电路实验__电路频率特性的研究要点说明

合集下载

rlc串联电路频率特性实验报告

rlc串联电路频率特性实验报告

竭诚为您提供优质文档/双击可除rlc串联电路频率特性实验报告篇一:RLc串联电路的幅频特性与谐振现象实验报告_-_4(1)《电路原理》实验报告实验时间:20XX/5/17一、实验名称RLc串联电路的幅频特性与谐振现象二、实验目的1.测定R、L、c串联谐振电路的频率特性曲线。

2.观察串联谐振现象,了解电路参数对谐振特性的影响。

1.R、L、c串联电路(图4-1)的阻抗是电源频率的函数,即:Z?R?j(?L?1)?Zej??c三、实验原理当?L?1时,电路呈现电阻性,us一定时,电流达最大,这种现象称为串?c联谐振,谐振时的频率称为谐振频率,也称电路的固有频率。

即?0?1Lc或f0?12?LcR无关。

图4-12.电路处于谐振状态时的特征:①复阻抗Z达最小,电路呈现电阻性,电流与输入电压同相。

②电感电压与电容电压数值相等,相位相反。

此时电感电压(或电容电压)为电源电压的Q倍,Q称为品质因数,即Q?uLuc?0L11ususR?0cRRc在L和c为定值时,Q值仅由回路电阻R的大小来决定。

③在激励电压有效值不变时,回路中的电流达最大值,即:I?I0?usR3.串联谐振电路的频率特性:①回路的电流与电源角频率的关系称为电流的幅频特性,表明其关系的图形称为串联谐振曲线。

电流与角频率的关系为:I(?)?us1??R2??L???c??2?us0??R?Q2?0??I00??1?Q2?0?2当L、c一定时,改变回路的电阻R值,即可得到不同Q 值下的电流的幅频特性曲线(图4-2)图4-2有时为了方便,常以?I为横坐标,为纵坐标画电流的幅频特性曲线(这称?0I0 I下降越厉害,电路的选择性就越好。

I0为通用幅频特性),图4-3画出了不同Q值下的通用幅频特性曲线。

回路的品质因数Q越大,在一定的频率偏移下,为了衡量谐振电路对不同频率的选择能力引进通频带概念,把通用幅频特性的幅值从峰值1下降到0.707时所对应的上、下频率之间的宽度称为通频带(以bw表示)即:bw??2?1??0?0由图4-3看出Q值越大,通频带越窄,电路的选择性越好。

实验十二--幅频特性和相频特性

实验十二--幅频特性和相频特性

实验十二--幅频特性和相频特性实验十二 幅频特性和相频特性一、实验目的:研究RC串、并联电路的频率特性。

二、实验原理及电路图 1、实验原理电路的频域特性反映了电路对于不同的频率输入时,其正弦稳态响应的性质,一般用电路的网络函数()H j ω表示。

当电路的网络函数为输出电压与输入电压之比时,又称为电压传输特性。

即:()21U H j U ω=&&1)低通电路RCU &2U &10.707()H j ω0ωω图1-1 低通滤波电路 图1-2 低通滤波电路幅频特性简单的RC 滤波电路如图4.3.1所示。

当输入为1U &,输出为2U &时,构成的是低通滤波电路。

因为:112111U U U j C j RC R j C ωωω=⨯=++&&&所以:()()()2111U H j H j U j RC ωωϕωω===∠+&&()()21H j RC ωω=+()H j ω是幅频特性,低通电路的幅频特性如图4.3.2所示,在1RC ω=时,()120.707H j ω==,即210.707U U =,通常2U &降低到10.707U &时的角频率称为截止频率,记为0ω。

2)高通电路CR1&U 2&Uωω00.7071()H j ω图2-1 高通滤波电路 图2-2 高通滤波电路的幅频特性12111U j RC U R U j RC R j C ωωω=⨯=⨯+⎛⎫+ ⎪⎝⎭&&&所以:()()()211U j RC H j H j U jRC ωωωϕω===∠+&&其中()H j ω传输特性的幅频特性。

电路的截止频率01RC ω= 高通电路的幅频特性如4.3.4所示 当0ωω<<时,即低频时()1H j RC ωω=<<当0ωω>>时,即高频时,()1H j ω=。

实验十二 幅频特性和相频特性

实验十二  幅频特性和相频特性

实验十二 幅频特性和相频特性一、实验目的:研究RC串、并联电路的频率特性。

二、实验原理及电路图 1、实验原理电路的频域特性反映了电路对于不同的频率输入时,其正弦稳态响应的性质,一般用电路的网络函数()H j ω表示。

当电路的网络函数为输出电压与输入电压之比时,又称为电压传输特性。

即:()21U H j U ω=1)低通电路U 2图1-1 低通滤波电路 图1-2 低通滤波电路幅频特性 简单的RC 滤波电路如图4.3.1所示。

当输入为1U ,输出为2U 时,构成的是低通滤波电路。

因为:112111U U U j C j RCR j Cωωω=⨯=++所以:()()()2111U H j H j U j RC ωωϕωω===∠+()H j ω=()H j ω是幅频特性,低通电路的幅频特性如图4.3.2所示,在1RCω=时,()0.707H j ω==,即210.707U U =,通常2U 降低到10.707U 时的角频率称为截止频率,记为0ω。

2)高通电路2图2-1 高通滤波电路 图2-2 高通滤波电路的幅频特性12111U j RCU R U j RCR j C ωωω=⨯=⨯+⎛⎫+ ⎪⎝⎭所以:()()()211U j RC H j H j U jRC ωωωϕω===∠+其中()H j ω传输特性的幅频特性。

电路的截止频率01RC ω= 高通电路的幅频特性如4.3.4所示 当0ωω<<时,即低频时()1H j RC ωω=<<当0ωω>>时,即高频时,()1H j ω=。

3)研究RC 串、并联电路的频率特性:Aff 31图15-2f0ϕ︒90︒-90iu ou +--+RR CC图 15-1)1j(31)j (ioRC RC UUN ωωω-+==其中幅频特性为:22io)1(31)(RC RC U U A ωωω-+==相频特性为:31arctg)(o RCRC i ωωϕϕωϕ--=-=幅频特性和相频特性曲线如图15-2所示,幅频特性呈带通特性。

rlc电路特性实验报告

rlc电路特性实验报告

rlc电路特性实验报告RLC电路特性实验报告引言:RLC电路是由电阻(R)、电感(L)和电容(C)组成的电路,是电子学中的基本电路之一。

通过对RLC电路的特性进行实验研究,可以深入了解电路的振荡、滤波和共振等特性。

本实验旨在通过对RLC电路的实验研究,探索其特性及其在实际应用中的意义。

实验一:RLC电路的频率响应特性实验目的:通过改变输入信号的频率,研究RLC电路的频率响应特性,包括共振频率、带宽和相位差等。

实验步骤:1. 搭建RLC串联电路,将信号发生器连接到电路的输入端,示波器连接到电路的输出端。

2. 逐渐改变信号发生器的频率,记录示波器上电压信号的变化。

3. 根据示波器上的波形图,确定共振频率、带宽和相位差。

实验结果与讨论:通过实验观察和数据记录,我们得到了RLC电路的频率响应特性曲线。

在实验中,我们发现当输入信号的频率与电路的共振频率相同时,电路的响应最大。

这是因为在共振频率下,电感和电容的阻抗相互抵消,电路的总阻抗最小,电流得到最大增强。

此外,我们还观察到在共振频率两侧,电路的响应逐渐减小,形成带宽。

带宽的大小取决于电路的品质因数,品质因数越大,带宽越窄。

此外,我们还测量了电路中电压和电流的相位差,发现在共振频率附近,相位差接近零,而在共振频率两侧,相位差逐渐增大。

实验二:RLC电路的振荡特性实验目的:通过改变电路中的电容或电感值,研究RLC电路的振荡特性,包括自由振荡频率、衰减系数和稳态响应等。

实验步骤:1. 搭建RLC串联电路,将信号发生器连接到电路的输入端,示波器连接到电路的输出端。

2. 逐渐改变电容或电感的值,记录示波器上电压信号的变化。

3. 根据示波器上的波形图,确定自由振荡频率、衰减系数和稳态响应。

实验结果与讨论:通过实验观察和数据记录,我们得到了RLC电路的振荡特性曲线。

在实验中,我们发现当电路中的电容或电感值发生变化时,电路的自由振荡频率也会相应改变。

自由振荡频率与电容和电感的数值有关,可以通过计算公式进行估算。

rlc电路实验报告

rlc电路实验报告

rlc电路实验报告RLC电路实验报告引言:RLC电路是由电阻(R)、电感(L)和电容(C)组成的电路,是电工学中的重要基础知识。

本实验旨在通过搭建和调试RLC电路,研究其频率响应特性以及相位差等参数,进一步加深对RLC电路的理解和应用。

一、实验目的本实验的主要目的是探究RLC电路的频率响应特性,包括电压幅值随频率变化的规律、相位差与频率的关系等。

二、实验器材和装置1.函数发生器:用于提供不同频率的交流电信号。

2.RLC电路实验箱:包括电阻、电感和电容等元件,用于搭建RLC电路。

3.示波器:用于观测电路中的电压波形和相位差。

三、实验步骤1.根据实验要求,选择合适的电阻、电感和电容数值,并搭建RLC电路。

2.将函数发生器的输出端与电路中的输入端相连,调节函数发生器的频率,并通过示波器观测电路中的电压波形。

3.记录不同频率下电压幅值的变化,并绘制频率与电压幅值之间的关系曲线。

4.调整函数发生器的频率,观测电路中电压波形与函数发生器输出信号的相位差,并记录数据。

5.根据实验数据,分析RLC电路的频率响应特性和相位差与频率的关系。

四、实验结果与分析通过实验观测和数据记录,我们得到了频率与电压幅值、相位差之间的关系。

根据实验数据,我们可以绘制频率与电压幅值的曲线图,并进一步分析电路的特性。

在低频区域,电阻对电路的影响较大,电容和电感的影响相对较小。

因此,电压幅值随频率的增加而线性减小。

当频率接近电路的共振频率时,电路中电压幅值达到最大值,此时电容和电感的作用相互抵消,电路的阻抗最小。

而在高频区域,电容的作用逐渐减小,电感的作用逐渐增大,导致电压幅值随频率的增加而逐渐减小。

相位差是指电路中电压波形与函数发生器输出信号之间的时间差。

根据实验数据,我们可以绘制相位差随频率变化的曲线图。

在低频区域,相位差接近0度,即电压波形与函数发生器输出信号几乎是同步的。

而在高频区域,相位差逐渐增大,电压波形滞后于函数发生器输出信号。

频率特性实验报告

频率特性实验报告

频率特性实验报告频率特性实验报告引言:频率特性是描述信号在不同频率下的响应性能的重要指标。

在电子领域中,频率特性实验是非常常见的实验之一。

本文将介绍频率特性实验的目的、实验原理、实验步骤以及实验结果的分析。

一、实验目的:频率特性实验的目的是研究电路或系统在不同频率下的响应特性,了解信号在不同频率下的传输和滤波性能。

通过实验,可以掌握频率特性的测试方法和实验技巧,提高实验操作能力和数据处理能力。

二、实验原理:频率特性实验通常涉及到信号的输入和输出,以及信号的幅度和相位响应。

在实验中,常用的测试仪器有函数发生器、示波器和频谱分析仪。

1. 函数发生器:用于产生不同频率的信号作为输入信号。

可以调节函数发生器的频率、幅度和波形等参数。

2. 示波器:用于观测电路或系统的输入和输出信号波形。

示波器可以显示信号的幅度、相位和频率等信息。

3. 频谱分析仪:用于分析信号的频谱成分。

频谱分析仪可以显示信号在不同频率下的幅度谱和相位谱。

实验步骤:1. 准备实验所需的仪器和器材,包括函数发生器、示波器和频谱分析仪。

2. 连接电路或系统,将函数发生器的输出信号连接到被测电路或系统的输入端,将示波器或频谱分析仪连接到电路或系统的输出端。

3. 设置函数发生器的频率和幅度,选择适当的波形。

4. 调节示波器或频谱分析仪的参数,观测信号的波形和频谱。

5. 重复步骤3和步骤4,改变函数发生器的频率,记录不同频率下的信号波形和频谱。

实验结果分析:根据实验记录的信号波形和频谱数据,可以进行以下分析:1. 幅度响应:通过观察信号的幅度谱,可以了解电路或系统在不同频率下信号的衰减或增益情况。

如果幅度谱在不同频率下保持不变,则说明电路或系统具有平坦的幅度响应特性。

如果幅度谱在某些频率点出现峰值或谷值,则说明电路或系统对该频率具有增益或衰减。

2. 相位响应:通过观察信号的相位谱,可以了解电路或系统在不同频率下信号的相位变化情况。

相位谱可以显示信号的相位延迟或提前。

实验七 RC电路频率特性

实验七 RC电路频率特性

实验七 RC 电路频率特性一、实验目的1、了解低通和高通滤波器的频率特性,熟悉文氏电桥的结构特点及选频特性;2、掌握网络频率特性测试的一般方法;二、实验仪器信号发生器、交流毫伏表、数字频率计、双踪示波器三、实验原理1、文氏电路如图1所示,电路输出电压和输入电压的幅值分别为Uo 、Ui ,相位分别为φo 、φi ,输出电压和输入电压的比为网络函数,记为H (j ω),网络函数的幅值为∣H (j ω)∣=Uo/Ui ,相位为φ=φo -φi ,∣H (j ω)∣和φ分别为电路的幅频特性和相频特性。

文氏电路的网络函数表达式为:文氏电路的幅频特性和相频特性见图2和3,在频率较低的情况下,即1/C R ω>>时,电路可近似等效为图4所示的低频等效电路。

频率越低,输出电压的幅度越小,其相位愈超前于输入电压。

当频率接近于0时,输出电压趋近于0,相位接近90度。

而当频率较高时,即当1/C R ω<<时,电路电路可近似等效为图5所示的高频等效电路。

频率越高,输出电压的也幅度越小,其相位愈滞后于输入电压。

当频率接近于无穷大时,输出电压趋近于0,相位接近-90度。

由此可见,当频率为某一中间值o f 时,输出电压不为0,输出电压和输入电压同相。

∣H (j ω)∣ φ图1 RC 文氏电路 图2 文氏电路幅频特性 图3 文氏电路相频特性31arctan)1(31)1(31)(22RC RC RCRC RCRC j UU j H io ωωωωωωω-∠-+=-+==u o+--1/390图4 低频等效电路 图5 高频等效电路2、实验测量框图如图6所示,信号源与RC 网络构成回路,将信号源输出信号和RC 网络端输出信号接入示波器,用频率计测量信号源输出信号的频率。

图6 实验框图 图73、RC 带通网络中心频率0f 的测定当带通网络的频率0f f 时,输入电压和输出电压的相位差为0,如果在示波器的垂直和水平偏转板上分别加上频率、振幅和相位相同的正弦电压,则在示波器的荧光屏上将得到一条与X 轴成45度的直线。

电路实验

电路实验

图14-1实验十四交流电路频率特性的测定一.实验目的1.研究电阻、感抗、容抗与频率的关系,测定它们随频率变化的特性曲线; 2.了解滤波器的原理和基本电路; 3.学习使用信号源、交流毫伏表。

二.原理说明1.单个元件阻抗与频率的关系对于电阻元件,根据︒∠=0RR R I U ,其中R I U=R R ,电阻R 与频率无关;对于电感元件,根据LL Lj X I U = ,其中fL X I U π2L L L ==,感抗X L 与频率成正比; 对于电容元件,根据CCC j X I U -= ,其中fC X I U π21C C C ==,容抗X C 与频率成反比。

测量元件阻抗频率特性的电路如图14—1所示,图中的r 是提供测量回路电流用的标准电阻,流过被测元件的电流(I R 、I L 、I C )则可由r 两端的电压U r除以r 阻值所得,又根据上述三个公式,用被测元件的电流除对应的元件电压,便可得到R 、X L 和X C 的数值。

2.交流电路的频率特性由于交流电路中感抗X L 和容抗X C 均与频率有关,因而,输入电压(或称激励信号)在大小不变的情况下,改变频率大小,电路电流和各元件电压(或称响应信号)也会发生变化。

这种电路响应随激励频率变化的特性称为频率特性。

若电路的激励信号为Ex(jω),响应信号为R e(jω),则频率特性函数为)()()j ()j ()j (x e ωϕωωωω∠==A E R N式中,A (ω)为响应信号与激励信号的大小之比,是ω的函数,称为幅频特性;ϕ(ω)为响应信号与激励信号的相位差角,也是ω的函数,称为相频特性。

A A fffa)(b)(c)(图21-2C C C1C2图14-2在本实验中,研究几个典型电路的幅频特性,如图14-2所示,其中,图(a)在高频时有响应(即有输出),称为高通滤波器,图(b)在低频时有响应(即有输出),称为为低通滤波器,图中对应A=0.707的频率fC称为截止频率,在本实验中用RC网络组成的高通滤波器和低通滤波器,它们的截止频率fC均为1/2πRC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东南大学电工电子实验中心实验报告课程名称:电路实验第二次实验实验名称:电路频率特性的研究院(系):仪器科学与工程学院专业:姓名:学号:实验室: 实验组别:同组人员:实验时间:评定成绩:审阅教师:电路频率特性的研究一、 实验目的1. 掌握低通、带通电路的频率特性;2. 应用Multisim 软件测试低通、带通电路频率特性及有关参数;3. 应用Multisim 软件中的波特仪测试电路的频率特性。

二、 实验原理研究电路的频率特性,即是分析研究不同频率的信号作用于电路所产生的响应函数与激励函数的比值关系。

通常情况下,研究具体电路的频率特性,并不需要测试构成电路所有元件上的响应与激励之间的关系,只需要研究由工作目的所决定的某个元件或支路的响应与激励之间的关系。

本实验主要研究一阶RC 低通电路,二阶RLC 低通、带通电路的频率特性。

(一):网络频率特性的定义电路在一个正弦电源激励下稳定时,各部分的响应都是同频率的正弦量,通过正弦量的相量,网络函数|()|H jw 定义为:.().|()||()|j w Y H w H jw e X ϕ== 其中Y 为输出端口的响应,X为输入端口的激励。

由上式可知,网络函数是频率的函数,其中网络函数的模|()|H jw 与频率的关系称为幅频特性,网络函数的相角()w ϕ与频率的关系称为相频特性,后者表示了响应与激励的相位差与频率的关系。

(二):网络频率特性曲线 1. 一阶RC 低通网络网络函数:其模为:辐角为:显然,随着频率的增高,|H(j ω)|将减小,即响应与激励的比值减小,这说明低频信4590(a) RC低通网络(b) 幅频特性(c) 相频特性()H j ω())RC ϕω=().0.1/11/1iU j c H j R j C j RCU ωωωω===++号可以通过,高频信号被衰减或抑制。

当ω=1/RC ,1122f wRCππ==,即U 0 /U i = 0.707.通常把U 0降低到0.707 U i 时的频率f 称为截止频率f0.即012f RCπ=2. 二阶RLC 带通电路..20000..33()(1)10()()[]0()0(1)()(1)()(1)C L C C C C S jQC H j jQ s w L w f w CU j U j d C d s U j U j U j U j U j U j -η==η+η--=→=→=ηη=ηηη=∞=ϕ=-44.997ηη000010w L w f w C -=→=→= 相频特性曲线:(1)当f = f 0 时,ϕ = 0,电路阻性,产生谐振。

(2)当f > f 0 时,ϕ > 0,电路呈电感性。

(3)当f < f 0 时,ϕ < 0,电路呈电容性。

改变电源的频率,使频率为0f =时,电路处于串联谐振状态.当RLC 串联谐振时,0=ϕ,C L U U =,即纯电感和理想电容两端的电压相等。

显然,谐振频率 仅与元件参数LC 的大小有关,而与电阻R 的大小无关。

001L S L U Q U R RC ωω===Q表示,即:001L S L U Q U R RC ωω====可见,当L,C 一定时,改变R 值就能影响电路的选频特性,即R 越小,Q 越大,幅频曲线越窄,选频特性越好。

为了具体说明电路对频率的选择能力,规定幅频特性曲线的0.707LSU U ≥所包含的频率范围定义为电路通频带,用BW 表示.0.707L S U U = 时的频率分别称为上限频率f 2及下限频率f 1,则通频带212()W B f f π=-.显然,BW 越小,曲线的峰就越尖锐,电路的选频性能就越好。

Q 值与BW 得关系为:02Wf Q B π=当电路的通频带大于信号的频带宽度时,对于信号不产生失真有利,即传送信号的保真度高,但电路的选频性变差。

总之,品质因数越高的电路,其通频带越窄,选频特性越好。

3.二阶RLC 低通电路以电容电压()C U j η为输出变量的网络函数()C H j η为:..2()(1)()(1)C jQC H j jQ s U j U j -η==η+η-η 函数()C H j η的极值条件为..[]0()(1)d C d s U j U j =ηη 可求得如下三个极值点1C η、2C η和3C η即对应的极值: 1)10C η=1()1(1)C C S U j U j η=2)2C η=2()(Q>0.707(1)C C S U j Q U j η=>当时)3)3C η=∞3()0(1)C C S U j U j η=又因为033.932f kHz ==≈所以32.0112.1320m f kHz Q ==≈==≈注意:作图时,为使频率特性曲线具有通用性,常以0/f f 作为横坐标。

但是在绘制频率特性曲线时,往往由于涉及的频率范围较宽,若采用均匀分度的频率坐标,势必使低频部分被压缩,而高频部分又相对展得较宽,从而使所绘制的频率特性曲线在低频段不能充分清晰地展示其特点。

若采用对数分度的频率轴,就不会出现这种情况。

对数坐标是将轴按对数规律进行刻度,并非对频率取对数。

三.实验内容1. 测试一阶RC 低通电路的频率特性建立电路图如下:测试电路的截止频率0f :使垂直坐标读数接近0.707,交点处水平坐标的读数即为0f 的数值。

从实验可以得出:0f =144.718kH 从实验可以得出:ϕ=-44.997分析:0f 理论值为0911114.68622*50*22*10f Hz kHz RC ππ-==≈与实际测得的0f =144.718kHz 相差很小,可见实验误差很小,较为准确,也可以看出Multisim 的仿真模拟能力很强。

分别测试0.010f ,0.10f ,0.50f ,50f ,100f ,1000f 点所对应的|()|H jw 和φ的值作出其幅频特性和相频特性图如下(左面为Excel 曲线拟合的结果,右面为波特显示仪里的波形):可以看出,用Excel 拟合所测得点所得的曲线上看,与波特显示仪里的波形显示吻合,说明测量方法及处理没有问题, Multism 模拟正确。

2. 测试二阶RLC 带通电路的频率特性和品质因数由实验原理部分可知:谐振频率0f 理论值为:033.932f kHz ==≈品质因数:001L S L U Q U R RC ωω====(1) R=50Ω时电路图为实验方法同(1),测得:谐振频率0f =33.933kHz 下截止频率f 下=30.181kHz 上截止频率f 上=38.154kHz 所以2()2(38.15430.181)50.096W B f f kHz kHz ππ=-=-≈下上022*33.9334.25650.096W f Q B ππ==≈ 又Q的理论值 4.264Q ==≈可见测量比较准确。

数据记录如下表:作出其幅频特性和相频特性图如下:(2)R=200Ω时电路图如下:测得:谐振频率f=33.935kHz 下截止频率f下=21.564kHz 上截止频率f上=53.396kHz所以2()2(53.39621.564)200.006WB f f kHz kHzππ=-=-≈下上22*33.9351.066200.006WfQBππ==≈又Q的理论值 1.066Q==≈可见测量非常准确。

数据记录如下表:作出其幅频特性和相频特性曲线图如下:将不同电阻值时的幅频特性曲线用Excel 作于一张图上显示:注:蓝色为R=50Ω,红色为R=200Ω分析:1)从曲线上看,两者的最高点对应横坐标相同,表明谐振频率f0没有变,0f =33.933kHz; 0f ’=33.935kHz, 证明了谐振频率的确和电阻R 没关系,电路的LC 没有发生改变,因此谐振频率也没有变化;2)两曲线峰的尖锐程度不同,R=50Ω的更尖锐,即曲线更窄;1W B =50.096kHz ;2W B =200.006kHz ; 1Q =4.264;2Q =1.066 。

验证了当L,C 一定时,改变R 值就能影响电路的选频特性,即电阻R 越小,品质因数Q 越大,通带BW 越窄,幅频曲线越窄,曲线的峰就越尖锐,电路的选频性能就越好。

3. 测试二阶RLC 低通电路的频率特性和品质因数建立如下所示电路图:实验测得0f =33.935kHz , m f =32.014kHz0f 的理论值:033.932f kHz ==≈m f的理论值:32.011m f kHz ==≈ 测得0 2.1306f Q =又Q 理论值 2.1320Q ==≈ 可见测量比较准确。

数据记录如下表:作出其幅频特性和相频特性曲线图如下:比较一阶低通和二阶低通电路幅频特性曲线衰减速率:注:红色为一阶RC低通,蓝色为二阶RLC低通分析:从图中曲线可明显看出,二阶RLC的衰减速率比一阶快。

四、思考题1.电路中输入信号源起什么作用?改变信号源的参数对测试结果有无影响?答:电路中输入信号源的作用是保持电路的输入电压不变。

改变它的电压值、频率值等参数对结果没有影响。

因为研究电路的频率特性,即是分析研究不同频率的信号作用于电路所产生的响应函数与激励函数的比值关系。

频率特性与网络函数只与R、L、C等电路内在因素有关,而与外加的激励是没有关系的。

信号源参数改变,相应输出电压也会发生改变,比值规律不变,即曲线特征不变,因此对测试结果无影响。

相关文档
最新文档