形OBEF是平行四边形;(3)若点P为x轴上一点,则在平而直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形。