一《周髀算经》与赵爽弦图
勾股定理之“赵爽弦图”模型-2023年新八年级数学核心知识点与常见题型(北师大版)(解析版)

重难点:勾股定理之“赵爽弦图”模型【知识梳理】“赵爽弦图”的面积关系是中考常考的一种题型,一般出现在选择题、填空题中,如果能够记住面积之间的关系,那么做此类题时一定非常高效.【考点剖析】一.选择题(共2小题)1.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC =56的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是()A.76B.72C.68D.52【分析】由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.【解答】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169所以x=13所以“数学风车”的周长是:(13+6)×4=76.故选:A.【点评】本题是勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.2.“赵爽弦图”巧妙地利用面积关系证明了勾股定理.在如图所示的“赵爽弦图”中,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD,EFGH都是正方形.若AB=10,EF=2,则AH 的长为()A.6B.C.6D.8【分析】由题意得,设AH=DE=CF=BG=x,则AE=DF=CG=BH=2+x,再根据勾股定理即可求解.【解答】解:∵△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD,EFGH都是正方形.AB=10,EF=2,∴设AH=DE=CF=BG=x,则AE=DF=CG=BH=2+x,在Rt△AHB中,AB2=AH2+BH2,即102=x2+(x+2)2,整理得,x2+2x﹣48=0,解得:x1=6,x2=﹣8(不符合题意,舍去),∴AH=6.故选:C.【点评】本题考查了正方形的性质、勾股定理、全等三角形的性质,根据题意得到线段的关系,然后根据勾股定理列出方程并求解是解题关键.二.填空题(共4小题)3.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=107,大正方形的面积为57,则小正方形的边长为.【分析】观察图形可知,小正方形的面积=大正方形的面积﹣4个直角三角形的面积,利用已知(a+b)2=107,大正方形的面积为57,可以得出直角三角形的面积,进而求出答案.【解答】解:如图所示:∵(a+b)2=107,∴a2+2ab+b2=107,∵大正方形的面积为57,∴2ab=107﹣57=50,∴小正方形的面积为57﹣50=7,故小正方形的边长为.故答案为:.【点评】本题考查勾股定理的证明,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.4.如图,由四个全等的直角三角形拼成“赵爽弦图”.Rt△ABF中,∠AFB=90°,AF=4,AB=5.四边形EFGH的面积是.【分析】四边形EFGH的面积=四边形ABCD的面积﹣四个全等直角三角形的面积.直角三角形的面积需利用勾股定理求出直角边后解答.【解答】解:因为AB=5,所以S正方形ABCD=5×5=25.Rt△ABF中,AF=4,AB=5,则BF==3,所以SRt△ABF=×3×4=6,四个直角三角形的面积为:6×4=24,四边形EFGH的面积是25﹣24=1.故答案为1【点评】此题主要考查了勾股定理,以及正方形面积、三角形面积,难易程度适中.5.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形E的边长为7cm,则图中五个正方形A、B、C、D、E的面积和为cm2.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:设正方形A、B、C、D的边长分别是a、b、c、d,则正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D、E的面积和=(a2+b2)+(c2+d2)+72=x2+y2+72=72+72=98(cm2).即正方形A,B,C,D、E的面积的和为98cm2.故答案为:98.【点评】本题考查了勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.熟练运用勾股定理进行面积的转换是解题关键.6.图(1)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC 中,若直角边AC=6cm,BC=5cm,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图(2)所示的“数学风车”.则①图中小正方形的面积为;②若给这个“数学风车”的外围装饰彩带,则需要彩带的长度至少是.【分析】①表示出小正方形的边长,然后利用正方形的面积公式列式计算即可得解;②利用勾股定理求出外围直角三角形的斜边,然后根据周长公式列式计算即可得解.【解答】解:图①,小正方形的面积=(6﹣5)2=1cm2;图②,外围直角三角形的斜边==13cm,周长=4×(13+6)=4×19=76cm,即,需要彩带的长度至少是76cm.故答案为:1cm2,76cm.【点评】本题考查了勾股定理的证明,读懂题目信息并准确识图是解题的关键.三.解答题(共3小题)7.如图①,美丽的弦图,蕴含着四个全等的直角三角形.(1)如图①弦图中包含了一大,一小两个正方形,已知每个直角三角形较长的直角边为a.较短的直角边为b,斜边长为c,可以验证勾股定理;(2)如图②,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT 的面积分别为S1、S2、S3,若S1+S2+S3=16,则S2=.【分析】(1)由图可知,小正方形的面积可直用边长乘边长,为(a﹣b)2,也可用大正方形的面积减去四个全等的直角三角形的面积,为,以此即可证明;(2)设正方形MNKT的面积为x,八个全等的直角三角形的面积均为y,可得S1=8y+x,S2=4y+x,S3=x,则S1+S2+S3=12y+3x=16,根据整体思想即可求出S2=4y+x=.【解答】(1)证明:,另一方面,即a2﹣2ab+b2=c2﹣2ab,则a2+b2=c2;(2)解:设正方形MNKT的面积为x,八个全等的直角三角形的面积均为y,∵S1+S2+S3=16,∴S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=12y+3x=16,∴4y+x=,∴S2=4y+x=.故答案为:.【点评】本题主要考查勾股定理的证明,利用数形结合的思想来答题是解题关键.8.我们发现,用不同的方式表示同一图形的面积可以解决线段长度之间关系的有关问题,这种方法称为等面积法,这是一种重要的数学方法.请你用等面积法来探究下列两个问题:(1)如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,请你用它来验证勾股定理;(2)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=4,BC=3,求CD的长度.【分析】(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)先由勾股定理求出AB的长,再根据三角形的面积求CD的长即可.【解答】解:(1)∵大正方形面积为c2,直角三角形面积为ab,小正方形面积为:(b﹣a)2,∴c2=4×ab+(a﹣b)2=2ab+a2﹣2ab+b2即c2=a2+b2.(2)在Rt△ABC中,∵∠ACB=90°,∴由勾股定理,得:AB==5∵CD⊥AB,∴S△ABC=AC•BC=AB•CD∴CD=.【点评】本题考查了学生对勾股定理的证明和对三角形和正方形面积公式的熟练掌握和运用,属于基本题型.9.图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成,面积为74的正方形.在Rt△ABC中,若直角边BC=5,将四个直角三角形中边长为5的直角边分别向外延长一倍,得到图乙所示的“数学风车”.(1)这个风车至少需要绕着中心旋转才能和本身重合;(2)求这个风车的外围周长(图乙中的实线).【分析】(1)根据旋转角及旋转对称图形的定义结合图形特点作答.(2)在直角△ABC中,已知BC,AB,根据勾股定理即可计算AC的长,AC=7,故求得BD即可计算风车的外围周长.【解答】解:(1):∵360°÷4=90°,∴该图形绕中心至少旋转90度后能和原来的图案互相重合.(2)在直角△BCD中,BD为斜边,已知BC=5,AB=,由勾股定理得:AC=7,CD=7+5=12,∴BD==13,∵风车的外围周长为4(BD+AD)=4(13+5)=72.【点评】本题考查了旋转角的定义及勾股定理在直角三角形中的运用,考查了全等三角形对应边相等的性质,本题中正确的计算BD是解题的关键.【过关检测】一.选择题(共10小题)1.(2022春•东城区期末)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=56的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.72B.52C.80D.76【分析】由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.【解答】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169所以x=13所以“数学风车”的周长是:(13+6)×4=76.故选:D.【点评】本题是勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.2.(2021秋•邳州市期中)公元3世纪切,中国古代书学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,勾a=3,弦c=5,则小正方形ABCD的面积为()A.1B.3C.4D.9【分析】根据勾股定理和正方形的面积公式可求解.【解答】解:如图,∵勾a=3,弦c=5,∴股b==4,∴小正方形的边长=4﹣3=1,∴小正方形的面积=12=1,故选:A.【点评】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想.3.(2021春•长垣市期末)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是2和4,则小正方形与大正方形的面积比是()A.1:2B.1:4C.1:5D.1:10【分析】根据题意求得小正方形的边长,根据勾股定理求出大正方形的边长,由正方形的面积公式即可得出结果.【解答】解:∵直角三角形的两条直角边的长分别是2和4,∴小正方形的边长为2,根据勾股定理得:大正方形的边长==2,∴===.故选:C.【点评】本题考查了勾股定理和正方形的面积.本题是用数形结合来证明勾股定理,锻炼了同学们的数形结合的思想方法.4.(2022秋•青秀区校级期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,小正方形的面积为5,则大正方形的面积为()A.12B.13C.14D.15【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出大正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b=,∵(a+b)2=(a﹣b)2+4ab=5+4ab=21,∴ab=4,∴大正方形的面积=4×ab+5=13,故选:B.【点评】本题考查勾股定理的证明,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.5.(2022秋•南岸区校级期中)我国是最早了解勾股定理的国家之一,根据《周髀算经》的记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”.三国时代的蒋铭祖对《蒋铭祖算经》勾股定理作出了详细注释,并给出了另外一种证明.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】根据基础图形的面积公式表示出各个选项的面积,同时根据割补的思想可以写出另外一种面积表示方法,即可得出一个等式,进而可判断能否证明勾股定理.【解答】解:A、大正方形的面积为:c2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:ab×4+(b﹣a)2=a2+b2,∴a2+b2=c2,故A选项能证明勾股定理;B、大正方形的面积为:(a+b)2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:ab×4+c2=2ab+c2,∴(a+b)2=2ab+c2,∴a2+b2=c2,故B选项能证明勾股定理;C、梯形的面积为:(a+b)()=(a2+b2)+ab;也可看作是2个直角三角形和一个等腰直角三角形组成,则其面积为:ab×2+c2=ab+c2,∴ab+c2=(a2+b2)+ab,∴a2+b2=c2,故C选项能证明勾股定理;D、大正方形的面积为:(a+b)2;也可看作是2个矩形和2个小正方形组成,则其面积为:a2+b2+2ab,∴(a+b)2=a2+b2+2ab,∴D选项不能证明勾股定理.故选:D.【点评】本题考查勾股定理的证明方法,熟练掌握内弦图、外弦图是解题关键.6.(2022秋•平湖市期末)在认识了勾股定理的赵爽弦图后,一位同学尝试将5个全等的小正方形嵌入长方形ABCD内部,其中点M,N,P,Q分别在长方形的边AB,BC,CD和AD上,若AB=7,BC=8,则小正方形的边长为()A.B.C.D.2【分析】将每个小正方形按照如图所示分成四个全等的直角三角形和一个正方形,设每个直角三角形的较大的直角边为x,较小的直角边为y,根据AB=7,BC=8,列出二元一次方程组,求出x和y,再求出边长即可.【解答】解:将每个小正方形按照如图所示分成四个全等的直角三角形和一个正方形,设每个直角三角形的较大的直角边为x,较小的直角边为y,∵AB=7,BC=8,∴,解得,∴小正方形的边长为=.故选A.【点评】本题考查了勾股定理与二元一次方程组的应用,根据题意运用好赵爽弦图是解题关键.7.(2022秋•鄄城县校级月考)如图,阴影部分是两个正方形,图中还有一个直角三角形和一个空白的正方形,阴影部分的面积为25cm2,直角三角形①中较长的直角边长12cm,则直角三角形①的面积是()A.16cm2B.25cm2C.30cm2D.169cm2【分析】两个阴影正方形的面积和等于直角三角形另一未知边的平方.利用勾股定理即可求出.【解答】解:∵两个阴影正方形的面积和等于直角三角形另一未知边的平方,∴直角三角形①中较短的直角边长5cm,∵直角三角形①中较长的直角边长12cm,∴直角三角形①的面积=(cm2),故选:C.【点评】考查了正方形的面积以及勾股定理的应用.推知“正方形的面积和等于直角三角形另一未知边的平方”是解题的难点.8.(2021秋•鹿城区校级期中)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,分别以AC,BC,AB为一边在△ABC外面做三个正方形,记三个正方形的面积依次为S1,S2,S3,已知S1=4,则S3为()A.8B.16C.4D.4+4【分析】根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案.【解答】解:∵S1=AC2=4,∴AC=2,∵Rt△ABC中,∠ACB=90°,∠ABC=30°,∴AB=2AC=4,∴S3=AB2=16,故选:B.【点评】本题考查了勾股定理和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积.9.(2022秋•温州期末)如图,大正方形ABCD由四个全等的直角三角形和一个小正方形拼接而成.点E为小正方形的顶点,延长CE交AD于点F,连结BF交小正方形的一边于点G,若△BCF为等腰三角形,AG=5,则小正方形的面积为()A.15B.16C.20D.25【分析】由等腰三角形性质可得出BF=CF,利用HL可证得Rt△ABF≌Rt△DCF(HL),得出AB=AD=2AF,根据余角的性质得出∠BAG=∠ABF,进而推出CF=BF=2AG=10,利用面积法求得BN=8,再运用勾股定理求得CN=4,即可求得答案.【解答】解:设小正方形为EHMN,如图,∵四边形ABCD和四边形EHMN是正方形,∴AB=AD=CD,∠BAD=90°,CF∥AG,∵△BCF为等腰三角形,且BF>AB=BC,CF>CD=BC,∴BF=CF,在Rt△ABF和Rt△DCF中,,∴Rt△ABF≌Rt△DCF(HL),∴∠AFB=∠CFD,AF=DF,∴AB=AD=2AF,∵CF∥AG,∴∠CFD=∠DAG,∴∠AFB=∠DAG,∴AG=FG,∵∠AFB+∠ABF=90°,∠DAG+∠BAG=90°,∴∠BAG=∠ABF,∴AG=BG,∴CF=BF=2AG=10,在Rt△ABF中,AB2+AF2=BF2,∴(2AF)2+AF2=102,∴AF=2,∴AB=BC=4,∵S△BCF=BC•AB=CF•BN,∴BN===8,∴CN===4,∵△ABM≌△BCN,∴BM=CN=4,∴MN=BN﹣BM=8﹣4=4,∴S正方形EHMN=(MN)2=42=16,故选:B.【点评】本题主要考查了正方形的性质,全等三角形的判定和性质,等腰三角形的判定与性质,平行线的性质,勾股定理,三角形面积等,利用面积法求得BN是解题的关键.10.(2022春•南浔区期末)赵爽弦图由四个全等的直角三角形所组成,形成一个大正方形,中间是一个小正方形(如图所示).某次课后服务拓展学习上,小浔绘制了一幅赵爽弦图,她将EG延长交CD于点I.记小正方形EFGH的面积为S1,大正方形ABCD的面积为S2,若DI=2,CI=1,S2=5S1,则GI的值是()A.B.C.D.【分析】如图,连接DG,先由已知条件分别求得S2=CD2=32=9,S1=,小正方形边长为,再由勾股定理得:EG==,设AE=BF=CG=DH=x,则AF=BG=CH=DE=x+,由勾股定理得:CD2=DH2+CH2,即9=x2+(x+)2,进而得AE=BF=CG=DH=x==EH,再得CH垂直平分ED,再由三角形的“三线合一”得∠DGH=∠HGE=45°进而得∠DGI=90°最后由勾股定理得:GI===,即得选项A.【解答】解:如图,连接DG,∵赵爽弦图由四个全等的直角三角形所组成,形成一个大正方形,中间是一个小正方形,∴AE=BF=CG=DH,AF=BG=CH=DE,CH⊥DE,∵DI=2,CI=1,∴CD=DI+CI=2+1=3,∵大正方形ABCD的面积为S2,∴S2=CD2=32=9,又∵小正方形EFGH的面积为S1,S2=5S1,∴S1=,∴EF=FG=GH=HE=,∵将EG延长交CD于点I,∴∠HGE=45°,在Rt△EHG中,由勾股定理得:EG==,设AE=BF=CG=DH=x,则AF=BG=CH=DE=x+,在Rt△CDH中,由勾股定理得:CD2=DH2+CH2,即9=x2+(x+)2,解得:x1=,x2=﹣(不合题意,舍去),即AE=BF=CG=DH=x=,∴DH=EH=,∴CH垂直平分ED,∴DG=EG=,∴∠DGH=∠HGE=45°,∴∠DGE=45°+45°=90°,∴∠DGI=90°,在Rt△DGI中,由勾股定理得:GI===,故选:A.【点评】本题是一道勾股定理的综合题,主要考查了全等三角形的性质,正方形的性质,勾股定理,线段的中垂线判定与性质,等腰三角形的“三线合一”,二次根式计算与化简,关键是巧添辅助线构等腰直角三角形,顺利实现求得答案.二.填空题(共7小题)11.(2022秋•锡山区期中)如图,在△ABC中,∠C=90°,AC=5,BC=12.以AB为一边在△ABC的同侧作正方形ABDE,则图中阴影部分的面积为.【分析】首先利用勾股定理求得AB边的长度,然后由三角形的面积公式和正方形的面积公式解答.【解答】解:如图,Rt△ABC中,∠ACB=90°,BC=12,AC=5,由勾股定理知,AB==13.故S阴影=S正方形ABDE﹣S△ABC=132﹣×5×12=169﹣30=139.故答案为:139.【点评】本题主要考查了勾股定理,求阴影部分的面积时,采用了“分割法”.12.(2022秋•德惠市期末)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形EFGH拼成的大正方形ABCD.若AE=5,AB=13,则中间小正方形EFGH的面积是.【分析】根据题意和题目中的数据,可以计算出小正方形的边长,即可得到小正方形的面积.【解答】解:∵AE=5,AB=13,∴BF=AE=5,在Rt△ABF中,AF==12,∴小正方形的边长EF=12﹣5=7,∴小正方形EFGH的面积为7×7=49.故答案为:49.【点评】本题考查了勾股定理的证明,熟练掌握勾股定理是解题的关键.13.(2022秋•建邺区校级期中)将四个全等的直角三角形分别拼成正方形(如图1,2),边长分别为6和2.若以一个直角三角形的两条直角边为边向外作正方形(如图3),其面积分别为S1,S2.则S1﹣S2=.【分析】首先设四个全等的直角三角形的两条直角边分别为a,b(a>b),然后根据图1、2列出关于a、b 的方程组即可求解.【解答】解:设四个全等的直角三角形的两条直角边分别为a,b(a>b),根据图1得:a+b=6,根据图2得:a﹣b=2,联立解得:,∴S1=16,S2=4,则S1﹣S2=12.故答案为:12.【点评】此题主要考查了勾股定理证明的应用,解题的关键是正确理解图形中隐含的数量关系.14.(2021秋•龙泉驿区校级月考)如图,是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,若大正方形的面积是17,小正方形的面积是1,直角三角形的两直角边分别为a,b,则(a+b)2的值是.【分析】先由拼图列出关于面积的方程,再由勾股定理列一个直角三角形三边的方程并整理,最后把值整体代入和平方的展开式(a+b)2=a2+b2+2ab即可得出答案.【解答】解:∵由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形的面积是17,小正方形的面积是1,直角三角形的两直角边分别为a,b,∴,即,∴(a+b)2=a2+b2+2ab=17+16=33.故答案为:33.【点评】这是一道勾股定理综合题,主要考查了拼图列方程,发现各个图形的面积和a,b的关系是解题关键.15.(2022秋•金台区校级月考)如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是.【分析】通过勾股定理可将“数学风车”的斜边求出,然后可求出风车外围的周长.【解答】解:设将AC延长到点D,连接BD,根据题意,得CD=6×2=12,BC=5.∵∠BCD=90°∴BC2+CD2=BD2,即52+122=BD2∴BD=13∴AD+BD=6+13=19∴这个风车的外围周长是19×4=76.故答案为:76.【点评】本题考查勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.16.(2022秋•工业园区校级期中)如图,在弦图中,正方形ABCD的对角线AC与正方形EFHI的对角线EH交于点K,对角线AC交正方形EFHI于G,J两点,记△GKH面积为S1,△JIC面积为S2,若AE=12,CD=4,则S1+S2的值为.【分析】由题意可得AF=CI,∠AFG=∠CIJ=90°,FH∥EI,即可证明△AFG≌△CIJ,FG=IJ,再根据四边形EFHI为正方形,得到△GHK≌△JEK,从而得到点K为正方形EFHI的中心,过点K作KM⊥FH于点M,由勾股定理得DE=4,FH=8,KM=4,设GH=a,FG=b,则a+b=FH=8,最后用a,b表示出S1+S2=2(a+b),将a+b的值代入即可求解.【解答】解:由题意可得,AF=CI,∠AFG=∠CIJ=90°,FH∥EI,∵∠AGF=∠HGK,∠IJC=∠KJE,∵FH∥EI,∴∠HGK=∠KJE,∴∠AGF=∠IJC,在△AFG和△CIJ中,,∴△AFG≌△CIJ(AAS),∴FG=IJ,∵四边形EFHI为正方形,∴EI﹣IJ=FH﹣FG,即HG=EJ,在△GHK和△JEK中,,∴△GHK≌△JEK(AAS),∴HK=EK,即点K为正方形EFHI的中心,如图,过点K作KM⊥FH于点M,∵AE=12,CD=4,∴BF=12,AD=,在Rt△ADE中,由勾股定理得DE==4,∴AF=DE=4,EF=AE﹣AF=12﹣4=8,则FH=8,KM=4,设GH=a,FG=b,则a+b=FH=8,∴=,==2b,∴S1+S2=2a+2b=2(a+b)=16.故答案为:16.【点评】本题主要考查全等三角形的判定与性质,勾股定理,三角形的面积,正方形的性质,解题的关键是寻找全等三角形的条件解决问题.17.(2022秋•宁德期中)我国古代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由4个全等的直角三角形与1个小正方形拼成的一个大正方形,如图,若拼成的大正方形为正方形ABCD,面积为9,中间的小正方形为正方形EFGH,面积为2,连接AC,交BG于点P,交DE于点M,①△CGP≌△AEM,②S△AFP﹣S△CGP=,③DH+HC=4,④HC=2+,以上说法正确的是.(填写序号)【分析】由全等三角形的性质,勾股定理,完全平方公式,结合“赵爽弦图”的特点,可以解决问题.【解答】解:∵Rt△BCG≌Rt△∴CG=AE,∠CGP=∠AEM,∵CH∥AF.∴∠GCP=∠MAE,∴△CGP≌△AEM(ASA),∴S△CGP=S△AEM,CP=ME,∴S△AFP﹣S△CGP=S四边形MEFP∵HE=GF,∴HM=PF,∴S四边形MEFP=S四边形MHGP=S正方形EFGH=1,∴S△AFP﹣S△CGP=1,∵DH2+CH2=DC2=9,∴(DH+CH)2=DH2+CH2+2DH•CH=9+2DH•CH,∵CH﹣DH=HG,∴(CH﹣DH)2=HG2=2,∴CH2+DH2﹣2DH•CH=2,∴2DH•CH=7,∴(DH+CH)2=9+7=16,∴DH+CH=4,∵CH﹣DH=,∴HC==2+,故答案为:①③④.【点评】本题考查全等三角形的性质和判定,勾股定理,完全平方公式,关键是读懂“赵爽弦图”并灵活应用以上定理和公式.三.解答题(共2小题)18.(2021秋•凤翔县期中)如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即,从而得到等式c2=,化简便得结论a2+b2=c2.现在,请你用“双求法”解决下面两个问题(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.【分析】(1)先根据勾股定理先求出AB,再根据“双求法”求出CD的长度;(2)运用两个直角三角形根据勾股定理表示出AD,德关于x的方程求解.【解答】解:(1)在Rt△ABC中,由面积的两种算法可得:,解得:CD=.(2)在Rt△ABD中AD2=42﹣x2=16﹣x2,在Rt△ADC中AD2=52﹣(6﹣x)2=﹣11+12x﹣x2,所以16﹣x2=﹣11+12x﹣x2,解得=.【点评】此题考查的知识点是勾股定理的应用,关键是运用勾股定理求解.19.(2021春•利辛县期中)如图,小明用4个图1中的矩形组成图2,其中四边形ABCD,EFGH,MNPQ都是正方形,证明:a2+b2=c2.【分析】由题意可得:S正方形ABCD=(a+b)2,S正方形EFGH=c2,S△BEF=×ab,再根据S正方形ABCD=S正方形EFGH+4S△BEF,即可证得结论.【解答】证明:∵四边形ABCD,EFGH,MNPQ都是正方形,∴S正方形ABCD=(a+b)2,S正方形EFGH=c2,S△BEF=×ab,∵S正方形ABCD=S正方形EFGH+4S△BEF,∴(a+b)2=c2+4××ab,∴a2+2ab+b2=c2+2ab,∴a2+b2=c2.【点评】本题是勾股定理证明题,考查了直角三角形面积,正方形面积,利用图形面积得出结论是解题关键.。
数学文化之赵爽弦图

赵爽弦图
中国最早的一部数学著作—《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形的一条直角边“勾”等于3,另一条直角边“股”等于4的时候,那么它的斜边“弦”就必定是5.这个原理是大禹在治水的时候就总结出来的啊.”
我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.
2000多年来,人们对勾股定理的证明颇感兴趣.不但因为这个定理重要、基本,还因为这个定理贴近人们的生活实际.以至于古往今来,下至平明百姓,上至帝王总统都愿意探讨、研究它的证明,新的证法不断出现.下面介绍几种用来证明勾股定理的图形,你能根据这些图形及提示证明勾股定理吗?
传说中毕达哥拉斯的证法(图1)
提示:(1)中拼成的正方形与(2)中拼成的正方形面积相等.
2.弦图的另一种证法(图2)
提示:以斜边为边长的正方形的面积+4个三角形的面积=外正方形的面积.
3.美国第20任总统詹姆斯加菲尔德的证法(图3)
提示:3个三角形的面积之和=梯形的面积.。
专题04 勾股定理常考压轴题汇总(解析版)

专题04勾股定理常考压轴题汇总一.选择题(共23小题)1.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成一个大正方形.如图,直角三角形的直角边长为a、b,斜边长为c.若b﹣a=2,c=10,则a+b的值为()A.12B.14C.16D.18【答案】B【解答】解:由图可得,a2+b2=c2,∴且a、b均大于0,解得,∴a+b=6+8=14,故选:B.2.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.【答案】B【解答】解:第一种情况:把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是6和3,则所走的最短线段是=3;第二种情况:把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是5和4,所以走的最短线段是=;第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是7和2,所以走的最短线段是=;三种情况比较而言,第二种情况最短.所以它需要爬行的最短路线的长是,故选:B.3.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定【答案】C【解答】解:如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,∵△ACG,△BCH,△ABF是等边三角形,∴S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,∴S1+S3=(a2+b2)﹣S5﹣S6,∵S2+S4=S△ABF﹣S5﹣S6=c2﹣S5﹣S6,∵c2=a2+b2,∴S1+S3=S2+S4,故选:C.4.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI 上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.【答案】B【解答】解:∵四边形ABGF是正方形,∴∠FAB=∠AFG=∠ACB=90°,∴∠FAC+∠BAC=∠FAC+∠ABC=90°,∴∠FAC=∠ABC,在△FAM与△ABN中,,∴△FAM≌△ABN(ASA),=S△ABN,∴S△F AM=S四边形FNCM,∴S△ABC∵在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=6,∴(AC+BC)2=AC2+BC2+2AC•BC=36,∴AB2+2AC•BC=36,=10.5,∵AB2﹣2S△ABC∴AB2﹣AC•BC=10.5,∴3AB2=57,解得AB=或﹣(负值舍去).故选:B.5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2【答案】C【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.6.如图,阴影部分表示以Rt△ABC的各边为直径向上作三个半圆所组成的两个新月形,面积分别记作S1和S2.若S1+S2=7,AC=3,则BC长是()A.3.5B.C.4D.5【答案】B【解答】解:以AC为直径的半圆的面积=×π×=π,同理:以BC为直径的半圆的面积=π,以AB为直径的半圆的面积=π,∴S1+S2=π+π+△ABC的面积﹣π,∵∠ACB=90°,∴AC2+BC2=AB2,∴S1+S2=△ABC的面积=AC•BC=7,∵AC=3,∴BC=.故选:B.7.如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm 的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm【答案】A【解答】解:当GI最大时,GJ最小,当I运动到点A时,GI最大,此时GI=cm,而AC2=AB2+BC2=42+32=25,∴GI===5(cm),∴GJ长度的最小值为(10﹣5)cm.故选:A.8.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.410【答案】B【解答】解:如图,延长AB交KL于P,延长AC交LM于Q,由题意得,∠BAC=∠BPF=∠FBC=90°,BC=BF,∴∠ABC+∠ACB=90°=∠PBF+∠ABC,∴∠ACB=∠PBF,∴△ABC≌△PFB(AAS),同理可证△ABC≌△QCG(AAS),∴PB=AC=8,CQ=AB=6,∵图2是由图1放入长方形内得到,∴IP=8+6+8=22,DQ=6+8+6=20,∴长方形KLMJ的面积=22×20=440.故选:B.9.国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km【答案】D【解答】解:过点B作BC⊥AC,垂足为C.观察图形可知AC=9﹣7+4﹣1=5(km),BC=3+2+1=6(km),在Rt△ACB中,AB=(km).答:门口A到藏宝点B的直线距离是km,故选:D.10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AB=9,BC=6,则BD的长为()A.3B.4C.5D.6【答案】B【解答】解:∵∠ACB=90°,AB=9,BC=6,∴,∵,∴AC•BC=AB•CD,,,∵CD⊥AB,∴∠CDB=90°,∴,故选:B.11.如图,某小区有一块长方形花圃,为了方便居民不用再走拐角,打算用瓷砖铺上一条新路,居民走新路比走拐角近()A.2m B.3m C.3.5m D.4m【答案】D【解答】解:根据勾股定理求得,AB==10(m),∴AC+BC﹣AB=6+8﹣10=4(m),故选:D.12.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.144【答案】A【解答】解:设将CA延长到点D,连接BD,根据题意,得CD=12×2=24,BC=7,∵∠BCD=90°,∴BC2+CD2=BD2,即72+242=BD2,∴BD=25,∴AD+BD=12+25=37,∴这个风车的外围周长是37×4=148.故选:A.13.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.5B.C.6D.【答案】C【解答】解:如图,连接AC,取AC的中点为M,连接DM、EM,∵AD⊥CD,∴∠ADC=90°,∵AD=8,CD=6,∴AC=,∵M是AC的中点,∴DM=AC=5,∵M是AC的中点,E是AB的中点,∴EM是△ABC的中位线,∵BC=2,∴EM=BC=1,∵DE≤DM+EM(当且仅当点M在线段DE上时,等号成立),∴DE≤6,∴DE的最大值为6.故选:C.14.如图,长为8cm的橡皮筋放置在数轴上,固定两端A和B,然后把中点C垂直向上拉升3cm到D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.1cm【答案】A【解答】解:∵点C为线段AB的中点,∴AC=AB=4cm,在Rt△ACD中,CD=3cm;根据勾股定理,得:AD==5(cm);∵CD⊥AB,∴∠DCA=∠DCB=90°,在△ADC和△BDC中,,∴△ADC≌△BDC(SAS),∴AD=BD=5cm,∴AD+BD﹣AB=2AD﹣AB=10﹣8=2(cm);∴橡皮筋被拉长了2cm.故选:A.15.如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A.B.C.D.【答案】A【解答】解:由题意可得∠BAC=90°,AB=1,AC=3﹣1=2,则CB==,那么点P表示的实数为3﹣,故选:A.16.“四千年来,数学的道理还是相通的”.运用祖冲之的出入相补原理也可证明勾股定理.若图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,则大正方形的边长是()A.B.C.D.【答案】D【解答】解:如下图,设图中直角三角形的两条直角边长分别为a、b,斜边为c,∵图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,∴可有,解得c2=18,解得或(不合题意,舍去),∴大正方形的边长是.故选:D.17.如图所示的一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A.5米B.6米C.7米D.8米【答案】C【解答】解:∵△ABC是直角三角形,BC=3m,AB=5m∴AC==4(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AC+BC=7米,故选:C.18.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要细带.数学家欧几里得利用如图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACKJ,正方形ABFE,正方形BCIH,连接AH.CF,具中正方形BCIH面积为1,正方形ABFE面积为5,则以CF为边长的正方形面积为()A.4B.5C.6D.10【答案】D【解答】解:过点C作CM⊥EF于点M,交AB于点N,∵正方形ABFE面积为5,正方形BCIH面积为1,∴CN⊥AB,BC=1,AB=MN=,BN=FN,∵△ABC是直角三角形,∠ACB=90°,∴AC===2,∴,即=CN,∴CN=,∴BN=FM===,∴CM=CN+MN==,∴CF=10,∴以CF为边长的正方形面积为10.故选:D.19.如图,Rt△ABC中,∠C=90°.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN.四块阴影部分的面积如图所示分别记为S、S1、S2、S3,若S=10,则S1+S2+S3等于()A.10B.15C.20D.30【答案】C【解答】解:如图,过E作BC的垂线交ED于D,连接EM.在△ACB和△BDE中,∠ACB=∠BDE=90°,∠CAB=∠EBD,AB=BD,∴△ACB≌△BND(AAS),同理,Rt△GDE≌Rt△HCB,∴GE=HB,∠EGD=∠BHC,∴FG=EH,∴DE=BC=CM,∵DE∥CM,∴四边形DCME是平行四边形,∵∠DCM=90°,∴四边形DCME是矩形,∴∠EMC=90°,∴E、M、N三点共线,∵∠P=∠EMH=90°,∠PGF=∠DGE=∠BHC=∠EHM,∴△PGF≌△MHE(AAS),∵图中S1=S Rt△EMH,S△BHC=S△EGD,∴S1+S3=S Rt△ABC.S2=S△ABC,∴S1+S2+S3=Rt△ABC的面积×2=20.故选:C.20.如图,在Rt△ABC中,∠C=90°,分别以AB、AC、BC为直径向外作半圆,它们的面积分别记作S1、S2、S3,若S1=25,S3=16,则S2为()A.9B.11C.32D.41【答案】A【解答】解:在Rt△ABC中,∠C=90°,∴AB2=AC2+BC2.∵S1=(AB)2π=AB2=25,∴AB2=25×.同理BC2=16×.∴AC2=AB2﹣BC2=25×﹣16×=9×.∴S1=(AC)2π=AC2=×9×=9.故选:A.21.如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4.若已知S△ABC=S,则下列结论:①S4=S;②S2=S;③S1+S3=S2;④S1+S2+S3+S4=2.5S.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④【答案】A【解答】解:由题意有Rt△EBD≌Rt△ABC,∴S4=S;故①正确;过F作AM的垂线交AM于N,由题意,得Rt△ANF≌Rt△ABC,Rt△NFK≌Rt△CAT,所以S2=S,故②正确;连接FP,FQ,由题意,可得△AQF≌△ACB,则F,P,Q三点共线,由Rt△NFK≌Rt△CAT可得Rt△FPT≌Rt△EMK,∴S3=S△FPT,可得Rt△AQF≌Rt△ACB,∴S1+S3=S Rt△AQF=S,故③正确;S1+S2+S3+S4=(S1+S3)+S2+S4+S Rt△ABC+S Rt△ABC=S Rt△ABC×3=S Rt△ABC=3S,故④不正确.故选:A.22.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.14【答案】C【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.23.将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFGH.现将四个直角三角形的较长直角边分别向外延长,且A′E=ME.B′F =NF,C′G=PG,D′H=HQ,得到图2所示的“新型数学风车”的四个叶片,即△A′EF,△B′FG,△C′CH.△D′HE.若FM平分∠BFE,正方形ABCD和正方形EFGH 的边长比为1:5.若”新型数学风车”的四个叶片面积和是m,则正方形EFCH的面积是()A.B.C.3m D.【答案】B【解答】解:∵将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFCH.正方形ABCD和正方形EFGH的边长比为1:5.∴设正方形ABCD的边长为a,则正方形EFGH的边长为5a,设AE=BF=CG=DH=x,在△BEF中,BE2+BF2=EF2,即(x+a)2+x2=(5a)2,x2+ax﹣12a2=0,(x+4a)(x﹣3a)=0,x=﹣4a(舍去)或x=3a,∴BE=4a,BF=3a,EF=5a,∵FM平分∠BFE,∴△EMF边EF上的高为BM,+S△MBF=S△BEF,则S△BMF即,∴,∴BM=,∵A'E=ME=BE﹣BM=4a﹣a,若”新型数学风车”的四个叶片面积和是m,=S△EF A'=m,∴S△EMF∴,∴a m,∴a=∴EF=5a=,=EF=,∴S正方形EFCH故选:B.二.填空题(共14小题)24.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为32cm.【答案】32.【解答】解:由题意得:BD=7cm,AB=CD=3cm,∴BC=7﹣3=4(cm),由勾股定理得:AC==5(cm),∴阴影的周长=4(AB+AC)=4×(3+5)=32(cm).故答案为:32.25.如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接PA,当△ABP为等腰三角形时,t的值为16或10或.【答案】16或10或.【解答】解:在△ABC中,∠ACB=90°,由勾股定理得:BC=cm,∵△ABP为等腰三角形,当AB=AP时,则BP=2BC=16cm,即t=16;当BA=BP=10cm时,则t=10;当PA=PB时,如图:设BP=PA=x cm,则PC=(8﹣x)cm,在Rt△ACP中,由勾股定理得:PC2+AC2=AP2,∴(8﹣x)2+62=x2,解得x=,∴t=.综上所述:t的值为16或10或.故答案为:16或10或.26.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为.【答案】.【解答】解:当BN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BN===,故答案为:.27.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示“垂美”四边形ABCD,对角线AC,BD交于点O,若AB=6,CD=10,则AD2+BC2=136.【答案】136.【解答】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,∴BO2+CO2=CB2,OB2+OA2=AB2=36,OA2+OD2=AD2,OC2+OD2=CD2=100,∴BO2+CO2+OA2+OB2=36+100,∴AD2+CB2=BO2+CO2+OA2+OB2=136;故答案为:136.28.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为(9,12)或(3,12)或(24,12).【答案】(9,12)或(6,12)或(24,12).【解答】解:由题意,当△ODP是腰长为15的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=15,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=12.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD﹣DE=15﹣9=6,∴此时点P坐标为(6,12);(2)如答图②所示,OP=OD=15.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===9,∴此时点P坐标为(9,12);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD+DE=15+9=24,∴此时点P坐标为(24,12).综上所述,点P的坐标为:(9,12)或(6,12)或(24,12);故答案为:(9,12)或(6,12)或(24,12).29.《勾股》中记载了这样一个问题:“今有开门去阃(kǔn)一尺不合2寸,问门广几何?”意思是:如图推开两扇门(AD和BC),门边沿D,C两点到门槛AB的距离是1尺(1尺=10寸),两扇门的间隙CD为2寸,则门槛AB长为101寸.【答案】101.【解答】解:设OA=OB=AD=BC=r寸,如图,过D作DE⊥AB于点E,则DE=10寸,OE=CD=1(寸),AE=(r﹣1)寸,在Rt△ADE中,由勾股定理得:AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101,即门槛AB长为101寸,故答案为:101.30.如图,在某次军事演习中,舰艇1号在指挥中心(O处)北偏西30°的A处,舰艇2号在指挥中心南偏东60°的B处,并且OA=OB.接到行动指令后,舰艇1号向正东方向以60海里/小时的速度前进,舰艇2号沿北偏东60°的方向以m海里/小时的速度前进.1.5小时后,指挥中心观测到两舰艇分别到达点E,F处,若∠EOF=75°,EF=210海里,则m的值为80.【答案】80.【解答】解:延长AE、BF相交于点C,∵∠AOB=30°+90°+30°=150°,∠EOF=75°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(60°+60°)=180°,延长FB至D,使BD=AE,连接OD,∵∠OBD=∠OBC,∴.∠OBD=∠A,∴△OBD≌△OAE(SAS),∴OD=OE,∠BOD=∠AOE,∵∠EOF=∠AOB=∠EOD,∴.∠EOF=∠DOF,又∵OF=OF,∴△EOF≌△DOF(SAS),∴EF=AE+BF,即EF=1.5×(60+m)=210.解得m=80.故答案为:80.31.如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB=5,EF=1,则GM的长为.【解答】解:由图可知∠AED=90°,AB=5,EF=1,∵大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,故AE=BF=GC=DH,设DE=x,则在Rt△AED中,AD=AB=5,AE=1+x,根据勾股定理,得AD2=DE2+AE2,即52=x2+(1+x)2,解得:x1=3,x2=﹣4(舍去).过点M作MN⊥FB于点N,如图所示.∵四边形EFGH为正方形,EG为对角线,∴△EFG为等腰直角三角形,∴∠EGF=∠NGM=45°,故△GNM为等腰直角三角形.设GN=NM=a,则NB=GB﹣GN=3﹣a,∵MN∥AF,∴△BMN∽△BAF,∴=,将MN=a,AF=3,BN=3﹣a,BF=4代入,得=,解得a=,∴MN=GN=,在Rt△MGN中,由勾股定理,得GM===.32.如图,铁路上A、D两点相距25千米,B,C为两村庄,AB⊥AD于A,CD⊥AD于D,已知AB=15km,CD=10km,现在要在铁路AD上建一个土特产品收购站P,使得B、C 两村到P站的距离相等,则P站应建在距点A10千米.【答案】10.【解答】解:设AP=x千米,则DP=(25﹣x)千米,∵B、C两村到P站的距离相等,∴BP=PC.在Rt△APB中,由勾股定理得BP2=AB2+AP2,在Rt△DPC中,由勾股定理得PC2=CD2+PD2,∴AB2+AP2=CD2+PD2,又∵AB=15km,CD=10km,∴152+x2=102+(25﹣x)2,∴x=10.故答案为:10.33.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm(杯壁厚度不计).【答案】见试题解答内容【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.34.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.【答案】.【解答】解:如图,连接BP,在△ABC中,AB=AC=10,BC=12,AD=8,∴BD=DC,∴BP=PC,∴PC+PQ=BP+PQ=BQ,∴当B,P,Q共线时,PC+PQ的值最小,∴当BQ⊥AC时,BQ的值最小,令AQ'=a,则CQ'=10﹣a,∵BQ'⊥AC,∴AB2﹣AQ'2=BC2﹣CQ'2,即102﹣a2=122﹣(10﹣a)2,解得a=,∴BQ'==,∴PC+PQ的最小值为,故答案为:.35.如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为2.【答案】2.【解答】解:过A点作AG∥BC,截取AG=AC,连接FG,BG,过B作BR⊥AG,交AG的反向延长线于R,则∠RBC=∠BRA=90°,∴∠GAF=∠ACE,在△AFG和△CEA中,,∴△AFG≌△CEA(SAS),∴GF=AE,∴AE+BF的最小值,即为BG的长,∵∠ABC=45°,∴∠RAB=∠EBA=45°,∵AB=4,∴BR=AR=4,∵AC=6,∴AG=AC=6,∴RG=AR+AG=4+6=10,∴BG===2,即AE+BF的最小值为2.故答案为:2.36.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.【答案】.【解答】解:∵在△ABC中,AB=9cm,AC=12cm,BC=15cm,∴BC2=AB2+AC2,∴∠A=90°,∵MD⊥AB,ME⊥AC,∴∠A=∠ADM=∠AEM=90°,∴四边形ADME是矩形,∴DE=AM,当AM⊥BC时,AM的长最短,根据三角形的面积公式得:AB•AC=BC•AM,∴9×12=15AM,AM=,即DE的最小值是cm.故答案为:.37.如图,Rt△ABC中,.点P为△ABC内一点,PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是.【答案】.【解答】解:如图所示,取AC中点O,连接PO,BO,∵PA2+PC2=AC2,∴∠APC=90°,∴,∵BP+OP≥OB,∴当B、P、O三点共线时BP+OP有最小值,即此时BP有最小值,∵∠ACB=90°,∴,∴BP=BO﹣OP=2,∴BP=PO,又∠ACB=90°,∴PC=BO=2,∴PC=PO=CO,∴△OPC是等边三角形,∴∠PCO=60°,∠PAC=30°∴AP==2,∴,故答案为:.三.解答题(共4小题)38.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【答案】见试题解答内容【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.39.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.【答案】或10或16.【解答】解:在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,∴BC=,当AP=BP时,如图1,则AP=t,PC=BC﹣BP=8﹣t,在Rt△ACP中,AC2+CP2=AP2,∴62+(8﹣t)2=t2,解得t=;当AB=BP时,如图2,则BP=t=10;当AB=AP时,如图3,则BP=2BC;∴t=2×8=16,综上,t的值为或10或16.40.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?【答案】(1)海港C受台风影响,理由见解答过程;(2)台风影响该海港持续的时间为小时.【解答】解:(1)海港C受台风影响,理由:∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;过点C作CD⊥AB于D,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围260km以内为受影响区域,∴海港C受台风影响;(2)当EC=260km,FC=260km时,正好影响C港口,∵ED=(km),∴EF=2ED=200km,∵台风的速度为28千米/小时,∴200÷28=(小时).答:台风影响该海港持续的时间为小时.41.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.【答案】见试题解答内容【解答】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC﹣∠BAE=90°﹣(∠DAE﹣∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°﹣∠ABC=135°∴∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.。
第1章勾股定理 单元综合测试题 2022—2023学年北师大版数学八年级上册(含答案)

2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元综合测试题(附答案)一.选择题(共10小题,满分40分)1.我国汉代的赵爽在注释《周髀算经》时给出了勾股定理的无字证明,人们称它为“赵爽弦图”,“赵爽弦图”指的是()A.B.C.D.2.下列各组数中,属于勾股数的是()A.1,1.7,2B.1.5,2,2.5C.6,8,10D.5,6,73.如图,以Rt△ABC的三边为直径分别向外作半圆,若斜边AB=3,则图中阴影部分的面积为()A.9πB.C.D.3π4.如图,在△ABC中,AB=AC=10,BC=12,AD平分∠BAC,则AD等于()A.6B.7C.8D.95.在△ABC中,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是()A.5B.6C.4D.4.86.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于()A.1.2米B.1.5米C.2.0米D.2.5米7.如图,一根长25m的梯子,斜立在一竖直的墙上,这时梯足距离底端7m.如果梯子的顶端下滑4m,那么梯足将滑动()A.7m B.8m C.9m D.10m8.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是()A.6cm B.8cm C.10cm D.12cm9.以下列各组数为边长,能构成直角三角形的是()A.3,4,5B.4,5,6C.1,2,3D.32,42,52 10.现有四块正方形纸片,面积分别是4,6,8,10,从中选取三块按如图的方式组成图案,若要使所围成的三角形是直角三角形,则要选取的三块纸片的面积分别是()A.4,6,8B.4,6,10C.4,8,10D.6,8,10二.填空题(共7小题,满分28分)11.直角三角形的两直角边长分别为6和8,则斜边中线的长是.12.直角三角形中,两边长为3,4,则第三边长的平方为.13.一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是cm.14.如图,每个小正方形的边长都相等,A,B,C是小正方形的顶点,则∠ABC的度数为.15.观察右面几组勾股数,①3,4,5;②5,12,13;③7,24,25;④9,40,41;并寻找规律,请你写出有以上规律的第⑤组勾股数:,第n组勾股数是.16.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为.17.在Rt△ABC中,∠C=90°,若AB﹣AC=2,BC=8,则AB的长是.三.解答题(共6小题,满分52分)18.如图是单位长度为1的正方形网格.(1)在图1中画出一条长度的平方为10的线段AB;(2)在图2中画出一个以格点为顶点,面积为5的正方形.。
高中数学选修3-1《数学史》:《周髀算经》与赵爽弦图

《周髀算经》
勾股定理的普遍 形式
求邪至日者,以日下 为勾,日高为股,勾 股各自乘,并而开方 除之,得邪至日.
陈子测日法
相似形方法
《周髀算经》(西汉, 约公元前100年)
髀算经》里这样记载: 商高,陈子等利用立竿 (即周髀)测定日影,再 用勾股法推算日高的方法.
导入新课
从公元前3世纪到公元8世纪,希腊数 学正走向衰弱,而我国的数学却兴旺发达. 隋朝建立国子监(掌管教育部门),到了 唐朝设立了算学馆,设有算学博士和助教, 共招生30人,并由太史李淳风等奉命编纂 注释《算经十书》.到了宋元明清还出现许 多古算瑰宝,形成古代传统数学精华宝库.
《算经十书》
《周髀算经》、《九章算术》、 《海岛算经》、《孙子算经》、《五曹 算经》、《夏侯阳算经》、《张邱建算 经》、《五经算术》、《缉古算经》、 《缀术》
课堂习题
某楼房三楼失火,消防队员赶来救火, 了解到每层楼高h=3米,消防队员取来6.5米 长的云梯,如果梯子的底部离墙基的距离 x=2.5米,请问消防队员能否进入三楼灭火?
A
C
B
课堂答案
6.52 = 42.25
2.52 = 6.25
32 = 9
6.52 2.52 + 32
现在我们由勾股定理很容易就能判断出 消防员的梯子够长,能进入三楼灭火.
“飞鸟之影未尝动也”“镞矢之疾而有 不行不止之时”“一尺之棰,日取其半, 万世不竭”等都蕴含了朴素的极限思想. (《庄子·天下篇》)
流传至今最早的一部与数学有关的著作 是《周髀》,它是一部主张盖天说的天文 学著作,大约成书于公元前1世纪.唐朝的李 淳风等在选定数学课本时,将它作为《算 经十书》的第一部.并将其称为“周髀算 经”.
一《周髀算经》与赵爽弦图

中国古代数学瑰宝
《周髀算经》与赵爽弦图
宜都一中 段俐荣
昔者周公问于商高曰:“窃闻乎大夫善数也, 请问古者包牺立周天历度。夫天不可阶而升, 地不可得尺寸而度。请问数安从出?”
商高曰:“数之法,出于圆方。圆出于方,方
出于矩。矩出于九九八十一。故折矩,以为句 广三,股修四,径隅五。既方之外,半其一矩。 环而共盘,得成三、四、五。两矩共长二十有 五,是谓积矩。故禹之所以治天下者,此数之 所生也。”
人称其为“赵爽弦图”(如图1)。图2由弦图变化得到,它是由八
个全等的直角三角形拼接而成。记图中正方形ABCD,正方形EFGH,
s s s s s s 正方形MNKT的面积分别为
1,
2,
若
3,
1
ቤተ መጻሕፍቲ ባይዱ
2
10,
3
则s2的值是 _______。
课堂小结
《周髀算经》与赵爽弦图是我国古代数学的瑰宝。 《周髀算经》中记载了周朝数学家商高首先提出 勾股定理,汉代数学家赵爽利用弦图证明了勾股 定理,我国提出并证明勾股定理比古希腊数学家 毕达哥拉斯早了大约500年,比古印度数学家婆什 迦罗第二早了大约900年。作为一个中国人,我们 应感到无比的骄傲和自豪。
2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵 爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正 方形拼成的一个大正方形(如图).如果小正方形的面积为1,大 正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值 等于 __________
我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后
c c 4 1 ab 2 (a b)2 4 1 ab (b a)2 2
北师大版八年级上册勾股定理经典图形--赵爽弦图在中考的应用

勾股定理经典图形--赵爽弦图在中考的应用一、赵爽弦图的历史我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,如图1,后人称之为“赵爽弦 图”,流传至今.二、赵爽弦图的几何意义 1.证明勾股定理 :222c a b =+. 2.GH=b-a ;3. 222ABCD S c a b ==+正方形,2-a)S b =正方形EFGH (, S 阴影=ABCD S 正方形-S 正方形EFGH =2c -2-a)b (=(22a b +)-2-a)b (.三、赵爽弦图的应用1.正确识别赵爽弦图例1 (2019•湖北省咸宁市)勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是 ( )A .B .C .D .解析:“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,故选:B .点评:熟记赵爽弦图的基本构造,明白弦图的构成要素,清楚弦图的构造方式,懂的弦图的构造原理,把握弦图的意义,是解题的关键.通过弦图的识记,也培养自己的爱国热情.2.探求赵爽弦图中四个直角三角形的面积和例2(2020.绍兴)如图2,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图3放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图3中阴影部分面积为 .解析:由题意可得,223ABCD S c ==正方形=9,直角三角形的另一条直角边长为:=,∴S 阴影=ABCD S 正方形-S 正方形EFGH =2c -2-a)b (=9-25-2)(=9-(9-45)=45. 点评:运用勾股定理,求得直角三角形的另一直角边长是解题的关键.3.变式赵爽弦图,探求2a+b)(的值 例3(2020·宁夏)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图4),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a ,较长直角边为b .如果将四个全等的直角三角形按如图5的形式摆放,那么图5中最大的正方形的面积为 .解析:根据赵爽弦图的几何意义,得22a b +=15,2-a)b (=3,图5中大正方形的面积为:2a+b)(,∵2-a)b (=3,∴222a ab b -+=3,∴15﹣2ab=3,∴2ab=12,∴2a+b)(=2-a)b (+4ab=3+2×12=27,或2a+b)(=22a b ++2ab=15+12=27. 点评:熟练运用赵爽弦图的几何意义是解题的关键,其次,灵活进行和的完全平方公式,差的完全平方公式的变形计算,也是解题的重要基本技能.4.构造赵爽弦图,探求直角边积的最值例4(2020·湖南娄底)由4个直角边长分别为a ,b 的直角三角形围成的“赵爽弦图”如图6所示,根据大正方形的面积2c 等于小正方形的面积2()a b -与4个直角三角形的面积。
高中数学文化情景题专题2 赵爽弦图 (以赵爽弦图为背景的高中数学考题题组训练)解析版

【高中数学数学文化鉴赏与学习】专题2 赵爽弦图(以赵爽弦图为背景的高中数学考题题组训练)一、单选题1.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有六种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有()A.420B.1020C.1180D.1560【答案】D【解析】【分析】根据分步乘法原理计数,先涂中间小正方形,然后四个直角三角形按顺序涂色,注意相对的直角三角形颜色是否相同分类即可.【详解】第一步中间小正方形涂色,有6种方法,剩下5种颜色涂在四个直角三角形中,就按图中所示1234的顺序,1有5种方法,2有4种方法,3有4种方法,但要分类:与1相同和与1不相同,然后确定4的方法数,⨯⨯⨯⨯+⨯=.所以所求方法数为654(1433)1560故选:D.2.赵爽是我国古代数学家,大约在公元222年,赵爽在为《周髀算经》作序时,介绍了“勾股圆方图”,亦称为“赵爽弦图”.可类似地构造如图所示的图形,由三个全等的三角形与中间的一个小等边三角形拼成一个大的等边三角形,设2DF FA =,若AB =DF 的长为( )A .2 BC .3D .4【答案】D 【解析】 【分析】根据正三角形和全等三角形的性质得DB AF =,再运用余弦定理可求得DF 的长. 【详解】由题可知:在DEF 中,3EDA π∠=,则23ADB π∠=, 不妨设2DF k =,由2DF AF =知,AF k =,则3AD k =, 又因为AFC △与BDA 全等,所以DB AF k ==,由余弦定理可知:()22222231cos 2232k k AB AD BD AB ADB AD BD k k +-+-∠===-⋅⨯⨯,解得2213AB k =,而AB =2k =,所以4DF =. 故选:D.3.图1是我国古代数学家赵爽创制的一幅“赵爽弦图”,它是由四个全等的直角三角形和一个小的正方形拼成一个大的正方形.某同学深受启发,设计出一个图形,它是由三个全等的钝角三角形和一个小的正三角形拼成一个大的正三角形,如图2,若BD =1,且三个全等三角形的面积和与小正三角形的面积之比为94,则△ABC 的面积为( )A .94BC .134D【答案】D 【解析】 【分析】设小正三角形边长为x ,由面积比求得x ,再计算出小正三角形面积可得大正三角形面积. 【详解】设DE x =,则211sin 1(1)sin120134ABD DEFBD AD ADB x S x Sx ⋅∠⨯⨯+︒+====,解得2x =(23-舍去),所以22DEFS == 94ABCS==故选:D .4.赵爽是我国古代著名的数学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形组成),如图(1)类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设3DF AF =,则图中阴影部分与空白部分面积之比为( )A .79B .34C .56D .37【答案】B 【解析】 【分析】设AF x =,根据几何关系求出AD 、DF 、BD 、ADB ∠,根据余弦定理求出AB ,再根据等边三角形面积即可计算. 【详解】设AF x =,则3DF x =,BD AF x ==,4AD x =,120ADB ∠=, 在ABD △中,根据余弦定理得,22222212cos 1624212AB AD BD AD BD ABD x x x x x ∠⎛⎫=+-⋅⋅=+-⋅⋅⋅-= ⎪⎝⎭,△2213sin60(3)24EFDS DF DE x =⋅⋅⋅==, 2213sin602124ABCSAB BC x x =⋅⋅⋅==, △73ABC EFDSS=, △图中阴影部分与空白部分面积之比为34.故选:B.5.如图是第24届国际数学家大会的会标,是根据中国古代数学家赵爽的弦图设计的.已知图中正方形ABCD 的边长为2,ADH α∠=,则小正方形EFGH 的面积为( )A .1sin 2α-B.1cos2α- C .44cos2α-D .44sin 2α-【答案】D 【解析】 【分析】根据设计图的几何特点,结合已知条件,求得小正方形的边长,再根据同角三角函数关系,以及正弦的二倍角公式,即可求得小正方形的面积. 【详解】根据设计图的几何特点可知:△ADH ≅△DCG ≅△CBF ≅△BAE ,在△ADH 中,cos 2cos DH AD ADH α=⨯∠=,sin 2sin AH AD ADH α=⨯∠=, 故小正方形的边长为2cos 2sin AE AH DH AH αα-=-=-, 故小正方形的面积为()22cos 2sin 48sin ?cos 44sin 2ααααα-=-=-. 故选:D .6.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么sin 2θ的值为( )A .2425B .2324C D .14【答案】A 【解析】 【分析】由直角三角形中的三角函数定义列出关于sin ,cos θθ的等式结合平方关系求得sin ,cos θθ,然后由正弦的二倍角公式计算.【详解】由题意大正方形边长为5,小正方形边长为1,所以5cos 5sin 1θθ-=,又22sin cos 1θθ+=,且θ为锐角,可解得4cos 5θ=,3sin 5θ=, 所以24sin 22sin cos 25θθθ==. 故选:A .7.我国东汉末数学家赵夾在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若BC a =,BA b =,3BE EF =,则BF =( )A .1292525a b + B .16122525a b + C .4355a b +D .3455a b +【答案】B 【解析】 【分析】根据给定图形,利用平面向量的加法法则列式求解作答. 【详解】因“弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,且BC a =,BA b =,3BE EF =,则34BF BC CF BC EA =+=+3()4BC EB BA =++33()44BC BF BA =+-+93164BC BF BA =-+,解得16122525BF BC BA =+,所以16122525a b BF =+. 故选:B8.勾股定理被称为几何学的基石,相传在商代由商高发现,又称商高定理.汉代数学家赵爽利用弦图(又称赵爽弦图,它由四个全等的直角三角形和一个小正方形组成,如图1),证明了商高结论的正确性.现将弦图中的四条股延长相同的长度(如将CA延长至D )得到图2.在图2中,若5AD =,BD =D 、E 两点间的距离为)A B C .1 D .2【答案】C 【解析】 【分析】利用余弦定理可求得cos DBE ∠的值,可求得BC 、CD 、AC 的长,进而可得出弦图中小正方形的边长. 【详解】由条件可得5BE AD ==, 在BDE 中,由余弦定理得2222225cos2BD BE DEDBE BD BE+-+-∠===⋅, 所以,()cos cos cosCBD DBE DBE π∠=-∠=-∠=所以,cos 3BC BD CBD =⋅∠==,9CD , 4AC CD AD ∴=-=,所以弦图中小正方形的边长为1CA CB -=. 故选:C.9.我国古代人民早在几千年以前就已经发现并应用勾股定理了,勾股定理最早的证明是东汉数学家赵爽在为《周髀算经》作注时给出的,被后人称为“赵爽弦图”.“赵爽弦图”是数形结合思想的体现,是中国古代数学的图腾,还被用做第24届国际数学家大会的会徽.如图,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形组成的,若AB a =,AD b =,E 为BF 的中点,则AF =( )A .3455a b +B .4355a b +C .1233a b +D .2133a b +【答案】A 【解析】 【分析】根据向量数乘和加减法法则,结合几何图形即可求解. 【详解】()1124AF AB BF AB BC CF AB AD AE AB AD AB AF =+=++=+-=+-+, 即()14AF AB AD AB AF =+-+, △53344455A F a b b A a F =+⇒=+. 故选:A .10.“赵爽弦图”是中国古代数学的图腾,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图,某人仿照赵爽弦图,用四个三角形和一个小的平行四边形拼成一个大平行四边形,其中,,,E F G H 分别是,,,DF AG BH CE 的中点,若AG x AB y AD =+,则xy =( )A .625B .625-C .825D .825-【答案】C 【解析】 【分析】根据平面向量的基本定理,化简得到4255AG AB BC =+,结合AG x AB y AD =+,求得,x y 的值,即可求解.【详解】由题意,可得()11112224AG AB BG AB BH AB BC CH AB BC CE =+=+=++=++,因为EFGH 是平行四边形,所以AG CE =-, 所以1124AG AB BC AG =+-,所以4255AG AB BC =+, 因为AG x AB y AD =+,所以42,55x y ==,则4285525xy =⨯=. 故选:C.11.赵爽弦图(如图1)中的大正方形是由4个全等的直角三角形和中间的小正方形拼接而成的,若直角三角形的两条直角边长为a ,b ,斜边长为c ,由大正方形面积等于4个直角三角形的面积与中间小正方形的面积之和可得勾股定理222+=a b c .仿照赵爽弦图构造如图2所示的菱形,它是由两对全等的直角三角形和中间的矩形拼接而成的,设直角三角形的斜边都为1,其中一对直角三角形含有锐角α,另一对直角三角形含有锐角β(位置如图2所示).借鉴勾股定理的推导思路可以得到结论( )A .()sin sin cos cos sin αβαβαβ-=-B .()sin sin cos cos sin αβαβαβ+=+C .()cos cos cos sin sin αβαβαβ-=+D .()cos cos cos sin sin αβαβαβ+=-【答案】B 【解析】 【分析】表示出直角三角形的边长,继而表示出面积,求得中间矩形的面积,根据菱形面积等于四个直角三角形面积加上中间矩形面积,化简可得答案. 【详解】由图形可知:含锐角α的直角三角形两直角边长为sin ,cos αα ,含锐角β的直角三角形两直角边长为sin ,cos ββ , 故菱形的面积为1211sin()sin()2αβαβ⨯⨯⨯⨯+=+ ,不妨假设αβ> ,中间长方形的面积为(sin sin )(cos cos )αββα-- ,故11sin()2sin cos 2sin cos (sin sin )(cos cos )22αβααββαββα+=⨯⨯⨯+⨯⨯⨯+-- ,即()sin sin cos cos sin αβαβαβ+=+, 故选:B12.如图,“赵爽弦图”是我国古代数学的瑰宝,它是由四个全等的直角三角形和一个正方形构成.现从给出的5种不同的颜色中最多可以选择4种不同的颜色给这5个区域涂色;要求相邻的区域不能涂同一种颜色,每个区域只涂一种颜色.则不同的涂色方案有( )种A .120B .240C .300D .360【答案】C 【解析】 【分析】依题意可以利用3或4种不同的颜色涂色,先选出颜色,再涂色,按照分步、分类计数原理计算可得; 【详解】解:依题意显然不能用少于2种颜色涂色,若利用3种不同的颜色涂色,首先选出3种颜色有35C 10=种选法,先涂区域△有3种涂法,再涂△有2种涂法,则△只有1种涂法,△也只有1种涂法,则△也只有1种涂法,故一共有35C 3211160⨯⨯⨯⨯⨯=种涂法;若利用4种不同的颜色涂色,首先选出4种颜色有45C 5=种选法,根据题意,分2步进行涂色:当区域△、△、△这三个区域两两相邻,有34A 24=种涂色的方法;当区域△、△,必须有1个区域选第4种颜色,有2种选法,选好后,剩下的区域有1种选法,则区域△、△有2种涂色方法,故共有4354C 2A 5224240⨯=⨯⨯=种涂色的方法;综上可得一共有60240300+=种涂法; 故选:C13.赵爽是我国古代著名的数学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形组成),如图(1)类比“赵爽弦图”,可类似地构造如图(2)所示的形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边角形,设3DF AF =,若向三角形ABC 内随机投一粒芝麻(忽略该芝麻的大小),则芝麻落在阴影部分的概率为( )A .79B .34C .56D .37【答案】D 【解析】 【分析】根据几何概型的概率公式,求出DEF 和AFC △的面积,计算所求的概率值. 【详解】由题意,π3DFE ∠=,π2ππ33AFC ∴∠=-=, 3DF AF =,4CF AF ∴=,由余弦定理可得2222π2cos3AC AF CF AF CF =+-⋅, 2221AC AF ∴=,∴22221πsin93231π217sin 23DEF ABCDF S AF SAF AC ===⋅, ∴芝麻落在阴影部分的概率为 37P =. 故选:D .14.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”.后人称其为“赵爽弦图”.如图,现提供5种颜色给图中的5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同.记事件A :“区域1和区域3颜色不同”,事件B :“所有区域颜色均不相同”,则()P B A =( )A .27B .12C .23D .34【答案】B 【解析】 【分析】根据条件概率的公式,分别计算出事件A 和事件B 的基本事件即可. 【详解】A 事件有21115322A C C C 个基本事件,B 事件有55A 个基本事件,()5521115322A 1|A C C C 2p B A ∴== ;故选:B.15.我国东汉末数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若BE EF λ=,16122525BF BC BA =+,则实数λ=( )A .2B .3C .4D .5【答案】B 【解析】 【分析】依据题给条件利用()()()222BE BFBA =+列出关于λ的方程,解之即可求得实数λ的值【详解】由BE EF λ=,可得1BE BF λλ=+,又16122525BF BC BA =+ 则()()1612161212525251251BE BC BA BC BA λλλλλλ⎛⎫=+= +⎪+++⎝⎭ 又BF AE =,222BE AE AB =+, 则()()()222BEBFBA =+即()()222161216122512512525BC BA BC BA BA λλλλ⎛⎛⎫++= ⎪ ⎪+⎫+ ⎪+⎝⎭⎝⎭ 则()()()()()()22222222225614425614462562562516251BC BA BC BA BA λλλλ+++=++即()()2222256144256144162562562516251λλλλ++++=+,整理得271890λλ--= 解之得,3λ=或37λ=-(舍)故选:B16.“赵爽弦图”是我国古代数学的瑰宝,如图所示,它是由四个全等的直角三角形和一个正方形构成.现给这5个区域涂色,要求相邻的区域不能涂同一种颜色,每个区域只涂一种颜色,有5种不同的颜色可供使用,则不同的涂色方案有( )A .120种B .360种C .420种D .540种【答案】C 【解析】 【分析】要求相邻的区域不能涂同一种颜色,则涂5块区域至少需要3种颜色,然后对使用的颜色种数进行分类讨论,分别求出方案数,再运用分类加法计数原理求出最后结果. 【详解】要求相邻的区域不能涂同一种颜色,则涂5块区域至少需要3种颜色.若5块区域只用3种颜色涂色,则颜色的选法有35C 种,相对的直角三角形必同色,此时不同的涂色方案有335360C A =种;若5块区域只用4种颜色涂色,则颜色的选法有45C 种,其中一对相对的直角三角形必同色,余下的两个直角三角形不同色,此时不同的涂色方案有414524240C C A =种;若5块区域只用5种颜色涂色,则每块直角三角形都不同色,此时不同的涂色方案有55120A =种;综上,不同的涂色方案有:60240120420++=种. 故选:C.17.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示,若DA m =,DC n =,23AF AE =,则DE =( )A .641313m n + B .461313m n + C .691313m n + D .961313m n + 【答案】B 【解析】 【分析】由已知可得出23DE FB =,利用平面向量的线性运算得出1324939DE AB AD =-,再结合平面的基本定理可得结果. 【详解】 由题意得()()22222243333339DE FB AB AF AB AE AB AD DE ==-=-⨯=-+, 所以1324939DE AB AD =-,即644613131313DE DC DA m n =+=+, 故选:B .18.勾股定理被称为几何学的基石,相传在商代由商高发现,又称商高定理,汉代数学家赵爽利用弦图(又称赵爽弦图,它由四个全等的直角三角形和一个小正方形组成,如图1),证明了商高结论的正确性,现将弦图中的四条股延长,相同的长度(如将CA 延长至D )得到图2.在图2中,若5AD =,BD =,D ,E 两点间的距离)A B C .1 D【答案】C在BDE 中利用余弦定理可求出cos DBE ∠,则可得cos CBD ∠,再由锐角三角函数的定义可求出CB ,由勾股定理求出CD ,从而可求得答案 【详解】连接DE ,由条件可得5BE AD ==,在BDE 中,由余弦定理得2222225cos2BD BE DE DBE BD BE +-+-∠===⋅,△()cos cos cosCBD DBE DBE π∠=-∠=-∠=,△cos 3BC BD CBD =⋅∠==,9CD , △4CA =,所以弦图中小正方形的边长为1CA CB -=.故选:C19.我国东汉末数学家赵爽在《周髀算经》中利用一幅“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若2BE EF =,则EF =( )A .311313BC BA + B .321313BC BA + C .231313BC BA + D .121313BC BA +【分析】由题,根据向量加减数乘运算得249391BC B EF A EF =+-,进而得313213B EFC BA =+.【详解】解:因为在“赵爽弦图”中,若2BE EF =,所以()()1111132223393933BF BC CF BC EA BC EA BC BA BE EF ⎛⎫=+=+=+=+⎪=- ⎝⎭()21329BC BA EF =+-, 所以249391BC B EF A EF =+-,所以1132993BC F BA E =+,所以313213B EFC BA =+. 故选:B20.我国汉代数学家赵爽为了证明勾股定理,创造了一幅“勾股圆方图”,后人称其为“赵爽弦图”.类比赵爽弦图,用3个全等的小三角形拼成了如图所示的等边ABC ,若ABC AF DE ⋅的最小值为( )A .0B .1-C 3D .3-【答案】D 【解析】 【分析】设AF BD x ==,DF DE y ==,利用余弦定理和基本不等式可求得()23xy ≤⨯,根据平面向量数量积的定义可求得结果.【详解】设AF BD x ==,DF DE y ==,在ABD △中,由余弦定理可得:()222()2cos120x x y x x y =++-+,即226333x y xy xy =++≥+,则()23xy ≤⨯y =时取等号),()11cos12023322AF DE xy xy ⋅==-≥--∴⨯⨯=故选:D. 二、填空题21.如图1是我国古代著名的“赵爽弦图”的示意图,它由四个全等的直角三角形围成,其中3sin 5BAC ∠=,现将每个直角三角形的较长的直角边分别向外延长一倍,得到如图2的数学风车,则图2“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为_______________.【答案】24:25 【解析】 【分析】设三角形ABC 三边的边长分别为3,4,5,分别求出阴影部分面积和大正方形面积即可求解. 【详解】解:由题意,“赵爽弦图”由四个全等的直角三角形围成,其中3sin 5BAC ∠=, 设三角形ABC 三边的边长分别为3,4,5,则大正方形的边长为5 ,所以大正方形的面积2525S ==,如图,将CA 延长到D ,则2CD CA =,所以CA AD =,又B 到AC 的距离即为B 到AD 的距离,所以三角形ABC 的面积等于三角形ABD 的面积,即13462ABCABDSS==⨯⨯=,所以“赵爽弦图”外面(图中阴影部分)的面积4624S '=⨯=,所以“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为24:25. 故答案为:24:25.22.如图是第24届国际数学家大会的会标,它是根据中国古代数学家赵爽的弦图设计的,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形EFGH 组成的.若E 为线段BF 的中点,则AF BC ⋅=______.【答案】4 【解析】 【分析】利用数量积的几何意义求解. 【详解】 解:如图所示:设CF x =,由题可得2BF x =, 所以()2225x x +=, 解得1x =.过F 作BC 的垂线,垂足设为Q ,故24AF BC BQ BC BF ⋅=⋅==, 故答案为:4.23.国际数学家大会的会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图),如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为θ,则cos2θ=.【答案】725【解析】 【分析】根据题意,求得大、小正方形的边长分别为10和2,得到1cos sin 5θθ-=,其中(0,)4πθ∈,结合三角函数的基本关系式,求得242sin cos 25θθ=-,进而求得7cos sin 5θθ+=,利用22cos 2cos sin θθθ=-,即可求解. 【详解】由小正方形的面积为4,大正方形的面积为100,可得大、小正方形的边长分别为10和2,又由为直角三角形中较小的锐角为θ,可得10cos 10sin 2θθ-=,其中(0,)4πθ∈,即1cos sin 5θθ-=,则()21cos sin 12sin cos 25θθθθ-=-=,所以242sin cos 25θθ=,因为()24912sin cos sin cos 25θθθθ=+=+,所以7cos sin 5θθ+=,所以()()227cos 2cos sin cos sin cos sin 25θθθθθθθ=-=-+=. 故答案为:725. 24.如图,阴影部分由四个全等的直角三角形组成的图形是三国时代吴国赵爽创制的“勾股弦方图”,也称“赵爽弦图”.,则在大正方形内随机取一点,这一点落在小正方形内的概率为___________.【答案】15##0.2【解析】【分析】本题属于几何概型,分别求出面积,即可求概率.【详解】设直角三角形中较大锐角为θ,则sinθ=cosθ=设大正方形边长为1,则直角三角形两直角边长分别为1sinθ⋅,1cosθ⋅.故小=251=⎝⎭.而大正方形的面积为1,故所求概率为1 5 .故答案为:1 525.赵爽是我国古代数学家、天文学家.约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方程”,亦称“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图是一张弦图,已知大正方形的面积为25,小正方形的面积为1,若直角三角形较小的锐角为α,则34tanπα⎛-⎫⎪⎝⎭的值为______________.【答案】7【解析】【分析】设直角三角形较小直角边为x ,应用勾股定理求x ,即可得3tan 4α=,再应用差角正切公式求目标式的值即可. 【详解】若直角三角形较小直角边为x ,较大直角边为1x +,而正方形边长为5, △22(1)25x x ++=,解得3x =或4x =-(舍),△3tan 4α=,而3tan tan3tan 14tan()7341tan 1tan tan 4παπααπαα-+-===-+. 故答案为:7.26.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设20DF AF +=,若AD AB AC λμ=+,则可以推出λμ-=_________.【答案】613【解析】 【分析】设1AF =,建立如图所示的直角坐标系,结合余弦定理和正弦定理解三角形,利用坐标法即可得出结果. 【详解】设1AF =,则3,1AD BD AF === 如图:由题可知:120ADB ∠=,由2222cos 13AB AD BD AD BD ADB =+-⋅⋅∠=所以AB =AC AB ==所以),BC ⎝⎭,()0,0A又sin sin sin BD AB BAD BAD ADB =⇒∠=∠∠所以cos BAD ∠==所以()cos ,sin D AD AD BAD BAD ∠∠,即D ⎝⎭ 所以()2113339,13,026,26AD AB ⎛⎫==⎪ ⎪⎝⎭,132AC ⎛=⎝⎭又AD AB AC λμ=+所以913313λμ⎧==⎪⎪⇒⎨⎪==⎪⎩,所以613λμ-= 故答案为:613.27.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了“刈股圆方图”,亦称为“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比,可构造如图所示的图形,它是由三个全等的三角形与中间一个小等边三角形组成的一个较大的等边三角形,设AD AB AC λμ=+,且DFkAF =,能推出130139λμ+=,则正实数k 的值为____________.【答案】73【解析】 【分析】先利用DE k BD =得到111k AD AB AE k k =+++,再利用EF kCE =求出111k AE AC AF k k =+++, 结合题目中AD AB AC λμ=+,解方程求出k 即可. 【详解】 由题意知DF EF DEk AF CE DB===,则(),,1DE kBD EF kCE AD k AF ===+,由DE k BD =得()AE AD k AD AB -=-, 即111k AD AB AE k k =+++,同理EF kCE =得111k AE AC AF k k =+++,又11AF AD k =+,所以()2111k AE AC AD k k =+++, 则()2111111111k k k AD AB AE AB AC AD k k k k k k ⎡⎤=+=++⎢⎥++++++⎢⎥⎣⎦,所以()()3211111k kAD AB AC k k k ⎡⎤-=+⎢⎥+++⎢⎥⎣⎦, 所以()()()()233111111k k k k AD AB AC k k ++=++-+-,又130139λμ+=,故()()()()233111301391111k k k k k k +++=+-+-,又0k >,解得73k =. 故答案为:73.28.我国汉代数学家赵爽为了证明勾股定理,创制了一副“勾股圆方图”,后人称其为“赵爽弦图”.类比赵爽弦图,由3个全等的小三角形拼成如图所示的等边ABC ,若ABC 的边长为AF FD =,则DEF 的面积为_______.【解析】 【分析】由条件得到2CF AD AF ==,在ACF 中用余弦定理即可求得DF ,进而求得DEF 的面积. 【详解】由3个小三角形全等以及AF FD =得2CF AD AF ==,120∠=AFC ,DEF 是等边三角形,设AF DF a ==,则2CF a =,在ACF 中由余弦定理得,(222422cos120a a a a =+-⋅⋅,解得2a =,所以12DEFSa a =⋅⋅=29.我国古代数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.记大正方形的面积为1S ,小正方形的面积为2S ,若1225S S =,则tan ABE ∠=___________.【答案】43【解析】 【分析】设BF CF ⊥,由已知可得()()22222525AE BE BF BE AE BE +=-=-,由AE BE >可求得AEBE的值,即可得解. 【详解】设BF CF ⊥,如下图所示:因为1225S S =,所以2225AB EF =,所以()()22222525AE BE BF BE AE BE +=-=-, 即221225120AE AE BE BE -⋅+=,则()()43340AE BE AE BE --=,AE BE >,则43AE BE =,故4tan 3AE ABE BE ∠==.故答案为:43.30.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了“刈股圆方图”,亦称为“赵爽弦图”(1弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比,可构造如图所示的图形,它是由三个全等的三角形与中间一个小等边三角形组成的一个较大的等边三角形,设AD AB AC λμ=+且3DF AF =,则可推出λμ+=___________.【答案】2021【解析】 【分析】设2AB =,根据3DF AF =与120ADB ∠=︒,利用余弦定理求出21DB =,AD =AG =m ,DG =n ,利用勾股定理求出m 与n 的值,建立直角坐标系,利用向量的坐标运算求出λ与μ的值,进而求出λμ+的值. 【详解】设2AB =,DB AF x ==,则3DF x =,4AD x =,因为ABC 和DEF 是等边三角形,故120ADB ∠=︒,由余弦定理得:2222cos120AB AD BD AD BD =+-⋅⋅︒,解得:x =4AD x ==,DB =D 作DG △AB 于点G ,设AG =m ,DG =n ,则BG =2-m,由勾股定理得:()2222222m n m n ⎧⎪+=⎪⎪⎝⎭⎨⎪-+=⎪⎪⎝⎭⎩,解得:127m n ⎧=⎪⎪⎨⎪=⎪⎩如图,以A 为坐标原点,AB 所在直线为x 轴,垂直AB 的直线为y 轴建立直角坐标系,则()0,0A ,()2,0B,127D ⎛ ⎝⎭,(C ,则127AD ⎛= ⎝⎭,()2,0AB =,(1,AC =,由AD AB AC λμ=+得:()(122,07λμ⎛=+ ⎝⎭,即1227λμ⎧+=⎪⎪=,解得:1621421λμ⎧=⎪⎪⎨⎪=⎪⎩,则2021λμ+=故答案为:2021。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九章算术
第二章“粟米”讲述有关粮食交换中的比例 问题。书中的“今有术”给出比例式中已知 三数求第四数的方法,欧洲迟至15世纪才出 现。 第三章“衰分”讲述配分比例和等差、等比 等问题。
第四章“少广”讲述由田亩面积求边长,由 球体积求经长的算法,这是世界上最早的多 位数开平方、开立方法则的记载。
九章算术
出土的一批西汉初年(约为公元前170年前后) 的竹简,共千余支。经初步整理,其中有历谱、 日书等多种古代珍贵的文献,还有一部数学著作 ,据写在一支竹简背面的字迹辨认,这部竹简算 书的书名叫《算数书》,
它是中国现存最早的数学专著。
《算数书》
中国现存最早的 数学书《算数书 》(西汉, 约公元 前 170 年 , 19831984年间湖北江 陵张家山出土)
《周髀算经》也是中国最古的算书,成书确切 年代没有定论,一般认为在公元前2、3世纪。 李约瑟认为:“最妥善的办法是把《周髀算经》 看作具有周代的骨架加上汉代的皮肉。”
《周髀算经》中的勾股定理
周公问商高关于计算的问题,商高答曰: “数之法出于圆方,圆出于方,方出于 矩,矩出于九九八十一。故折矩,以为 勾广三,股修四,径隅五。” 荣方与陈子的一段对话中,则包含了勾 股定理的一般形式。陈子曰:“若求邪 至日者,以日下为勾,日高为股。勾、 股各自乘,并而开方除之,得邪至 日,…”
《算数书》
研究得知,这“本”竹简《算数书》和《九章 算术》(公元1世纪)有许多相同之处,体例 也是“问题集”形式,大多数题都由问、答、 术三部分组成,而且有些概念、术语也与《九 章算术》的一样。
Hale Waihona Puke 《周髀算经》《周髀b ì算经》 (髀:量日影的标杆)是我国 最早的天文著作,系统地记载了周秦以来适应 天文需要而逐步积累的科技成果。该书的主要 内容是周代传下来的有关测天量地的理论和方 法。
九章算术
第八章“方程”讲述线性方程组的解法, 还论及正负数概念及运算方法。
今有上禾三秉,中禾二秉,下禾一秉, 实三十九斗;上禾二秉,中禾三秉,下 禾一秉,实三十四斗;上禾一秉,中禾 二秉,下禾三秉,实二十六斗;问上、 中、下禾实一秉各几何?
勾股术
第九章“勾股”在《周髀算经》中勾股定理 的基础上,形成了应用问题的“勾股术”, 从此它成了中算中重要的传统内容之一。
今有池方一丈,葭jiā生其中央,出水一尺。 引葭赴岸,适与岸齐,问水深、葭长各几何? 答曰:水深一丈二尺;葭长一丈三尺。
术曰:半池方自乘,以出水一尺自乘,减之。 余,倍出水除之,即得水深。加出水数,得 葭长。
刘徽和祖冲之父子
2、中算发展的第二时期:数学稳步发展
从公元220年东汉分裂,到公元581年隋朝 建立,史称魏晋南北朝。这是中国历史上的动 荡时期,也是思想相对活跃的时期。在长期独 尊儒学之后,学术界思辨之风再起,在数学上 也兴起了论证的趋势。许多研究以注释《周髀 算经》、《九章算术》的形式出现,实质是寻 求这两部著作中一些重要结论的数学证明。这 是中国数学史上一个独特而丰产的时期,是中 国传统数学稳步发展的时期。
第五章“商功”讲述各种土木工程中的体 积计算。我国自远古以来,对筑城、挖沟、 修渠等土建工程积累了丰富的经验,创造 了许多有关土方体积计算和估算的方法, 本章即为经验和方法的理论总结,诸如长 方体、台体、圆柱体、锥体等体积的计算 公式都与现在一致,只是圆周率取3,误 差较大。
九章算术
第六章“均输”讲述纳税和运输方面的计算 问题,实际上是比较复杂的比例计算问题。 第七章“盈不足”讲述算术中盈亏问题的解 法。盈不足术实际上是一种线性插值法。该 方法通过丝绸之路传入阿拉伯国家,受到特 别重视,被称为“契丹算法”。后来传入欧 洲,13世纪意大利数学家斐波那契的《算经》 一书中专门有一章讲“契丹算法”。
《九章算术》
《九章算术》 (东汉, 公元100年)
九章算术
后世不少人,如刘徽、祖冲之、李淳 风等人均对《九章算术》作过注。特别是 刘徽的注,加进了不少自己的精辟见解, 阐述了重要的数学理论。《九章算术注》 是《九章算术》得以流芳百世的重要补充 和媒介。
对《九章算术》的评价
日本数学家小苍金之助把《九章算术》说成是中 国的《几何原本》。吴文俊教授也认为,《九章 算术》和刘徽的《九章算术注》,在数学的发展 历史中具有崇高的地位,足可与希腊的《几何原 本》东西辉映,各具特色。 1968年德国沃格尔(Vogel)把《九章算术》译 成德文出版时加的评论认为:“在古代算术中, 包含如此丰富的246个算题,现存的埃及和巴比 伦算题与之相比,真望尘莫及。以希腊而论,所 保存的古算题为我们所熟知者,也属于希腊化时 代。”
《九章算术》
《九章算术》 世界数学古典名著
方田 粟米 衰分 少广 商功 均输 盈不足 方程 勾股
以筹算为基础的 中国古代数学体系 正式形成
九章算术
第一章“方田”讲述有关平面图形(土地田 亩)面积的计算方法,包括分数算法,38个 问题。如: [一]今有田广十五步,从十六步,问为田几何? 答曰:一亩。 [二]又有田广十二步,从十四步,问为田几何? 答曰:一百六十八步。
中国古代数学瑰宝
中国传统数学的形成与兴盛:公元前1世纪至 公元14世纪。分成三个阶段:两汉时期;魏晋 南北朝时期;宋元时期。 主要数学典籍:《周髀算经》与《九章算术》 等 古代数学家:刘徽、祖冲之父子等
中国古代数学瑰宝
1、中算发展的第一次高峰:数学体系的形成 1983-1984年间考古学家在湖北江陵张家山
九章算术
《九章算术》成书于公元前后,是我国最重要、 影响最深远的一本数学著作。它不是出自一个 人之手,是经过历代多人修订、增补而成,其 中的数学内容,有些也可以追溯到周代。中国 儒家的重要经典著作《周礼》记载西周贵族子 弟必学的六门课程“六艺”(礼、乐、射、御、 书、数)中有一门是“九数”。《九章算术》 是由“九数”发展而来。在秦焚书(公元前 213年)之前,至少已有原始的本子。
方田术曰:广从步数相乘得积步,以亩法二 百四十步除之,即亩数,百亩为一倾。
九章算术
[五]今有十八分之十二,问约之得几何? 答曰:三分之二。 [六]又有九十一分之四十九,问约之得几 何?答曰:十三分之七。 约分术曰:可半者半之,不可半者,副置 分母子之数,以少减多,更相减损,求其 等也,以等数约之。