实验三 固体线膨胀系数的测定

合集下载

固体线膨胀系数的测定实验报告

固体线膨胀系数的测定实验报告

固体线膨胀系数的测定实验报告
目录
1. 实验目的
1.1 实验原理
1.1.1 线膨胀系数的概念
1.1.2 线膨胀系数的计算公式
1.2 实验器材
1.3 实验步骤
1.4 实验结果分析
1.5 实验结论
实验目的
通过测定固体线膨胀系数的实验,掌握固体在温度变化下的膨胀规律,了解物体在不同温度下的变化情况。

实验原理
线膨胀系数的概念
线膨胀系数是一个物体在单位温度变化下长度变化的比例系数,通常
表示为α。

线膨胀系数的单位为℃^-1。

线膨胀系数的计算公式
线膨胀系数的计算公式为:
$$
α = \frac{ΔL}{L_0ΔT}
$$
其中,α为线膨胀系数,ΔL为长度变化量,L0为初始长度,ΔT为
温度变化量。

实验器材
1. 物体(例如金属杆)
2. 尺子
3. 温度计
4. 烧杯
5. 热水
实验步骤
1. 测量物体的初始长度并记录为L0。

2. 将物体放入热水中,让其温度升高。

3. 使用温度计测量热水的温度变化ΔT。

4. 测量物体在热水中的长度变化量ΔL。

5. 根据公式计算出线膨胀系数α。

实验结果分析
根据实验数据计算出的线膨胀系数可以帮助我们了解物体在不同温度下的膨胀情况,从而观察到物体在温度变化下的变化规律。

实验结论
通过本次实验,我们成功测定了固体线膨胀系数,并对物体在温度变化下的膨胀规律有了更深入的了解。

这对于工程领域的材料选择和设计具有重要意义。

大学物理仿真实验报告--固体线膨胀系数的测量

大学物理仿真实验报告--固体线膨胀系数的测量

固体线膨胀系数的测量一、实验目的测定金属棒的线胀系数,并学习一种测量微小长度的方法。

二、实验原理固体的线膨胀系数和体膨胀系数是固体热学特性的重要参数,通常体膨胀系数是线膨胀系数的3倍左右,本实验主要介绍固体线膨胀系数的测量方法。

线膨胀是指材料在受热膨胀时,在一维方向上的伸长。

在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L ,由初温t 1加热至末温t 2,物体伸长了△L ,则线膨胀系数满足:即上式中△L 是个极小的量,我们采用光杠杆测量。

光杠杆法测量△L :如下图(见教材杨氏模量原理)1.当金属杆伸长△L 时,从望远镜中叉丝所对标尺刻度前后为b 1、b 2,这时有 即则固体线膨胀系数为:三、实验仪器尺读望远镜,米尺,固体线膨胀系数测定仪,铜棒,光杠杆,温度计。

四、实验内容及步骤1、在实验界面单击右键选择“开始实验”()12t t L L -=∆αlLDbb ∆=-212()Dlb bL 212-=∆()12t t L L-∆=α()()kDLl t t DL b b l 221212=--=α2、调节平面镜至竖直状态3、打开望远镜视野,并调节方位、聚焦、目镜使得标尺刻线清晰,且中央叉丝读数为0.0mm4、单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升高10度时标尺读数直至温度升高到90度止5、单击卷尺,分别测量l、D6、以t 为横轴,b 为纵轴作b -t 关系曲线,求直线斜率k7、代入公式计算线膨胀系数值 有图得K =0.3724=1.206x10-5 /C五、实验数据记录与处理六、思考题()()k DLl t t DL b b l 221212=--=α1.对于一种材料来说,线胀系数是否一定是一个常数?为什么?不是。

因为同一材料在不同的温度区域,其线性系数是不同的,有实验结果的事实可证明。

2.你还能想出一种测微小长度的方法,从而测出线胀系数吗?目前想不到更好地方法。

固体线膨胀系数测定实验报告

固体线膨胀系数测定实验报告

固体线膨胀系数测定实验报告一、实验目的掌握固体线膨胀系数测定的基本原理和方法,了解固体热膨胀的规律,探究不同材料的膨胀性能。

二、实验原理α=ΔL/(L0×ΔT)三、实验仪器和材料1.实验仪器:线膨胀测定装置、温度计、恒温槽、电磁铁等。

2.实验材料:不同材质的试样。

四、实验步骤1.将不同材料的试样固定在线膨胀测定装置上。

2.将线膨胀测定装置放入恒温槽中,并将温度调至初始温度。

3.记录下试样的初始长度L0。

4.开始测量后,通过电磁铁控制试样的温度变化。

5.每隔一定时间,测量试样的长度变化ΔL,并记录下温度变化ΔT。

6.重复以上步骤,直到试样温度变化范围内的线膨胀量连续三次测量结果相近为止。

五、实验数据处理和分析1.按照实验步骤记录得到的数据,计算出每组试样的线膨胀系数α。

2.绘制试样温度变化与线膨胀量变化的曲线图。

3.比较不同材料的线膨胀系数大小,分析不同材料的膨胀性能。

六、实验结果和讨论通过实验测定,得到了不同材料的线膨胀系数α,并绘制了温度变化与线膨胀量变化的曲线图。

实验结果表明,在相同温度范围内,不同材料的线膨胀系数有所差异。

这表明了不同材料在受热膨胀时的表现不同。

根据实验得到的结果,我们可以进一步探究不同材料的热膨胀性能。

在实际应用中,我们可以根据不同的需求选择合适的材料进行设计与制造。

例如,在工程领域中,考虑到热膨胀可能引起的变形问题,我们可以选择线膨胀系数较小的材料,从而最大程度地减小因热膨胀引起的结构变形。

七、实验总结通过这次实验,我掌握了固体线膨胀系数测定的基本原理和方法。

实验中,我了解到了不同材料在受热膨胀时的表现不同,这对于材料选择与应用有着重要的意义。

同时,我也深刻认识到实验的重要性和实验操作的细致性要求,只有严格按照实验步骤进行,才能获得准确的实验数据和可靠的实验结果。

在今后的学习和工作中,我将继续深入学习和研究固体线膨胀的相关知识,不断提升自己的实验技能和科研能力,为材料科学与工程领域的发展做出自己的贡献。

固体线胀系数测定实验

固体线胀系数测定实验

固体线胀系数测定实验一般物质都有热胀冷缩的特性,在相同的条件下,不同的金属其膨胀程度是不同的,通常用单位长度的膨胀率来描述金属的膨胀特性。

线膨胀系数的测定,关键是测量金属受热后微小长度的变化,本实验用固体线膨胀系数测定仪测量不同样品的线膨胀系数。

【实验目的】1.学习温度传感器的使用;2.测定不同材料的线膨胀系数。

【实验原理】在一定温度范围内,原长为L的物体受热后伸长量L,它与温度的增加量近似成正比,与原长也成正比,即:式中为固体的线膨胀系数,它是固体材料的热学性质之一。

实验证明,不同材料的线膨胀系数是不同的。

本实验可对铁棒、铜棒、铝棒进行实验。

恒温控制仪使用说明:1)当面板电源接通数字显示为“FdHc”表示本公司产品,随后即自动转向“A××.×”表示当时传感器温度,显示“b”表示等待设定温度。

2)按升温键,数字即由零逐渐增大至用户所需的设定值,最高可选80度。

3)如果数字显示值高于用户所需要的温度值,可按降温键。

直至用户所需要的设定值。

4)当数字设定值达到用户所需的值时,即可按确定键,开始对样品加热,同时指示灯亮,发光频闪与加热速率成正比。

5)确定键的另一用途可作选择键,可选择观察当时的温度值和先前设定值。

6)用户如果需要改变设定值可按复位键,重新设置。

【实验器材】线膨胀系数测定仪。

【实验内容】1.接通电加热器与温控仪输入输出接口和温度传感器的航空插头。

2.旋松千分表固定螺栓,转动固定架至使被测样品(直径8mm,长400mm金属棒)能插入特厚壁紫铜管内,再插入不良导热体(不锈钢)用力压紧后转动固定架,在安装千分表架时注意被测物体与千分表头保持在同一直线。

3.将千分表安装在固定架上,并且扭紧螺栓,不使千分表转动,再向前移动固定架,使千分表读数值在0.2-0.3mm处,固定架给予固定。

然后稍用力压一下千分表滑络端,使它能与绝热体有良好的接触,再转动千分表圆盘读数为零。

4.接通温控仪的电源,设定需加热的值,一般设置为50,55,60度等,按确定键开始加热。

Pasco固体线膨胀系数的测量实验报告

Pasco固体线膨胀系数的测量实验报告

Pasco固体线膨胀系数的测量实验报告-实验目的:1.了解物体“热胀冷缩”的程度和特性,绘制材料“伸长量—时间”、“温度变化量—时间”曲线。

2.学习用计算机控制对固体线膨胀系数的实时测量技术。

实验原理:在相同的条件下,不同的材料,其线膨胀的程度各不相同。

实验表明,在一定变化范围内,原长度为L的固体受热后,其相对伸长量△L/L=a△t式中a称为固体的线膨胀系数。

在一般情况下,温度变化不大的范围内,对于一种确定的固体材料,可以认为线膨胀系数是一个具有确定值的常数。

在本实验中测量出棒状材料长度变化的增量△L,利用a=△L/(L×△t)。

a的物理意义是:棒状材料在温度变化区域内,温度每升高一度时的相对伸长量,单位是1/℃。

严格的讲,求出的a是温度变化△t区域内的平均线膨胀系数。

实验利用沸腾的水蒸气来加热待测金属杆,并保持末温度不变。

采用温度传感器自动读取待测金属杆的温度变化量△t,转动传感器自动测量棒状物体的伸长量△L,根据公式便可求得待测金属杆的线膨胀系数。

实验仪器:计算机、科学工作站、转动传感器、热敏电阻传感器、水蒸气锅实验内容:1.测量出待测金属杆在室温下的原长记为L。

2.连接好实验装置,固定好金属杆,用水蒸气锅给水加热直至沸腾。

3.打开科学工作室默认窗口界面,选择转动传感器和热敏电阻传感器,设置传感器工作系数,插入图表。

4.待水烧开后分别对三根金属棒进行测量。

5.利用螺旋测微器测量仪器的直径。

实验数据:金属棒的原长均为45.7厘米,仪器的直径为2.605毫米铝棒温度变化:红铜棒温度变化:黄铜棒:温度变化:数据分析与讨论:铝棒,△t=62.4℃,△L=0.73mm故a=26.6×10^(-6)/℃;红铜棒:△t=69℃,△L=0.43mm故a=13.7×10^(-6) /℃;黄铜棒:△t=63.6℃, △L=0.61mm故a=21.1×10^(-6) /℃;比较课本上的固体线膨胀系数表得实验中存在误差,但在误差允许的范围内测量的结果还是接近的。

固体线胀系数的测定实验报告

固体线胀系数的测定实验报告

固体线胀系数的测定实验报告固体线胀系数的测定实验报告引言:固体线胀系数是材料热胀冷缩特性的重要指标之一。

通过测定材料在不同温度下的线胀变化,可以确定材料的线胀系数,为材料的热胀冷缩行为提供重要参考。

本实验旨在通过测定铝棒在不同温度下的线胀变化,计算出铝的线胀系数。

实验步骤:1. 实验器材准备:- 铝棒:长度为30cm,直径为1cm;- 温度计:具有较高精度的数字温度计;- 夹具:用于固定铝棒,确保其在实验过程中不发生位移;- 温度控制装置:用于控制实验室内的温度。

2. 实验操作:- 将铝棒固定在夹具上,并确保其水平放置;- 将温度计的探头与铝棒接触,记录下初始温度;- 打开温度控制装置,将实验室温度调整至25摄氏度;- 每隔10摄氏度,记录下铝棒的长度,并记录相应的温度;- 测定范围为25摄氏度至100摄氏度。

数据处理:根据实验数据,我们可以计算出铝的线胀系数。

线胀系数(α)的计算公式为:α = (ΔL / L0) / ΔT其中,ΔL为铝棒的长度变化量,L0为初始长度,ΔT为温度变化量。

我们可以根据测定的数据,绘制出铝的线胀系数与温度的关系曲线图,并通过拟合曲线,得到更精确的线胀系数。

结果与讨论:根据实验数据,我们得到了铝的线胀系数与温度的关系曲线图。

从图中可以看出,在温度升高的过程中,铝的线胀系数逐渐增大。

这是因为随着温度的升高,固体分子的热运动增加,分子间的距离扩大,导致材料的线胀。

而铝的线胀系数相对较小,说明铝具有较好的热胀冷缩性能。

通过拟合曲线,我们得到了铝的线胀系数为0.0000225/℃。

这一数值与文献值相符合,说明实验结果较为准确。

结论:通过本实验,我们成功测定了铝的线胀系数,并得到了较准确的结果。

线胀系数是材料热胀冷缩特性的重要指标,对于工程设计和材料选用具有重要意义。

本实验为我们提供了一种简单有效的测定固体线胀系数的方法,并且验证了铝的线胀系数与温度的关系。

固体线胀系数实验报告

固体线胀系数实验报告

固体线胀系数实验报告1. 实验目的本实验旨在通过测量固体材料在不同温度下的线胀量,计算得到固体线胀系数,以便研究该材料的热膨胀性质。

2. 实验原理固体的热膨胀是指固体物质在温度变化时的体积或长度的增加。

线胀系数(α)是指在单位温度变化下,固体材料单位长度的变化量。

线胀系数的计算公式如下:α= (ΔL / L0) / ΔT其中,α为线胀系数,ΔL为长度变化量,L0为原始长度,ΔT为温度变化量。

本实验选用了金属样品进行热膨胀实验,根据材料的线胀特性,将样品固定在测量仪器上,通过在控制的温度范围内升温,测量线胀量,进而计算得到线胀系数。

3. 实验器材- 热膨胀测量仪:用于固定和测量样品的长度变化量,同时提供恒定的温度环境。

- 金属样品:选用具有热膨胀性质的固体材料作为实验样品,如铝、铜等。

4. 实验步骤1. 将金属样品固定在热膨胀测量仪上,确保样品稳固不动。

2. 设置热膨胀测量仪的温度范围,并将温度调节到初始温度。

3. 开始记录温度和样品长度数据。

4. 将热膨胀测量仪的温度逐步升高,每隔一定温度间隔记录一次样品长度。

5. 当达到最终温度后,停止温度升高,继续记录样品长度。

6. 根据记录的数据,计算得到线胀系数。

5. 数据处理与结果分析根据实验记录的数据,我们可以绘制出温度和样品长度的曲线图。

根据曲线的斜率即可计算得到线胀系数。

实验结果显示,金属样品在温度升高时,其长度随温度的增加而增加。

通过计算得到的线胀系数可以反映金属材料的热膨胀性质。

6. 实验误差分析实验中可能存在的误差包括温度测量误差和长度测量误差。

温度测量误差可能来自于温度传感器的精度限制,长度测量误差可能来自于仪器的粗糙度。

为了减小误差,我们可以多次重复实验,取平均值来增加测量的准确性。

此外,在实验操作中要尽量避免人为因素对实验结果的影响,严格按照操作规程进行实验。

7. 实验结论通过本实验测量得到金属样品的线胀系数,从而为研究该金属材料的热膨胀性质提供了参考数据。

固体线膨胀系数的测定

固体线膨胀系数的测定

固体线膨胀系数的测定[实验目的]1、测量两种金属杆的线膨胀系数。

2、进一步使用光杠杆测定固体长度的微小变化。

3、初步掌握温度测量的要领。

[实验原理]实验表明,原长度为L的固体受热后,在一定的温度范围内,其相对伸长量正比于温度的变化,即ΔL/L=αΔT (7-1)式中比例系数α称为固体的线膨胀系数。

对于一种确定的固体材料,在一定温度范围内,它是常数,材料不同,α的值也不同。

设在温度T1时,固体的长度为L1,温度升高到T2时,其长度为L2,则有:(L2-L1)/L1=α(T2-T1)或α=(L2-L1)/L1(T2-T1)(7-2)其中ΔL= L2-L1是微小的长度变化,可用光杠杆法进行测量。

利用类似于杨氏模量测仪的装置(见图7-1),可得长度伸长量:ΔL= L2-L1=x/2D(n2-n1)(7-3)式中x为光杠杆前后脚的垂直距离,D为光杠杆镜面到望远镜,标尺间的距离,n1及n2为温度T1及T2时望远镜中标尺的读数。

代入式(7-2)得α= x(n2-n1)/2D L1(T2-T1)(7-4)如果测得L1、T2、T1、n1、n2、x及D,便可从式(7-4)求出α值。

[实验仪器]线膨胀系数测定仪(包括待测铜棒、铁棒,0-100℃温度计,光杠杆,尺读望远镜,标尺),钢卷尺,游标卡尺。

[实验内容]测定铜棒和铁棒的线膨胀系数(两者实验步骤相同)(1)测量金属杆的长度L1并把它装入加热管道内。

(2)小心地把温度计插入加热管的被测棒孔内,记下加热前的温度T1。

(3)将光杠杆三个构成等腰三角形的尖脚放在白纸上轻轻地按一下,得到三个支点的位置。

通过作图量出等腰三角形的高X,然后将光杠杆放在平台上,使它的顶点脚放在金属杆的上端。

(4)调整光杠杆的位置,以及望远镜的位置和焦距,使得在望远镜中能清楚地看到标尺的刻度(调整方法同实验五),记下加热前标尺的读数n1。

(5)接通加热开关,要求测一组n-T值,作出n-T曲线,由曲线求α,并和附录附表8所载的标准值比较之。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 固体线膨胀系数的测量
【实验目的】
1.了解热膨胀现象。

2.测量固体线膨胀系数。

【实验仪器】
EH-3型热学实验仪,铜棒,铁棒,千分表。

【实验原理】
大部分物质在一定温度范围内都呈现“热胀热缩”的宏观现象。

就晶体状固体模型而言,这是因为物质中相邻粒子间的平均距离随温度的升高而增大引起的。

两相邻粒子间的势能是它们之间距离的函数,其关系可用势能曲线描绘如图
3-1。

在一定的温度下,粒子在其平衡位置r o 附近做热
振动,具有一定的振动能量E 。

由于势能曲线的非对
称性,热振动时的平均距离r 大于平衡距离r o 。

若温
度升高(T 1、T 2),振动能量增加(E 1、E 2),则两原子
之间的平均距离也增大(r 1、r 2),随之固体的体积膨
胀。

因此,热膨胀现象是物体的势能曲线的非对称特性的必然结果。

固体的任何线度(长度、宽度、厚度、直径等)随温度的变化,都称为线膨胀。

对于各向同性的固体,沿不同方向的线膨胀系数相同;对于各向异性的固体,沿不同的晶轴方向,其线膨胀系数不同。

实验表明,原长度为L 的固体受热后,其相对伸长量正比温度的变化,即: αt L L ∆=∆ 式中,比例系数a 称为固体的线膨胀系数,对于一种确定的固体材料,它是一个确定的常数。

设温度在0℃时,固体的长度为L 0,当温度升高时,其长度为L t 。

t L L L t α=-0
0 (3-1) L t = L 0(1+αt )。

(3-2)
若在温度t 1和t 2时,固体的长度分别为L 1,L 2,则根据式(3-2)或写出
L 1=L 0(1+αt 1), (3-3)
L 2=L 0(1+αt 2), (3-4)
将式(3-3)代入式(3-4)化简后得
图3-1 势能曲线
⎪⎪⎭
⎫ ⎝⎛-∆=∂11221t L L t L L (3-5) 由于L 1与L 2非常接近,故L 2/ L 1≈1,于是式(3-5)可简写成 ()121t t L L -∆=
α (3-6) 只要测出L 1,ΔL 和t 1,t 2就可以求出α值。

【实验步骤】
1、测铜棒的α
检查EH-3热学实验仪的电源开关是否在“关”的位置,调温按键是否在“1”的位置,将铜棒插入加热盘的孔中,将加热盘放在支架的泡沫台上,并将铜棒的一个端面与千分表顶尖靠拢,另一端面与可调顶紧螺旋的尖端对齐。

旋动螺旋,直到千分表的指针微有旋转。

将测温探头插入加热盘的另一个侧孔内。

打开实验仪的电源开关,按下实验仪的测温键。

随着温度的上升,千分表开始旋转,当温度稳定后,千分表停止动作,记下此时的温度值及千分表读数。

然后每隔一个调温挡,当温度恒定后,读取一个千分表读数,将数据填入数据表格。

2、测铁棒的a
将铜棒换成铁棒,操作同1。

3.数据记录与处理
待测材料
材料长度 mm
表3-1
【注意事项】
(1)按实验步骤检查无误后,才可操作。

(2)在实验过程中要避免任何振动。

【思考题】
1、本实验中用千分表来测长度的变化量,在做过的实验中,还有哪种方法用来测量长度的变化量?
2、有一体积为V 的各向固性固体,受热受其体积的相对增加跟温度的变化Δt 成正比,即。

相关文档
最新文档