比例百分数应用题
比.比例.分数.百分数应用题

⽐.⽐例.分数.百分数应⽤题6、甲车间⼈数与⼄车间⼈数⽐是3:4,已知⼄车间⼈数⽐甲国间⼈数多10⼈,⼄车间有多少⼈?两个车间共有多少⼈?7、⼀辆客车和⼀辆货车同时从相距495千⽶的两地相向⽽⾏,经过5.5⼩时相遇。
已知客车与货车的速度的⽐是4:5。
求货车每⼩时⾏多少千⽶?8、甲、⼄两地相距360千⽶。
两辆汽车同时从两地相向开出3⼩时后,已⾏的路程和余下的路程的⽐是3:2。
照这样速度,两车还要经过⼏⼩时才相遇。
9、⽔果站运来柑和桔⼦共2400箱,已知柑是桔⼦的20%。
后来⼜运来⼀批柑,这时柑与桔⼦箱烽的⽐是3:8。
这时柑有多少箱?10、运输队运送⼀批货物,第⼀次运送了总数的83,余下的货物分两次运完。
已知第⼀次与第⼆次运的重量的⽐是3:4,第三次⽐第⼆次少运24吨。
这批货物有多少吨?11、学校买回⼀批书,按4:5放在甲、⼄两个书架⾥。
如果从甲书架借出25本,这时甲书架的书是⼄的43。
原来甲、⼄书架各有⼏本书?12、运送⼀批货物,运出的⽐剩下的31还多14吨,剩下的与运出的是2:3。
这批货物有多少吨?13、甲、⼄两城相距300千⽶,标在⼀幅地图上的距离只有3厘⽶,这幅地图上12.5厘⽶的距离,代表实际长度多少千⽶?14、甲⼄两队从两端同时挖⼀条⽔渠。
挖通时,甲、⼄两队挖的长度的⽐是5:6。
如果甲队每天挖30⽶,⼄队单独挖这条⽔渠需20天,求这条⽔渠的全长。
15、下图的⽐例尺是1:800,求左图的实际⾯积是多少平⽅⽶?(图中长8厘⽶,宽5厘⽶)16、甲、⼄两个粮仓共存粮640吨。
甲仓运出60吨,⼄仓运进50吨,现在甲、⼄两仓存粮吨数的⽐是4:5。
现在甲、⼄两仓各存粮多少吨?17、甲、⼄两⼈⽣产⼀批零件,甲⽐⼄多⽣产20个,如果⼄少⽣产8个,那么甲与⼄⽣产零件个数的⽐是6:5。
原来⼄⽣产多少个零件?18、甲仓货物与⼄仓货物⽐是6:5,丙仓货物⽐⼄仓货物少31,⼜⽐甲仓货物少320吨。
⼄仓存货物多少吨?正、反⽐例的应⽤题解决问题。
小升初百分数应用题七种类型

小升初百分数应用题七种类型1.求一个数的百分之几是多少。
例:小明的妈妈给了小明100元,并告诉小明这是他这个月的零花钱。
小明用了20%的钱购买了一些学习用品。
问题:小明用了多少钱购买学习用品?解:小明用了100元的20%,即20元购买学习用品。
2.已知一个数的百分之几是多少,求这个数。
例:小华的妈妈给了小华一些零花钱,并告诉小华这是他这个月的零花钱的20%。
问题:小华的妈妈给了小华多少钱?解:假设小华的妈妈给了小华x元,那么x的20%是已知的,我们可以列出方程:0.2×x=已知的零花钱金额。
3.百分率的应用。
例:某学校去年招生100人,今年招生人数减少了10%。
问题:今年招生了多少人?解:今年招生人数为去年的90%,即100×(1-10%)=90人。
4.打折的应用题。
例:某商场原价卖出一件衣服,现打折销售,折扣为8折。
问题:现价是多少?解:现价为原价的80%,即原价×80%。
5.成数应用题。
例:某工厂今年产值达到1亿元,比去年增长了三成。
问题:去年的产值是多少?解:去年的产值为1亿元÷(1+3/10)=1亿元×(1-3/10)=8千万。
6.利息的计算。
例:小李在银行存了1万元,年利率为3%。
问题:小李一年后可以取出多少钱?解:小李一年后可以取出的金额为1万元×(1+3%)=1万元×1.03。
7.比和比例的应用题。
例:小华和小明一起做一道数学题,小华用了2分钟完成,小明用了4分钟完成。
问题:谁做题的速度更快?解:小华做题的速度为1/2,小明的做题速度为1/4,显然小华的速度更快。
比比例分数百分数应用题

比、比例尺和比例分配应用题专项练习(一)1、在一幅地图上用4厘米表示实际距离是80千米,求这幅图的比例尺。
2、甲、乙两地相距240千米,在一幅比例尺是00000051的地图上,应画多少厘米?3、在比例尺是00000081的地图上量得甲乙两地之间的距离是14厘米,甲乙两地的实际距离是多少?4、在一幅1:5000000的中国地图上,量得杭州到南京的距离是8.4厘米;而在另一幅比例尺是1:8000000的地图上,杭州到南京的图上距离是多少?5、某小学五、六年级共植树750棵。
六年级有90人参加,五年级的60人参加。
如果人数分配,五、六年级各植树多少棵?6、一种农药,药与水按1:80配制而成。
要配制这种药水405千克,需多少水?12千克的药可配制多少千克农药?7、四、五、六三个年级参加植树。
他们种的棵数比是2:3:3。
已知四年级比六年级少种48棵。
三个级年共植树多少棵?8、在一幅比例尺是1:20的施工图纸上,量得一块长方形土地的长是5厘米,宽是3.5厘米。
这块地的实际面积是多少平方米?9、南星机械厂要加工120万个机器零件,已经加工了25%,剩下的按2:3分配给甲、乙两个车间。
每个车间分配到多少万个?10、某乡购到一批化肥,按5:7分配给甲、乙两村,已知乙村比甲村多40包。
这批化肥共多少包?11、工地上甲、乙两个仓库所存水泥的比是5:3,乙、丙两仓库所存水泥的比是3:4。
已知乙、丙两个仓库共有水泥560吨。
甲仓库原有水泥多少吨?12、甲、乙两队合修一段长3600米的公路,8天完工。
已知甲队与乙队工作效率的比是5:4。
甲队每天修多少米?13、有一个直角三角形,三条边的比是3:4:5。
已知两条直角边的和是5.6分米,求第三边的长。
14、两筐苹果,已知第一筐与第二筐的重量比是5:6。
如果从第二筐取出15千克放入第一筐,那么两筐重量相等。
这两苹果共重多少千克?15、小华看一本书,第一天看了全书的81,第二天看了60页,两天看了的页数与全书的页数比是1:4。
比例百分数篇_学生版

名校真题(比例百分数篇)时间:15分钟满分5分姓名_________ 测试成绩_________1 (清华附中考题)甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价,后来都按定价的90%打折出售,结果仍获利131元,甲商品的成本是________元.2 (101中学考题)100千克刚采下的鲜蘑菇含水量为99%,稍微晾晒后,含水量下降到98%,那么这100千克的蘑菇现在还有多少千克呢?3(实验中学考题)有两桶水:一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那麽往每个桶中加进去的水量是升。
4 (三帆中学考题)有甲、乙两堆煤,如果从甲堆运12吨给乙堆,那么两堆煤就一样重。
如果从乙堆运12吨给甲堆,那么甲堆煤就是乙堆煤的2倍。
这两堆煤共重()吨。
5 (人大附中考题)一堆围棋子黑白两种颜色,拿走15枚白棋子后,黑子与白子的个数之比为2:1;再拿走45枚黑棋子后,黑子与白子的个数比为1:5,开始时黑棋子,求白棋子各有多少枚?小升初专项训练 比例百分数篇一、小升初考试热点及命题方向分数百分数是小学六年级重点学习的知识点,也是小升初重点考察的知识点,这一部分主要考察三大块,分百应用题;比和比例;经济浓度问题;三块的地位是均等的,在考试中都有可能出现,希望同学们全面复习,而不要厚此薄彼。
二、考点预测出题方式依然是大题中必然出现一道或者两道和本章内容相关的题目,占的分值权重较大,只要认真复习,掌握解题规律,则可以顺利的拿下这部分分值。
三、知识要点分数百分数应用题分数、百分数应用题是小学数学的重要内容,也是小学数学重点和难点之一.一方面它是在整数应用题基础上的继续和深化;另一方面,它有其本身的特点和解题规律.因此,在这类问题中,数量之间以及“量”、“率”之间的相依关系与整数应用题比较,就显得较为复杂,这就给正确地选择解题方法,正确解答带来一定困难.为了学好分数、百分数应用题的解法必须做好以下几方面工作.①具备整数应用题的解题能力.解答整数应用题的基础知识,如概念、性质、法则、公式等仍广泛用于分数、百分数应用题.②在理解、掌握分数的意义和性质的前提下灵活运用.③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件.它可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理.④学会多角度、多侧面思考问题的方法.分数百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,在寻找正确的解题方法同时,不断地开拓解题思路.比和比例这一讲主要涉及比例的意义和性质,按比例分配,正反比例等几个知识。
六年级百分数_比例应用题70道文档

六年级毕业分数百分数应用题训练1、某校参加数学竞赛的男生人数比女生人数的4倍少8人,比女生人数的3倍多24人,这个学校参加数学竞赛的男生有多少人?女生有多少人?2、甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?3、两辆汽车同时从两地相向而行,0.6小时后两车在距中点6千米的地方相遇,已知快车速度比慢车速度的1.2倍还多12千米,求慢车速度。
(用算术方法解)4、南昌某高中为了做好今年扩招的准备工作,学校财务处老师带了一些钱去采购新生的课桌椅,通过询问发现带去的钱只够买45张课桌或55个椅子,已知每套课桌椅200元。
问,学校财务处老师带了多少钱去采购课桌椅?5、修一条长200米的水渠,已经修了80米,再修多少米刚好修了这条水渠的3/5多10米?6、六一歌手大奖赛有407人参加, 女歌手未获奖人数占女歌手总数的 , 男歌手16人未获奖, 而获奖男女歌手人数一样多, 问:参赛的男歌手共几人?7、甲从A地往B地, 乙、丙两人从B地往A地, 三人同时出发, 甲首先在途中与乙相遇, 之后15分钟又与丙相遇, 甲每分钟走70米, 乙每分钟走60米, 丙每分钟走50米, 问:A、B两地相距多少米?8、一批拥军物资, 如用8辆大卡车装运, 3天可运完, 如用5辆小卡车装运, 8天可运完全部的75%, 现用3辆大卡车、4辆小卡车装运, 几天可以运完?9、甲乙两根进水管同时打开, 4小时可注满水池的40%, 接着甲管单独开5小时, 再由乙管单独开7.4小时, 方才注满水池, 问:如果独开乙管, 多少时间可将水池注满?10、一本书600页,第一天看了它的1/4,第二天看了它的2/5,两天一共看了多少页?11、爱达花园小学向希望工程捐款,六(1)班捐的占六年级的1/3,六年级捐的占全校捐款的1/4,全校共捐款2400元,六(1)班捐了多少元?(用两种方法解答)12、甲乙两地相距60千米,汽车从甲地开往乙地,当汽车超过全程中点10千米时,还剩下全程的几分之几?13、一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?14、一筐苹果,第一次卖出它的一半,第二次卖出的是第一次的4/5,还剩下这筐苹果的几分之几没有卖?15、一个乒乓球从25米的高空下落,每次弹起的高度是下落高度的2/5,它第四次下落后又能弹起多少米?16、一批加工服装的任务按4:5分配给甲、乙两个车间,实际甲车间生产了450套,超过分配任务的1/4。
比例和百分数应用题经典解法

比例和百分数应用题经典解法比例和百分数问题抓住两点:一个是找到不变量,以此为标准;一个是找到谁为单位“1”,例1.幼儿园大班和中班共有32名男生,18名女生.已知大班中男生数与女生数的比为 5:3,中班中男生数与女生数的比为2:1,那大班中有女生多少名?解1:假设大班中男生数与女生数的比也为2:1,则共有女生16名,差了2人。
2÷=20(人),这20人应为大班中的男生人数,大班中女生人数为20×=12(人)。
解2:假设18名女生全部是大班,则大班男生数:女生数=5:3=30:18,即男生应有30人,实际男生有32人,32—30=2,相差2个人;中班男生数:女生数=2:1=6:3,以3个中班女生换3个大班女生,每换一组可增加1个男生,需要换2组;所以,大班女生有18-3×2=12个。
答:大班有女生12名。
解3:假设都男生和女生比都为2:1,那么男生应该增加4人,而且要加在大班中,又大班是5:3,再增加一份就可以了为6:3=2:1,那么一份对应着4人,那么女生为3*4=12人。
例2、某校四年级原有2个班,现在要重新编为3个班,将原一班的1/3与原二班的1/4组成新一班,将原一班的1/4与原二班的1/3组成新二班,余下的30人组成新三班。
如果新一班的人数比新二班的人数多10%,那么原一班有多少人?解:原一班的1/3与原二班的1/4 + 原一班的1/4与原二班的1/3=7/12总人数,余下1-7/12=5/12,是30人,所以总人数=30/(5/12)=72人;72—30=42人,新一班与新二班的人数和为42人,新一班的人数比新二班的人数多10%,新一班人数:新二班人数=11:10,新一班42*11/(10+11)=22人,新二班42-22=20人,多22—20=2人,即原一班的(1/3—1/4)=1/12比原二班的1/12多2人,原一班比原二班共多12*2=24人,所以,原一班有24+(72—24)/2=48人。
比的应用题典型题归类

比的应用题典型题归类一、比的概念及基本性质比是数学中常用的一种比较两个数量大小关系的方法。
在解决实际问题时,经常会遇到涉及到比的应用题。
比的应用题主要包括比例、百分数、倍数等类型。
下面将对这些典型题目进行分类和归纳,以便更好地理解和掌握比的应用。
二、比例问题1. 比例问题一:已知一个长度为a的线段与一个长度为b的线段的比是m:n,求第一个线段的长度。
解析:根据比例关系可以得到 a/b = m/n,求解得到 a = mb/n。
2. 比例问题二:已知一个物体的重量与其体积的比是m:n,求该物体的质量。
解析:根据比例关系可以得到 m/n = p/V,其中p为物体的密度,V 为物体的体积,求解得到 m = p * V。
三、百分数问题1. 百分数问题一:某商品原价100元,现折扣20%,求折后价格。
解析:原价100元,折扣20%,即折扣为100 * 20% = 20元,所以折后价格为100 - 20 = 80元。
2. 百分数问题二:某数增加了p%,求增加前的数。
解析:设增加前的数为x,则增加了p%后的数为x + x * p% = x(1 + p/100),所以增加前的数为x = (增加后的数)/(1 + p/100)。
四、倍数问题1. 倍数问题一:某任务A需要3个小时完成,任务B比A多完成1/3的工作,求任务B完成所需的时间。
解析:设任务B完成所需的时间为x小时,则任务A完成的工作量为1,任务B完成的工作量为1 + 1/3。
根据工作量和时间的关系可得到:3/1 = x / (1 + 1/3),求解得到 x = 2小时。
2. 倍数问题二:某矿井A挖掘一定数量的煤需要9天,矿井B比A 快1/4,求矿井B挖掘同样数量的煤需要多少天。
解析:设矿井B挖掘同样数量的煤需要x天,则矿井A的挖掘速度为1,矿井B的挖掘速度为1 + 1/4。
根据速度和时间的关系可得到:9/1 = x / (1 + 1/4),求解得到 x = 6天。
分数、百分数、比应用题

分数、百分数、比应用题1、光明制鞋厂7月份实际生产鞋27500双,比原计划多生产了2500双。
增产了百分之几?2、一条水渠,已修了5.7千米,还剩1.8千米没有修。
修了全长的百分之几?3、水果店有柑1250千克,苹果是柑的9/10,香蕉是苹果的3/5。
水果店有香蕉多少千克?4、一套校服54元,其中裤子的价格上衣的4/5,上衣和裤子的价格各是多少元?5、食品公司冷冻仓库有鸭3800只,鸭比鸡的1/3多200只。
冷冻仓库共有鸡、鸭多少只?6、一袋水泥,用去60%,剩下的部分比用去的少10千克,用去多少千克?7、六年级甲班学生有30人已达到《国家体育锻炼标准》,占这个班级学生人数的60%。
这班还有多少人没有达标?8、某校一年级有学生150人,二年级比一年级少20%,一二年级的占全校人数的20%,全校有几人?9、学校图书馆有3种书,已知图画书有100本,文艺书比图画书少1/5,图画书比科技书多25%。
3种书共有多少本?10、小军妈妈的商店里进了两批水果都售出同样多的钱。
妈妈说:第一批水果热销提价20%卖出,第二批水果滞销降价20%卖出,总算没有赔钱。
请问小军妈妈说得对吗?11、某工程队修筑一条马路。
第一天修了全长的3/10,第二天修了全长的40%,还剩63米没有修。
这条马路全长多少米?12、某筑路队筑一段路。
第一天修筑了全长的1/5多10米,第二天修筑了全长的2/7,还剩53米没有修完。
这段路全长多少米?13、造纸厂今年前5个月完成全年造纸任务的45%,再生产1625吨就超过全年生产任务的10%。
今年计划造纸多少吨?14、一块试验田收甘蔗11000千克,可榨糖1320千克,求甘蔗的出糖率。
15、菜籽的出油率是42%,要榨油1050千克,需要油菜籽多少千克?1050千克油菜籽可榨油多少千克?16、一台缝纫机原价280元,现在售价252元,这台缝纫机是打几折出售的?17、一种画册原价每本6.9元,现在每本按原价的七折出售,这种画册每本便宜多少元?18、王爷爷把5000元存入银行,存期3年,年利率4.41%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学内容:小升初专项训练 比例百分数篇
一、教学目标
1 【例2】(★★)把一个正方形的一边减少 20%,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.问正方形的面积是多少?
【例3】(★★★)学校男生人数占45%,会游泳的学生占54%。
男生中会游泳的占72%,问在全体学生中不会游泳的女生占百分之几?
【例4】某校四年级原有2个班,现在要重新编为3个班,将原一班的1/3与原二班的1/4组成新一班,将原一班的1/4与原二班的1/3组成新二班,余下的30人组成新三班。
如果新一班的人数比新二班的人数多10%,那么原一班有多少人?
【例5】(★★★)一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?
91人,
【例9】(★★)某商店进了一批笔记本,按 30%的利润定价.当售出这批笔记本的 80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少?
【例10】(★★★)A,B,C三个试管中各盛有10克、20克、30克水。
把某种浓度的盐水10克倒入 A中,混合后取出10克倒入B中,混合后又从 B中取出 10克倒入 C中。
现在
C中盐水浓度是 0.5%。
问最早倒入A中的盐水浓度是多少?
【例11】(★★★)小明到商店买红、黑两种笔共66支。
红笔每支定价5元,黑笔每支定价9元。
由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,黑笔按定价80%付钱,如果他付的钱比按定价少付了18%,那么他买了红笔多少支?
【例12】制鞋厂生产的皮鞋按质量共分10个档次,生产最低档次(即第1档次)的皮鞋
180
1、
加
2、B点
3、%后,
4、(★★★)甲乙两人各有一些书,甲比乙多的数量恰好是两人总数的1
4
,如果甲给乙20
本,那么乙比甲多的数量恰好是两人总数的1
6。
那么他们共有多少本书?
5、(★★★)甲、乙、丙三位同学共有图书108本.乙比甲多18本,乙与丙的图书数之比
是5∶4.求甲、乙、丙三人所有的图书数之比.
6、(★★★)一个容器内已注满水,有大、中、小三个球。
第一次把小球沉入水中;第二次把小球取出,把中球沉入水中;第三次取出中球,把小球和大球一起沉入水中。
现在知
,第三次是第一次的2.5倍,求道每次从容器中溢出水量的情况是,第一次是第二次的1
1
三个球的体积之比。
7、
8.。