第三章 一阶线性微分方程组 第四讲 常系数线性微分方程组的解法1

合集下载

第三章 一阶线性微分方程组 第四讲 常系数线性微分方程组的解法(1)

第三章 一阶线性微分方程组   第四讲 常系数线性微分方程组的解法(1)

第四讲 常系数线性微分方程组的解法(4课时)一、目的与要求: 理解常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念, 掌握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法.三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程:1 新课引入由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组dYAY dx= (3.20) 其中A 是n n ⨯实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观.由线性代数知识可知,对于任一n n ⨯矩阵A ,恒存在非奇异的n n ⨯矩阵T ,使矩阵1T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换Y TZ = (3.21)其中()(,1,2,,),ij T t i j n == det 0T ≠,将方程组(3.20)化为1dZT ATZ dx-= (3.22) 我们知道,约当标准型1T AT -的形式与矩阵A 的特征方程111212122212det()0n n n n nn a a a a a a A E a a a λλλλ---==-2的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵A 的特征根.下面分两种情况讨论.(一) 矩阵A 的特征根均是单根的情形. 设特征根为12,,,,n λλλ这时12100n T AT λλλ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦方程组(3.20)变为11122200n n n dz dx z dz z dx z dz dx λλλ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦(3.23)易见方程组(3.23)有n 个解1110(),00xZ x e λ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 220010(),,()0001n x x n Z x e Z x e λλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦把这n 个解代回变换(3.21)之中,便得到方程组(3.20)的n 个解12()i i i i x x i i ni t t Y x e e T t λλ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦(1,2,,)i n =陇东学院数学系常微分方程精品课程教案教案编写人:李相锋 李万军3这里i T 是矩阵T 第i 列向量,它恰好是矩阵A 关于特征根i λ的特征向量,并且由线性方程组()0i i A E T λ-=所确定. 容易看出,12(),(),,()n Y x Y x Y x 构成(3.20)的一个基本解组,因为它们的朗斯基行列式()W x 在0x =时为(0)det 0W T =≠. 于是我们得到定理3.11 如果方程组(3.20)的系数阵A 的n 个特征根12,,,,n λλλ彼此互异,且12,,,n T T T 分别是它们所对应的特征向量,则121122(),(),,()n x xxn n Y x e T Y x e T Y x e T λλλ===是方程组(3.20)的一个基本解组. 例1 试求方程组353dxx y z dt dyx y z dt dzx y z dt ⎧=-+⎪⎪⎪=-+-⎨⎪⎪=-+⎪⎩的通解.解 它的系数矩阵是311151313A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦特征方程是311det()1510313A E λλλλ---=---=--4即 321136360λλλ-+-=所以矩阵A 的特征根为1232,3,6λλλ===.先求12λ=对应的特征向量1a T b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,,a b c 满足方程1111()1310111a a A E b b c c λ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦即0300a b c a b c a b c -+=⎧⎪-+-=⎨⎪-+=⎩可得,0a c b =-=. 取一组非零解,例如令1c =-,就有1,0,1a b c ===-. 同样,可求出另两个特征根所对应的特征向量,这样,这三个特征根所对应的特征向量分别是110,1T ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦ 211,1T ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 3121T ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦故方程组的通解是236123()111()012()111t t t x t y t C e C e C e z t ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦(二) 常系数线性微分方程组的解法复特征根 从上一讲我们已经知道,求解方程组dYAY dx= (3.20) 归结为求矩阵A 的特征根和对应的特征向量问题.现在考虑复根情形.因为A 是实的矩阵,所以复特征根是共轭出现的,设1,2i λαβ=±是一对共轭根,由定理3.11,对应解是陇东学院数学系常微分方程精品课程教案教案编写人:李相锋 李万军5111(),x Y x e T λ= 222()x Y x e T λ=其中12,T T 是特征向量,这是实变量的复值解,通常我们希望求出方程组(3.20)的实值解,这可由下述方法实现.定理3.12 如果实系数线性齐次方程组()dYA x Y dx= 有复值解()()()Y x U x iV x =+其中()U x 与()V x 都是实向量函数,则其实部和虚部12()()(),()n u x u x U x u x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 12()()()()n v x v x V x v x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦证明 因为()()()Y x U x iV x =+是方程组(3.8)的解,所以[]()()()()d dU x dV x U x iV x i dx dx dx+≡+ ()[()()]()()()()A x U x iV x A x U x iA x V x ≡+≡+由于两个复数表达式恒等相当于实部及虚部恒等,所以上述恒等式表明:()()()dU x A x U x dx = , ()()()dV x A x V x dx= 即()U x ,()V x 都是方程组(3.8)的解.证毕.定理3.13 如果12(),(),,()n Y x Y x Y x 是区间(,)a b 上的n 个线性无关的向量函数,12,b b 是两个不等于零的常数,则向量函数组112[()()],b Y x Y x + 212[()()],b Y x Y x - 3(),,()n Y x Y x (3.24)在区间(a, b )上仍是线性无关的.6证明 (反证法) 如果(3.24)线性相关,那么依定义3.1存在n 个不全为零的常数12,,,n C C C ,使得对区间(,)a b 上的所有x 皆有1112221233[()()][()()]()()0n n C b Y x Y x C b Y x Y x C Y x C Y x ++-+++≡所以112211122233()()()()()()0n n C b C b Y x C b C b Y x C Y x C Y x ++-+++≡因为12(),(),,()n Y x Y x Y x 线性无关,从而11220,C b C b += 11220,C b C b -= 30,,0n C C ==从上式可知,11220C b C b ==, 因为12,0b b ≠, 故120C C ==. 即所有常数12,,,n C C C 都等于零,矛盾. 证毕.由代数知识知, 实矩阵A 的复特征根一定共轭成对地出现.即,如果a ib λ=+是特征根,则其共轭a ib λ=-也是特征根. 由定理3.11,方程组(3.20)对应于a ib λ=+的复值解形式是1111222122()()()112()a ib x a ib x a ib x n n n t t it t t it x e T e e t t it ++++⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦1Y1112212212(cos sin )axn n t it t it e bx i bx t it +⎡⎤⎢⎥+⎢⎥=+⎢⎥⎢⎥+⎣⎦11121211212222211221cos sin cos sin cos sin cos sin cos sin cos sin ax ax n n n n t bx t bx t bx t bx t bx t bx t bx t bx eie t bx t bx t bx t bx -+⎡⎤⎡⎤⎢⎥⎢⎥-+⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦陇东学院数学系常微分方程精品课程教案教案编写人:李相锋 李万军7这里1T 是对应于a ib λ=+的特征向量.由于矩阵A 是实的,所以上述向量的共轭向量是方程组(3.20)对应于特征根a ib λ=-的解,记作()2(),a ib x x e -=2Y T =21T T . 现将上述两个复值解,按下述方法分别取其实部和虚部为1112212212cos sin cos sin 1[()()]2cos sin ax n n t bx t bx t bx t bx x x e t bx t bx -⎡⎤⎢⎥-⎢⎥+=⎢⎥⎢⎥-⎣⎦12YY 1211222121cos sin cos sin 1[()()]2cos sin ax n n t bx t bx t bx t bx x x e it bx t bx +⎡⎤⎢⎥+⎢⎥-=⎢⎥⎢⎥+⎣⎦12YY由定理3.12和定理3.13,它们分别是方程组(3.20)的解, 并且由此得到的n 个解仍组成基本解组.例2 求解方程组3dxx y z dt dyx y dt dzx z dt ⎧=--⎪⎪⎪=+⎨⎪⎪=+⎪⎩解 它的系数矩阵为111110301--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A特征方程是8111det()110301λλλλ----=--A E 即2(1)(25)0λλλ--+=特征根为11,λ= 2,312i λ=±先求11λ=对应的特征向量为1011⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦T再求212i λ=+所对应的特征向量2T . 它应满足方程组2211((12))120302i a i i b i c ---⎡⎤⎡⎤⎢⎥⎢⎥-+=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A E T 0即2020320ia b c a bi a ci ⎧---=⎪⎪-=⎨⎪-=⎪⎩ 用2i 乘上述第一个方程两端,得422020320a bi ci a bi a ci ⎧--=⎪⎪-=⎨⎪-=⎪⎩陇东学院数学系常微分方程精品课程教案教案编写人:李相锋 李万军9显见,第一个方程等于第二与第三个方程之和. 故上述方程组中仅有两个方程是独立的,即20320a bi a ci -=⎧⎨-=⎩求它的一个非零解.不妨令2,a i = 则1,3b c ==. 于是212i λ=+对应的解是(12)222sin 22cos 21(cos 2sin 2)1cos 2sin 2333cos 23sin 2i t t t t i i t t e e t i t e t ie t t t +-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦故原方程组的通解为123()02sin 22cos 2()1cos 2sin 2()13cos 23sin 2t t t x t t t y x C e C e t C e t z x t t -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦(三) 矩阵A 的特征根有重根的情形由定理3.11,我们已经知道,当方程组(3.20)的系数矩阵A 的特征根均是单根时,其基本解组的求解问题,归结到求这些特征根所对应的特征向量. 然而,当矩阵A 的特征方程有重根时,定理3.11不一定完全适用,这是因为,若i λ是A 的i k 重特征根,则由齐次线性方程组()i i λ-=A E T 0所决定的线性无关特征向量的个数i γ, 一般将小于或等于特征根i λ的重数i k . 若i γ=i k ,那么矩阵A 对应的约当标准型将呈现对角阵,其求解方法与3.5.1情形相同.若i γ<i k ,由线性代数的知识,此时也可以求出i k 个线性无关的特征向量,通常称为广义特征向量,以这些特征向量作为满秩矩阵T 的列向量,可将矩阵A 化成若当标准型10121m ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦-J J T AT J 其中未标出符号的部分均为零无素,而1010i ii i λλλ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦J (1,2,,)i m =是i k 阶约当块,12,m k k k n +++= 12,,,m λλλ是(3.20)的特征根,它们当中可能有的彼此相同.于是,在变换(3.21)下方程组(3.20)化成12m d dx ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦J J Z Z J (3.25) 根据(3.25)的形式,它可以分解成为m 个可以求解的小方程组.为了说清楚这个问题,我们通过一个具体重根的例子,说明在重根情形下方程组(3.20)的基本解组所应具有的结构.对于一般情形,其推导是相似的.设方程组d Dx=YAY (3.26) 中A 是5.5矩阵,经非奇异线性变换=Y TZ 其中()(,1,2,,5)ij t i j ==T 且det 0≠T ,将方程组(3.26)化为d dx=ZJZ (3.27) 我们假定陇东学院数学系常微分方程精品课程教案1112210000100000000010000λλλλλ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦J 这时,方程组(3.27)可以分裂为两个独立的小方程组 1112212313dz z z dx dz z dxdz z dx λλλ⎧=+⎪⎪⎪=⎨⎪⎪=⎪⎩(3.28)4245525dz z z dx dz z dxλλ⎧=+⎪⎪⎨⎪=⎪⎩ (3.29) 在(3.28)中自下而上逐次用初等积分法可解得11123121232332!()xxxC z x C x C e z C x C e z C e λλλ⎛⎫=++ ⎪⎝⎭=+= 同样对(3.29)可解得2245455()xx z C x C e z C eλλ=+= 这里125,,,C C C 是任意常数.由于在方程(3.28)中不出现45,,z z 在(3.29)中不出现123,,z z z .我们依次取12345123451234512345123451,00,1,00,1,00,1,00,1C C C C C C C C C C C C C C C C C C C C C C C C C =========================可以得到方程组(3.27)的五个解如下11111121232!0,,00000000x xx x x x x e xe e e xe e λλλλλλ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦Z Z Z , 222450000,000x x x e xe e λλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦Z Z 从而1111112222002!000()00000000000x x x x x x x x x x exe e e xe x e e xe e λλλλλλλλλ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦Z (3.31) 是方程组(3.27)的一个解矩阵. 又det (0)10=≠Z ,所以(3.31)是方程组(3.27)的一个基本解矩阵.而(3.30)是(3.27)的一个基本解组.现在把(3.30)的每个解分别代入到线性变换Y =TZ 中可得原方程组(3.26)的五个解,1111111211314151,x x x x x t e t e t e t e t e λλλλλ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦Y 11111111221222313241425152()(),()()()x x x x x t x t e t x te t x t e t x te t x t e λλλλλ⎡⎤+⎢⎥+⎢⎥⎢⎥=+⎢⎥+⎢⎥⎢⎥+⎣⎦Y陇东学院数学系常微分方程精品课程教案11111211121322122232313323324142432515253()2!()2!()2!()2!()2!x x x x x t x t x t e t x t x t e t x t x t e t x t x t e t x t x t e λλλλλ⎡⎤++⎢⎥⎢⎥⎢⎥++⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥++⎢⎥⎢⎥++⎢⎥⎣⎦Y ,222222222214141524242545343435444445545455()(),()()()x x x x x x x x x x t e t x t e t e t x t e t e t x t e t e t x t e t e t x t e λλλλλλλλλλ⎡⎤⎡⎤+⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦Y Y而且这五个解构成方程组的一个基本解组.这是因为,若把上面五个解写成矩阵形式12345()[(),(),(),(),()]x x x x x x =Y Y Y Y Y Y 则显然有det (0)0=≠Y T .至此我们已清楚地看到,若J 中有一个三阶若当块,1λ是(3.26)的三重特证根,则(3.26)有三个如下形式的线性无关解,12345()()()(),1,2,3()()i i i x i i i i p x p x x p x e i p x p x λ⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Y (3.32) 其中每个()(1,2,3,1,2,3,4,5)ki p x i k ==是x 的至多二次多项式.因此(3.32)也可以写成如下形式12012()x x x e λ++R R R其中012,,R R R 都是五维常向量.而对于J 中的二阶若当块,2λ是(3.26)的二重根,它 所对应的(3.26)的两个线性无关解应是如下形式234()x x e λ+R R其中34,R R 也都是五维常向量.最后,我们还应指出,对于方程组(3.20),若i λ是A 的一个i k 重特征根,则i λ所对应的若当块可能不是一块而是几块,但是它们每一块的阶数都小于或等于i k ,而且这些阶数的和恰好等于i k . 这样,由以上分析我们得到定理3.14 设12,,,m λλλ是矩阵A 的m 个不同的特征根,它们的重数分别为12,,,m k k k . 那么,对于每一个i λ,方程组(3.20)有i k 个形如1122()(),()(),,()()i i i i i x x x k k x x e x x e x x e λλλ===Y P Y P Y P 的线性无关解,这里向量()(1,2,,)i i x i k =P 的每一个分量为x 的次数不高于1i k -的多项式. 取遍所有的(1,2,,)i i m λ=就得到(3.20)的基本解组.上面的定理既告诉了我们当A 的特征根有重根时,线性方程组(3.20)的基本解组的形式,同时也告诉了我们一种求解方法,但这种求解方法是很繁的.在实际求解时,常用下面的待定系数法求解. 为此,我们需要线性代数中的一个重要结论.引理3.1 设n 阶矩阵互不相同的特征根为(1,2,,)i i m λ=,其重数分别是,1212,,,()m m k k k k k k n +++=, 记n 维常数列向量所组成的线性空间为V ,则(1) V 的子集合 {()0,}j kj j λ=-=∈V R A E R R V 是矩阵A 的(1,2,,)j k j m =维不变子空间,并且(2) V 有直和分解 12m =⊕⊕⊕V V V V ;现在,在定理3.14相同的假设下,我们可以按下述方法求其基本解组.陇东学院数学系常微分方程精品课程教案定理3.15 如果j λ是(3.20)的j k 重特征根,则方程组(3.20)有个j k 形如1011()()j j j k x k x x x e λ--=+++Y R R R (3.33) 的线性无关解,其中向量011,,,j k -R R R 由矩阵方程0112210()()2()(1)()0j j j j j j k j k k j k λλλλ--⎧-=⎪⎪-=⎪⎨⎪-=-⎪⎪-=⎩A E R R A E R R A E R R A ER (3.34)所确定.取遍所有的(1,2,,)j j m λ=,则得到(3.20)的一个基本解组.证明 由定理3.14知,若j λ是(3.20)的j k 重特征根,则对应解有(3.30)的形式.将(3.33)代入方程组(3.20)有21121011[2(1)]()j j j j j j k x k x j k j k x k xe x x e λλλ----+++-++++R R R R R R 1011()j j j k x k A x x e λ--=+++R R R消去j x e λ,比较等式两端x 的同次幂的系数(向量),有0112211()()2()(1)()0j j j j j j k j k j k k λλλλ---⎧-=⎪⎪-=⎪⎨⎪-=-⎪⎪-=⎩A E R R A E R R A E R R A ER (3.35)注意到方程组(3.35)与(3.34)是等价的.事实上,两个方程组只有最后一个方程不同,其余都相同.(3.35)与(3.34)同解的证明请见教材.这样,在方程组(3.31)中,首先由最下面的方程解出0R ,再依次利用矩阵乘法求出121,,,j k -R R R . 由引理3.1得知,线性空间V 可分解成相应不变子空间的直和,取遍所有的(1,2,,)j j m λ=,就可以由(3.34)最下面的方程求出n 个线性无关常向量,再由(3.31)逐次求出其余常向量,就得到(3.20)的n 个解. 记这n 个解构成的解矩阵为()x Y ,显然,(0)Y 是由(3.34)最下面的方程求出的n 个线性无关常向量构成,由引理3.1的2)矩阵(0)Y 中的各列构成了n 维线性空间V 的一组基,因此det (0)0≠Y ,于是()x Y 是方程组(3.20)的一个基本解组.例3 求解方程组123213312dy y y dx dy y y dxdy y y dx ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩解 系数矩阵为011101110⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 特征方程为2(2)(1)0λλ-+=特征根为 1232, 1.λλλ===-其中12λ=对应的解是211()11x x e ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Y 下面求231λλ==-所对应的两个线性无关解.由定理3.15,其解形如陇东学院数学系常微分方程精品课程教案01()()x x x e -=+Y R R并且01,R R 满足0120()()0=⎧⎨=⎩A +E R R A +E R 由于111()111,111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A +E 2333()333333⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A +E 那么由20()0=A +E R 可解出两个线性无关向量11,0-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 101-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦将上述两个向量分别代入01()=A +E R R 中,均得到1R 为零向量.于是231λλ==-对应的两个线性无关解是21()1,0x x e --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Y 31()01x x e --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Y 最后得到通解2123111()110101x x x x C e C e C e ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦Y 例4 求解方程组11232123312332dy y y y dx dy y y y dxdy y y y dx⎧=+-⎪⎪⎪=-++⎨⎪⎪=++⎪⎩ 解 系数矩阵是311121111-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦A特征方程为3(2)0λ-= , 有三重特征根1,2,32λ=由定理3.15,可设其解形如22012()()xx x x e =++Y R R R012,,R R R 满足方程组0121230(2)(2)(2)-=⎧⎪-=⎨⎪-=⎩A E R R A E RR A E R 0由于23111101000(2)101,(2)000,(2)000111101000--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦A E A E A E 故0R 可分别取10,0⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 01,0⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦陇东学院数学系常微分方程精品课程教案再将它们依次代入上面的方程,相应地求得1R 为11,1⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 10,1⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 111-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦2R 为120,12⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦ 00,0⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 12012⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦于是,可得原方程组三个线性无关解 22212111012()010,()10,011012x x Y x x x e Y x x e ⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+-+=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦⎣⎦2231012()0101112xY x x x e ⎡⎤⎡⎤⎢⎥⎢⎥-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦最后方程的通解可写成22112222233111()22()1()11122x x x x x x y x C y x e x x C y x C x x x x x ⎡⎤+--+⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--+⎢⎥⎣⎦本讲要点:1 . 常系数线性微分方程组的解法归结为求出系数阵A的特征根和特征向量。

常微分方程组的解法

常微分方程组的解法

常微分方程组的解法常微分方程组是由多个关于未知函数及其导数的方程组成的方程组,它是数学中的重要研究对象。

常微分方程组的解法可以分为解析解法和数值解法两种。

解析解法是指通过数学方法求出常微分方程组的解析表达式。

常微分方程组的解析解法主要包括分离变量法、一阶线性方程法、变量代换法、常数变易法、特殊函数法等。

其中,分离变量法是指将常微分方程组中的各个变量分离出来,然后对每个变量分别积分,最后得到常微分方程组的解析解。

一阶线性方程法是指将常微分方程组转化为一阶线性方程,然后通过求解一阶线性方程来得到常微分方程组的解析解。

变量代换法是指通过合适的变量代换将常微分方程组转化为更简单的形式,然后通过求解简化后的方程组得到常微分方程组的解析解。

常数变易法是指将常微分方程组中的常数作为未知量,然后通过求解常数得到常微分方程组的解析解。

特殊函数法是指通过特殊函数的性质求解常微分方程组,如指数函数、三角函数等。

数值解法是指通过计算机数值计算的方法求出常微分方程组的数值解。

常微分方程组的数值解法主要包括欧拉法、龙格-库塔法、变步长法等。

其中,欧拉法是一种简单的数值解法,它的基本思想是将常微分方程组的解曲线上的点离散化为一系列点,然后通过计算机逐步求解得到常微分方程组的数值解。

龙格-库塔法是一种高阶数值解法,它通过计算机采用多个不同的计算公式来逼近常微分方程组的解曲线,从而得到更为准确的数值解。

变步长法是一种自适应数值解法,它通过计算机根据误差大小自动调整步长大小,从而得到更为准确的数值解。

常微分方程组的解法包括解析解法和数值解法两种,每种方法都有其适用的范围和优缺点。

在实际应用中,需要根据具体问题的性质和求解要求选择合适的解法来求解常微分方程组。

第三章一阶线性微分方程组

第三章一阶线性微分方程组

含有n个未知函数
的一阶微分方程组的一般形式为:
(3.1) 方程组(3.1)在 上的一个解,是这样的一组函数
使得在 上有恒等式
含有n个任意常数
的解
称为(3.1)的通解. 如果通解满足方程组
则称后者为(3.1)的通积分. 如果已求得(3.1)的通解或通积分,要求满足初始条件
(3.2) 的解,可以把初始条件(3.2)代入通解或通积分之中,得到关于 的n个方程式,如果从其中解得 ,再代回通解或通积分中,就得到所求的初值问题的解.
。 定理的证明方法与定理2.2完全类似,也是首先证明(3.4)与积分方程
(3.5) 同解.为证(3.5)的解在
上的存在性,同样用逐次逼近法,其步骤可以逐字逐句重复定理2.2的证明.最后, 唯一性的证明,同样用贝尔曼不等式完成。 对于方程组(3.3)也有类似第二章关于纯量方程(1.9)的解的延展定理和解对初 值的连续依赖性定理,这只要在第二章相应定理中把纯量y换成向量Y即可。
是方程组
的基本解组. 定理3.5 方程组(3.8)必存在基本解组. 证明 由定理(3.1)′可知,齐次方程组(3.8)必存在分别满足初始条件
(3.11) 的n个解
.由于它们所构成的朗斯基行列式W
因而,由推论3.3知
是基本解组. 满足初始条件(3.11)的基本解组称为方程组(3.8)的标准基本解组.下面我们可以给出齐次方程组(3.8)的基本定理了. 定理3.6 如果 是齐次方程组(3.8)的基本解组,则其线性组合
是非齐方程组(3.7)的任意两个解,即有等式

于是有
上式说明
是齐次方程组(3.8)的解. 定理3.10 线性非齐次方程组(3.7)的通解等于其对应的齐次方程组(3.8)的通解与方程组(3.7)的一个特解之和.即若

常系数线性微分方程组的解法

常系数线性微分方程组的解法


A k ck ,
t c,
k!
k!

而数项级数
A k ck
k 1 k !
收敛 .
常系数线性方程组
2 矩阵指数的性质
(1) 若AB BA,则eAB eAeB. (2) 对任何矩阵A, (exp A)1存在,且
(exp A)1=exp(-A). (3) 若T是非奇异的,则
exp(T-1AT ) T-1(exp A)T.
,

0.
常系数线性方程组
例4
试求矩阵A=
2 1
1 4
特征值和特征向量.
解 特征方程为
det(
E

A)



1
2
1
4

2
6
9

0
因此 3为两重特征根, 为求其对应的特征向量
考虑方程组
1
(E A)c 1
1 1
c1 c2
例3
试求矩阵A=
3 5
5 3
特征值和特征向量.
解 A的特征值就是特征方程
det( E

A)



5
3
5
3

2

6

34

0
的根, 1 3 5i, 2 3 5i.
常系数线性方程组
对特征根1 3 5i的特征向量u (u1,u2 )T 满足
§4.3 常系数线性方程组
常系数线性方程组
一阶常系数线性微分方程组:
dx Ax f (t), dt
这里系数矩阵A为n n常数矩阵, f (t)在

常系数微分方程组的解法

常系数微分方程组的解法
注意:在求得一个未知函数的通解以后,再求另 一个未知函数的通解时,一般不再积分.
三、小结
1.注意微分算子D的使用;
2.注意求出其中一个解,再求另一个解时 ,宜用代数法,不要用积分法.避免处理两 次积分后出现的任意常数间的关系.
用记号 D 可表示为
( D a1 D
n
n 1
a n 1 D a n ) y f ( x )
注意:
D n a1 D n1 a n1 D a n 是 D 的多项式
可进行相加和相乘的运算.
d 2 x dy x et dt 2 dt 例2 解微分方程组 d 2 y dx dt 2 dt y 0. d 解 用记号D 表示 ,则方程组可记作 dt 2 t (1) ( D 1) x Dy e (2) Dx ( D 2 1) y 0
解得特征根为
r1, 2 1 5 , r3 , 4 i 2 5 1 , 2
易求一个特解 y e t , 于是通解为
y C1e t C 2e t C 3 cos t C 4 sin t e t .
(6)
将(6)代入(3)得
常系数线性微分 方程组的解法
一、微分方程组
微分方程组 由几个微分方程联立而成的方程组 称为微分方程组. 注意:这几个微分方程联立起来共同确定了几 个具有同一自变量的函数. 常系数线性微分方程组 微分方程组中的每一个 微分方程都是常系数线性微分方程叫做常系数线 性微分方程组.
二、常系数线性微分方程组的解法
步骤:
1. 从方程组中消去一些未知函数及其各阶导 数,得到只含有一个未知函数的高阶常系数线性 微分方程. 2.解此高阶微分方程,求出满足该方程的未知 函数. 3.把已求得的函数带入原方程组,一般说来, 不必经过积分就可求出其余的未知函数.

29789 常微分方程大纲

29789 常微分方程大纲

(四)对社会助学的要求
1、应熟知考试大纲对课程所提出的总的要求和各章的知识点。
2、应掌握各知识点要求达到的层次,并深刻理解各知识点的考核要求。
3、对应考者进行辅导时,应以指定的教材为基础,以考试大纲为依据,不要随意增删内容,避免与考试大纲脱节。
4、辅导时应对应考者进行学习方法的指导。
(二)自学教材
本课程使用教材为:《常微分方程》,东北师范大学微分方程教研室主编,高等教育出版社,2005年。
(三)自学方法的指导
本课程作为一门的专业课程,综合性强、内容多、难度大,自学者在自学过程中应该注意以下几点:
1、学习前,应仔细阅读课程大纲,熟悉课程的基本要求,使以后的学习紧紧围绕课程的基本要求。
2、掌握:常系数线性微分方程组的求解方法。
3、熟练掌握:常系数线性齐次微分方程组的解法
第四章 n阶线性微分方程
(一)课程内容
1、n阶线性微分方程的一般理论
2、n阶常系数线性齐次方程的解法
(三)本课程与相关课程的联系
常微分方程应是数学分析和高等代数的后继课程。
二、课程内容与考核目标
第一章 初等积分法
(一)课程内容
1、微分方程和解
2、变量可分离方程
2、掌握:掌握了解一阶微分方程解的存在唯一性定理的条件和结论以及利普希茨条件的检验方法,掌握利用Picard逐步逼近法求所给方程的近似解。
第三章 一阶线性微分方程组
(一)课程内容
1、一阶微分方程组和一阶线性微分方程组的基本概念
2、一阶线性齐次微分方程组的一般理论
(三)考核知识点和考核要求
1、领会:微分方程概念
2、掌握:一阶微分方程的一般解法和各类型方程的转化关系,以及一阶微分方程的应用

《常微分方程》课程教学大纲

《常微分方程》课程教学大纲

《常微分方程》课程教学大纲一、课程基本信息二、课程教学目标常微分方程是信息与计算科学专业的基础课程之一。

通过该课程的学习,使学生掌握建立常微分方程模型的基本过程和方法,正确理解常微分方程的基本概念,掌握基本理论和主要方法,获得比较熟练的基本运算技能,对常微分方程的定性理论有初步的理解,培养学生计算能力、逻辑推理能力、空间想象能力及理论联系实际去分析问题、解决问题的能力,为学生学习后继课程打下基础。

1.学好基础知识。

理解和掌握课程中的基本概念和基本理论,知道它的思想方法、意义和用途,以及它与其它概念、规律之间的联系。

2.掌握基本技能。

能够根据法则、公式正确地进行运算。

能够根据问题的情景,寻求和设计合理简捷的运算途径。

3.培养思维能力。

能够对研究的对象进行观察、比较、抽象和概括。

能运用课程中的概念、定理及性质进行合乎逻辑的推理。

能对计算结果进行合乎实际的分析、归纳和类比。

4.提高解决实际问题的能力。

对于简单应用问题会列出定解问题求解,能够将本课程与相关课程有机地联系起来,提出并解决相关学科中与本课程有关的问题。

能够自觉地用所学知识去观察生活,建立简单的数学模型,提出和解决生活中有关的数学问题。

三、教学学时分配《常微分方程》课程理论教学学时分配表*理论学时包括讨论、习题课等学时。

四、教学内容和教学要求第一章绪论(4学时)(一)教学要求1.了解微分方程的背景即某些物理过程的数学模型;2. 掌握由简单的物理、几何等问题建立简单微分方程;3. 理解微分方程的基本概念;4. 掌握如何由通解求特解。

(二)教学重点与难点教学重点:微分方程的基本概念;教学难点:建立微分方程模型的思想、方法和例子。

(三)教学内容 第一节 常微分方程模型第二节 基本概念和常微分方程的发展历史1.常微分方程基本概念本章习题要点:微分方程基本概念题;建立微分方程的题。

第二章 一阶微分方程的初等解法(14学时)(一)教学要求1. 掌握变量可分离方程、一阶线性方程以及恰当微分方程的求解方法; 2.掌握齐次方程、Bernoulli 方程的求解; 3. 掌握用变量代换的方法求解微分方程;4. 掌握从积分因子满足的充分必要条件导出某些特殊形式积分因子存在的条件及计算公式,并用于解相应的微分方程;5. 掌握已解出y 或x 的微分方程)',(),',(y y f x y x f y ==的计算方法;6. 了解微分方程0)',(,0)',(==y y F y x F 的求解;7. 掌握一阶微分方程的应用方法,能建立一些简单的模型进行简单分析。

常系数线性微分方程的一般解法

常系数线性微分方程的一般解法

初始条件法
根据微分方程和初始条件 ,确定通解中的任意常数 ,从而得到满足初始条件 的特解。
积分因式法
通过对方程进行适当的变 换,使其成为易于积分的 形式,然后求解通解。
05 微分方程的特解
特解的定义与性质
总结词
特解是满足微分方程的特定函数,具有 与原方程不同的形式。
VS
详细描述
特解是微分方程的一个解,它具有与原方 程不同的形式,但满足原方程的约束条件 。特解通常用于求解微分方程时,通过将 特解代入原方程来求解未知数。
二阶常系数线性微分方程
总结词
二阶常系数线性微分方程是形如 (y'' + p(t)y' + q(t)y = r(t)) 的方程,其中 (p(t))、(q(t)) 和 (r(t)) 是关于时间 (t) 的已知函数。
详细描述
二阶常系数线性微分方程的一般形式为 (y'' + p(t)y' + q(t)y = r(t)),其中 (p(t))、(q(t)) 和 (r(t)) 是关于时间 (t) 的已知函数。解这个方程可以得到 (y(t)) 的通解。
间的变化性微分方程在机械振动分析中有着广泛的应用,例如分 析弹簧振荡器、单摆等的振动规律。
电路分析
在电路分析中,微分方程被用来描述电流、电压随时间的变化规 律,以及电路元件的响应特性。
控制工程
在控制工程中,微分方程被用来描述系统的动态特性,以及系统 对输入信号的响应。
在经济中的应用
供需模型
微分方程可以用来描述商品价格 随时间的变化规律,以及供需关 系对价格的影响。
投资回报分析
在投资领域,微分方程可以用来 描述投资回报随时间的变化规律, 以及风险因素对投资回报的影响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲常系数线性微分方程组的解法(4课时)一、目的与要求: 理解常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念, 掌握常系数线性微分方程组的基本解组的求法.二、重点:常系数线性微分方程组的基本解组的求法.三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念.四、教学方法:讲练结合法、启发式与提问式相结合教学法.五、教学手段:传统板书与多媒体课件辅助教学相结合.六、教学过程:1 新课引入由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组dYAYdx(3.20)其中A 是n n ⨯实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观.由线性代数知识可知,对于任一n n ⨯矩阵A ,恒存在非奇异的n n ⨯矩阵T ,使矩阵1T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2,,),ij T t i j n == det 0T ≠,将方程组(3.20)化为1dZ T ATZ dx-= (3.22)我们知道,约当标准型1T AT -的形式与矩阵A 的特征方程 111212122212det()0n n n n nn a a a a a a A E a a a λλλλ---==-的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵A 的特征根.下面分两种情况讨论.(一) 矩阵A 的特征根均是单根的情形.设特征根为12,,,,n λλλ这时12100n T AT λλλ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦方程组(3.20)变为11122200n n ndz dx z dz z dx z dz dx λλλ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦(3.23)易见方程组(3.23)有n 个解1110(),00xZ x e λ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 220010(),,()0001n xx n Z x e Z x e λλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦把这n 个解代回变换(3.21)之中,便得到方程组(3.20)的n 个解12()i i i i x x i i ni t t Y x e e T t λλ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦ (1,2,,)i n =这里i T 是矩阵T 第i 列向量,它恰好是矩阵A 关于特征根i λ的特征向量,并且由线性方程组()0i i A E T λ-=所确定. 容易看出,12(),(),,()n Y x Y x Y x 构成(3.20)的一个基本解组,因为它们的朗斯基行列式()W x 在0x =时为(0)det 0W T =≠. 于是我们得到定理3.11 如果方程组(3.20)的系数阵A 的n 个特征根12,,,,n λλλ彼此互异,且12,,,n T T T 分别是它们所对应的特征向量,则121122(),(),,()n x x x n n Y x e T Y x e T Y x e T λλλ=== 是方程组(3.20)的一个基本解组.例1 试求方程组353dx x y zdtdyx y zdt dz x y zdt ⎧=-+⎪⎪⎪=-+-⎨⎪⎪=-+⎪⎩的通解.解 它的系数矩阵是311151313A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦特征方程是311det()1510313A E λλλλ---=---=--即321136360λλλ-+-=所以矩阵A 的特征根为1232,3,6λλλ===.先求12λ=对应的特征向量1a T b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,,a b c 满足方程1111()1310111a a A E b b c c λ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦即0300a b c a b c a b c -+=⎧⎪-+-=⎨⎪-+=⎩可得,0a c b =-=. 取一组非零解,例如令1c =-,就有1,0,1a b c ===-. 同样,可求出另两个特征根所对应的特征向量,这样,这三个特征根所对应的特征向量分别是110,1T ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦ 211,1T ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 3121T ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦故方程组的通解是236123()111()012()111t t t x t y t C e C e C e z t ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦(二) 常系数线性微分方程组的解法复特征根从上一讲我们已经知道,求解方程组dY AY dx= (3.20) 归结为求矩阵A 的特征根和对应的特征向量问题.现在考虑复根情形.因为A 是实的矩阵,所以复特征根是共轭出现的,设1,2i λαβ=±是一对共轭根,由定理3.11,对应解是 111(),x Y x e T λ= 222()xY x e T λ=其中12,T T 是特征向量,这是实变量的复值解,通常我们希望求出方程组(3.20)的实值解,这可由下述方法实现.定理3.12 如果实系数线性齐次方程组()dY A x Y dx= 有复值解()()()Y x U x iV x =+其中()U x 与()V x 都是实向量函数,则其实部和虚部12()()(),()n u x u x U x u x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 12()()()()n v x v x V x v x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 证明 因为()()()Y x U x iV x =+是方程组(3.8)的解,所以 []()()()()d dU x dV x U x iV x i dx dx dx +≡+()[()()]()()()()A x U x iV x A x U x iA x V x ≡+≡+由于两个复数表达式恒等相当于实部及虚部恒等,所以上述恒等式表明:()()()dU x A x U x dx= , ()()()dV x A x V x dx =即()U x ,()V x 都是方程组(3.8)的解.证毕.定理3.13 如果12(),(),,()n Y x Y x Y x 是区间(,)a b 上的n 个线性无关的向量函数,12,b b 是两个不等于零的常数,则向量函数组112[()()],b Y x Y x + 212[()()],b Y x Y x - 3(),,()n Y x Y x (3.24)在区间(a, b )上仍是线性无关的.证明 (反证法) 如果(3.24)线性相关,那么依定义3.1存在n 个不全为零的常数12,,,n C C C ,使得对区间(,)a b 上的所有x 皆有1112221233[()()][()()]()()0n n C b Y x Y x C b Y x Y x C Y x C Y x ++-+++≡所以 112211122233()()()()()()0n n C b C b Y x C b C b Y x C Y x C Y x ++-+++≡因为12(),(),,()n Y x Y x Y x 线性无关,从而11220,C b C b += 11220,C b C b -= 30,,0n C C ==从上式可知,11220C b C b ==, 因为12,0b b ≠, 故120C C ==. 即所有常数12,,,n C C C 都等于零,矛盾. 证毕.由代数知识知, 实矩阵A 的复特征根一定共轭成对地出现.即,如果a ib λ=+是特征根,则其共轭a ib λ=-也是特征根. 由定理3.11,方程组(3.20)对应于a ib λ=+的复值解形式是 1111222122()()()112()a ib x a ib x a ib x n n n t t it t t it x e T e e t t it ++++⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦1Y 1112212212(cos sin )ax n n t it t it e bx i bx t it +⎡⎤⎢⎥+⎢⎥=+⎢⎥⎢⎥+⎣⎦11121211212222211221cos sin cos sin cos sin cos sin cos sin cos sin ax ax n n n n t bx t bx t bx t bx t bx t bx t bx t bx e ie t bx t bx t bx t bx -+⎡⎤⎡⎤⎢⎥⎢⎥-+⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦这里1T 是对应于a ib λ=+的特征向量.由于矩阵A 是实的,所以上述向量的共轭向量是方程组(3.20)对应于特征根a ib λ=-的解,记作()2(),a ib x x e -=2Y T =21T T . 现将上述两个复值解,按下述方法分别取其实部和虚部为1112212212cos sin cos sin 1[()()]2cos sin ax n n t bx t bx t bx t bx x x e t bx t bx -⎡⎤⎢⎥-⎢⎥+=⎢⎥⎢⎥-⎣⎦12Y Y 1211222121cos sin cos sin 1[()()]2cos sin ax n n t bx t bx t bx t bx x x e it bx t bx +⎡⎤⎢⎥+⎢⎥-=⎢⎥⎢⎥+⎣⎦12Y Y由定理3.12和定理3.13,它们分别是方程组(3.20)的解, 并且由此得到的n 个解仍组成基本解组.例2 求解方程组3dxx y z dt dyx y dt dzx z dt ⎧=--⎪⎪⎪=+⎨⎪⎪=+⎪⎩解 它的系数矩阵为111110301--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A特征方程是111det()11031λλλλ----=--A E即2(1)(25)0λλλ--+=特征根为11,λ= 2,312i λ=±先求11λ=对应的特征向量为1011⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦T 再求212i λ=+所对应的特征向量2T . 它应满足方程组2211((12))120302i a i i b i c ---⎡⎤⎡⎤⎢⎥⎢⎥-+=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A E T 0即2020320ia b c a bi a ci ⎧---=⎪⎪-=⎨⎪-=⎪⎩ 用2i 乘上述第一个方程两端,得422020320a bi ci a bi a ci ⎧--=⎪⎪-=⎨⎪-=⎪⎩ 显见,第一个方程等于第二与第三个方程之和. 故上述方程组中仅有两个方程是独立的,即20320a bi a ci -=⎧⎨-=⎩求它的一个非零解.不妨令2,a i = 则1,3b c ==. 于是212i λ=+对应的解是(12)222sin 22cos 21(cos 2sin 2)1cos 2sin 2333cos 23sin 2i t t t t i i t t e e t i t e t ie t t t +-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦故原方程组的通解为123()02sin 22cos 2()1cos 2sin 2()13cos 23sin 2t t t x t t t y x C e C e t C e t z x t t -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦(三) 矩阵A 的特征根有重根的情形由定理3.11,我们已经知道,当方程组(3.20)的系数矩阵A 的特征根均是单根时,其基本解组的求解问题,归结到求这些特征根所对应的特征向量. 然而,当矩阵A 的特征方程有重根时,定理3.11不一定完全适用,这是因为,若i λ是A 的i k 重特征根,则由齐次线性方程组()i i λ-=A E T 0所决定的线性无关特征向量的个数i γ, 一般将小于或等于特征根i λ的重数i k . 若i γ=i k ,那么矩阵A 对应的约当标准型将呈现对角阵,其求解方法与3.5.1情形相同.若i γ<i k ,由线性代数的知识,此时也可以求出i k 个线性无关的特征向量,通常称为广义特征向量,以这些特征向量作为满秩矩阵T 的列向量,可将矩阵A 化成若当标准型121m ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦-J J T AT J 其中未标出符号的部分均为零无素,而1010i ii i λλλ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦J (1,2,,)i m =是i k 阶约当块,12,m k k k n +++= 12,,,m λλλ是(3.20)的特征根,它们当中可能有的彼此相同.于是,在变换(3.21)下方程组(3.20)化成 12m d dx ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦J J Z ZJ (3.25)根据(3.25)的形式,它可以分解成为m 个可以求解的小方程组.为了说清楚这个问题,我们通过一个具体重根的例子,说明在重根情形下方程组(3.20)的基本解组所应具有的结构.对于一般情形,其推导是相似的.设方程组d Dx=YAY (3.26)中A 是5.5矩阵,经非奇异线性变换=Y TZ 其中()(,1,2,,5)ij t i j ==T 且det 0≠T ,将方程组(3.26)化为d dx =Z JZ(3.27) 我们假定1112210000100000000010000λλλλλ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦J 这时,方程组(3.27)可以分裂为两个独立的小方程组1112212313dz z z dx dz z dx dz z dx λλλ⎧=+⎪⎪⎪=⎨⎪⎪=⎪⎩(3.28)4245525dz z z dx dz z dxλλ⎧=+⎪⎪⎨⎪=⎪⎩(3.29)在(3.28)中自下而上逐次用初等积分法可解得11123121232332!()xx xC z x C x C ez C x C e z C eλλλ⎛⎫=++ ⎪⎝⎭=+=同样对(3.29)可解得2245455()xxz C x C e z C eλλ=+=这里125,,,C C C 是任意常数.由于在方程(3.28)中不出现45,,z z在(3.29)中不出现123,,z z z .我们依次取12345123451234512345123451,00,1,00,1,00,1,00,1C C C C C C C C C C C C C C C C C C C C C C C C C =========================可以得到方程组(3.27)的五个解如下11111121232!0,,00000000xxx x x x x e xe e e xe e λλλλλλ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦Z Z Z , 222450000,000x x x e xe e λλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦Z Z 从而1111112222002!000()00000000000x x xx xxx x xx e xe e e xe x e e xe e λλλλλλλλλ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦Z (3.31)是方程组(3.27)的一个解矩阵. 又det (0)10=≠Z ,所以(3.31)是方程组(3.27)的一个基本解矩阵.而(3.30)是(3.27)的一个基本解组.现在把(3.30)的每个解分别代入到线性变换Y =TZ 中可得原方程组(3.26)的五个解,1111111211314151,x x x x x t e t e t e t e t e λλλλλ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦Y 11111111221222313241425152()(),()()()xx x x x t x t e t x t e t x t e t x t e t x t e λλλλλ⎡⎤+⎢⎥+⎢⎥⎢⎥=+⎢⎥+⎢⎥⎢⎥+⎣⎦Y 11111211121322122232313323324142432515253()2!()2!()2!()2!()2!x x x x x t x t x t e t x t x t e tx t x t e t x t x t e t x t x t e λλλλλ⎡⎤++⎢⎥⎢⎥⎢⎥++⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥++⎢⎥⎢⎥++⎢⎥⎣⎦Y ,222222222214141524242545343435444445545455()(),()()()x x x x x x x x x x t e t x t e t e t x t e t e t x t e t e t x t e t e t x t e λλλλλλλλλλ⎡⎤⎡⎤+⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦Y Y而且这五个解构成方程组的一个基本解组.这是因为,若把上面五个解写成矩阵形式12345()[(),(),(),(),()]x x x x x x =Y Y Y Y Y Y则显然有det (0)0=≠Y T .至此我们已清楚地看到,若J 中有一个三阶若当块,1λ是(3.26)的三重特证根,则(3.26)有三个如下形式的线性无关解,12345()()()(),1,2,3()()i i i x i i i i p x p x x p x e i p x p x λ⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦Y(3.32)其中每个()(1,2,3,1,2,3,4,5)ki p x i k ==是x 的至多二次多项式.因此(3.32)也可以写成如下形式12012()xx x eλ++R R R其中012,,R R R 都是五维常向量.而对于J 中的二阶若当块,2λ是(3.26)的二重根,它所对应的(3.26)的两个线性无关解应是如下形式234()x x e λ+R R其中34,R R 也都是五维常向量.最后,我们还应指出,对于方程组(3.20),若i λ是A 的一个i k 重特征根,则i λ所对应的若当块可能不是一块而是几块,但是它们每一块的阶数都小于或等于i k ,而且这些阶数的和恰好等于i k . 这样,由以上分析我们得到定理3.14 设12,,,m λλλ是矩阵A 的m 个不同的特征根,它们的重数分别为12,,,m k k k .那么,对于每一个i λ,方程组(3.20)有i k 个形如1122()(),()(),,()()i i i i i x x xk k x x e x x e x x e λλλ===Y P Y P Y P的线性无关解,这里向量()(1,2,,)i i x i k =P 的每一个分量为x 的次数不高于1i k -的多项式. 取遍所有的(1,2,,)i i m λ=就得到(3.20)的基本解组.上面的定理既告诉了我们当A 的特征根有重根时,线性方程组(3.20)的基本解组的形式,同时也告诉了我们一种求解方法,但这种求解方法是很繁的.在实际求解时,常用下面的待定系数法求解. 为此,我们需要线性代数中的一个重要结论.引理3.1 设n 阶矩阵互不相同的特征根为(1,2,,)i i m λ=,其重数分别是,1212,,,()m m k k k k k k n +++=,记n 维常数列向量所组成的线性空间为V ,则(1)V 的子集合{()0,}jk j j λ=-=∈V R A E R R V是矩阵A 的(1,2,,)j k j m =维不变子空间,并且(2)V 有直和分解12m =⊕⊕⊕V V V V ;现在,在定理3.14相同的假设下,我们可以按下述方法求其基本解组.定理3.15 如果j λ是(3.20)的j k 重特征根,则方程组(3.20)有个j k 形如1011()()j j j k xk x x xeλ--=+++Y R R R(3.33)的线性无关解,其中向量011,,,j k -R R R 由矩阵方程0112210()()2()(1)()0j j j j j j k j k k j k λλλλ--⎧-=⎪⎪-=⎪⎨⎪-=-⎪⎪-=⎩A E R R A E R R A E R R A E R (3.34)所确定.取遍所有的(1,2,,)j j m λ=,则得到(3.20)的一个基本解组.证明 由定理3.14知,若j λ是(3.20)的j k 重特征根,则对应解有(3.30)的形式.将(3.33)代入方程组(3.20)有21121011[2(1)]()j j j j j j k xk xj k j k x k xex xeλλλ----+++-++++R R R R R R1011()j j j k xk A x xeλ--=+++R R R消去j xeλ,比较等式两端x 的同次幂的系数(向量),有0112211()()2()(1)()0j j j j j j k j k j k k λλλλ---⎧-=⎪⎪-=⎪⎨⎪-=-⎪⎪-=⎩A E R R A E R R A E R R A E R (3.35) 注意到方程组(3.35)与(3.34)是等价的.事实上,两个方程组只有最后一个方程不同,其余都相同.(3.35)与(3.34)同解的证明请见教材.这样,在方程组(3.31)中,首先由最下面的方程解出0R ,再依次利用矩阵乘法求出121,,,j k -R R R .由引理3.1得知,线性空间V 可分解成相应不变子空间的直和,取遍所有的(1,2,,)j j m λ=,就可以由(3.34)最下面的方程求出n 个线性无关常向量,再由(3.31)逐次求出其余常向量,就得到(3.20)的n 个解. 记这n 个解构成的解矩阵为()x Y ,显然,(0)Y 是由(3.34)最下面的方程求出的n 个线性无关常向量构成,由引理3.1的2)矩阵(0)Y 中的各列构成了n 维线性空间V 的一组基,因此det (0)0≠Y ,于是()x Y 是方程组(3.20)的一个基本解组.例3 求解方程组123213312dy y y dx dy y y dxdy y y dx ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩解 系数矩阵为011101110⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A特征方程为2(2)(1)0λλ-+=特征根为1232, 1.λλλ===-其中12λ=对应的解是211()11xx e ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Y下面求231λλ==-所对应的两个线性无关解.由定理3.15,其解形如01()()x x x e -=+Y R R并且01,R R 满足0120()()0=⎧⎨=⎩A +E R R A +E R 由于111()111,111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A +E 2333()333333⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A +E那么由20()0=A +E R 可解出两个线性无关向量11,0-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦101-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦将上述两个向量分别代入01()=A +E R R 中,均得到1R 为零向量.于是231λλ==-对应的两个线性无关解是21()1,0x x e --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Y 31()01xx e --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Y 最后得到通解2123111()110101x x x x C e C e C e ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦Y 例4 求解方程组11232123312332dy y y y dx dy y y y dxdy y y y dx ⎧=+-⎪⎪⎪=-++⎨⎪⎪=++⎪⎩解 系数矩阵是311121111-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦A特征方程为3(2)0λ-= , 有三重特征根1,2,32λ= 由定理3.15,可设其解形如22012()()x x x x e =++Y R R R012,,R R R 满足方程组0121230(2)(2)(2)-=⎧⎪-=⎨⎪-=⎩A E R R A E R R A E R 0由于23111101000(2)101,(2)000,(2)000111101000--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦A E A E A E 故0R 可分别取10,0⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 01,0⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦再将它们依次代入上面的方程,相应地求得1R 为11,1⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 10,1⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 111-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦2R 为120,12⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦00,0⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ 12012⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 于是,可得原方程组三个线性无关解22212111012()010,()10,011012x xY x x x e Y x x e ⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+-+=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦⎣⎦ 2231012()0101112xY x x x e ⎡⎤⎡⎤⎢⎥⎢⎥-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦最后方程的通解可写成22112222233111()22()1()11122xx x xx x y x C y x e x x C y x C x xx x x ⎡⎤+--+⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--+⎢⎥⎣⎦本讲要点:1 . 常系数线性微分方程组的解法归结为求出系数阵A 的特征根和特征向量。

相关文档
最新文档